Severe COVID-19 associated hyperglycemia is caused by beta cell dysfunction: a prospective cohort study
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37460458
PubMed Central
PMC10352285
DOI
10.1038/s41387-023-00241-7
PII: 10.1038/s41387-023-00241-7
Knihovny.cz E-zdroje
- MeSH
- COVID-19 * komplikace MeSH
- hyperglykemie * MeSH
- inzulin MeSH
- inzulinová rezistence * fyziologie MeSH
- krevní glukóza MeSH
- lidé středního věku MeSH
- lidé MeSH
- prospektivní studie MeSH
- SARS-CoV-2 MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- inzulin MeSH
- krevní glukóza MeSH
BACKGROUND: COVID-19, an infectious disease caused by SARS-CoV-2, was shown to be associated with an increased risk of new-onset diabetes. Mechanisms contributing to the development of hyperglycemia are still unclear. We aimed to study whether hyperglycemia is related to insulin resistance and/or beta cell dysfunction. MATERIALS AND METHODS: Survivors of severe COVID-19 but without a known history of diabetes were examined at baseline (T0) and after 3 (T3) and 6 (T6) months: corticosteroids use, indirect calorimetry, and OGTT. Insulin response and sensitivity (IS) were expressed as insulinogenic (IGI), disposition (DI), and Matsuda insulin sensitivity index (ISI). Resting energy expenditure (REE) and respiratory quotient (RQ) was calculated from the gas exchange and nitrogen losses. RESULTS: 26 patients (out of 37) with complete outcome data were included in the analysis (age ~59.0 years; BMI ~ 30.4, 35% women). Patients were hypermetabolic at T0 (30.3 ± 4.0 kcal/kg lean mass/day, ~120% predicted) but REE declined over 6 months (ΔT6-T0 mean dif. T6-T0 (95% CI): -5.4 (-6.8, -4.1) kcal/kg FFM/day, p < 0.0001). 17 patients at T0 and 13 patients at T6 had hyperglycemia. None of the patients had positive islet autoantibodies. Insulin sensitivity in T0 was similarly low in hyperglycemic (H) and normoglycemic patients (N) (T0 ISIH = 3.12 ± 1.23, ISIN = 3.47 ± 1.78, p = 0.44), whereas insulin response was lower in the H group (DIH = 3.05 ± 1.79 vs DIN = 8.40 ± 5.42, p = 0.003). Over 6 months ISI (ΔT6-T0 mean dif. T6-T0 for ISI (95% CI): 1.84 (0.45, 3.24), p = 0.01)) increased in the H group only. CONCLUSIONS: Patients with severe COVID-19 had increased REE and insulin resistance during the acute phase due to the infection and corticosteroid use, but these effects do not persist during the follow-up period. Only patients with insufficient insulin response developed hyperglycemia, indicating that beta cell dysfunction, rather than insulin resistance, was responsible for its occurrence.
Department of Hygiene 3rd Faculty of Medicine Charles University Prague Czech Republic
Department of Pathophysiology 3rd Faculty of Medicine Charles University Prague Czech Republic
Faculty of Movement and Rehabilitation Sciences Katholieke Universiteit Leuven Leuven Belgium
German Center for Diabetes Research Partner Düsseldorf Düsseldorf Germany
Oxford Center for Diabetes Endocrinology and Metabolism University of Oxford Oxford UK
Zobrazit více v PubMed
Coronavirus. https://www.who.int/health-topics/coronavirus#tab=tab_1. Accessed 30 Jan 2023.
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5. PubMed DOI PMC
Guo W, Li M, Dong Y, Zhou H, Zhang Z, Tian C, et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev. 2020;36. 10.1002/dmrr.3319. PubMed PMC
Chen M, Zhu B, Chen D, Hu X, Xu X, Shen WJ, et al. COVID-19 may increase the risk of insulin resistance in adult patients without diabetes: a 6-month prospective study. Endocr Pract. 2021;27:834–41. doi: 10.1016/j.eprac.2021.04.004. PubMed DOI PMC
Khunti K, Prato S, del, Mathieu C, Kahn SE, Gabbay RA, Buse JB. Covid-19, hyperglycemia, and new-onset diabetes. Diabetes Care. 2021;44:2645–55. doi: 10.2337/dc21-1318. PubMed DOI PMC
Rubino F, Amiel SA, Zimmet P, Alberti G, Bornstein S, Eckel RH, et al. New-onset diabetes in Covid-19. N. Engl J Med. 2020;383:789–90. doi: 10.1056/NEJMc2018688. PubMed DOI PMC
Schlesinger S, Neuenschwander M, Lang A, Pafili K, Kuss O, Herder C, et al. Risk phenotypes of diabetes and association with COVID-19 severity and death: a living systematic review and meta-analysis. Diabetologia. 2021;64:1480–91. doi: 10.1007/s00125-021-05458-8. PubMed DOI PMC
Langouche L, van den Berghe G, Gunst J. Hyperglycemia and insulin resistance in COVID-19 versus non-COVID critical illness: Are they really different? Crit Care. 2021;25:437. doi: 10.1186/s13054-021-03861-6. PubMed DOI PMC
Montefusco L, ben Nasr M, D’Addio F, Loretelli C, Rossi A, Pastore I, et al. Acute and long-term disruption of glycometabolic control after SARS-CoV-2 infection. Nat Metab. 2021;3:774–85. doi: 10.1038/s42255-021-00407-6. PubMed DOI PMC
Reiterer M, Rajan M, Gómez-Banoy N, Lau JD, Gomez-Escobar LG, Ma L, et al. Hyperglycemia in acute COVID-19 is characterized by insulin resistance and adipose tissue infectivity by SARS-CoV-2. Cell Metab. 2021;33:2174–88.e5. doi: 10.1016/j.cmet.2021.09.009. PubMed DOI PMC
Wan L, Gao Q, Deng Y, Ke Y, Ma E, Yang H, et al. GP73 is a glucogenic hormone contributing to SARS-CoV-2-induced hyperglycemia. Nat Metab. 2022;4:29–43. doi: 10.1038/s42255-021-00508-2. PubMed DOI
Cartin-Ceba R, Khatua B, El-Kurdi B, Trivedi S, Kostenko S, Imam Z, et al. Evidence showing lipotoxicity worsens outcomes in covid-19 patients and insights about the underlying mechanisms. iScience. 2022;25:104322. doi: 10.1016/j.isci.2022.104322. PubMed DOI PMC
Soto ME, Guarner-Lans V, Díaz-Díaz E, Manzano-Pech L, Palacios-Chavarría A, Valdez-Vázquez RR, et al. Hyperglycemia and loss of redox homeostasis in COVID-19 patients. Cells 2022;11. 10.3390/cells11060932. PubMed PMC
Hayden MR. An immediate and long-term complication of COVID-19 may be Type 2 diabetes mellitus: the central role of β-cell dysfunction, apoptosis and exploration of possible mechanisms. Cells. 2020;9. 10.3390/cells9112475. PubMed PMC
Müller JA, Groß R, Conzelmann C, Krüger J, Merle U, Steinhart J, et al. SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nat Metab. 2021;3:149–65. doi: 10.1038/s42255-021-00347-1. PubMed DOI
Kazakou P, Lambadiari V, Ikonomidis I, Kountouri A, Panagopoulos G, Athanasopoulos S, et al. Diabetes and COVID-19; a bidirectional interplay. Front Endocrinol. 2022;13. 10.3389/fendo.2022.780663. PubMed PMC
Laurenzi A, Caretto A, Molinari C, Mercalli A, Melzi R, Nano R, et al. No evidence of long-term disruption of glycometabolic control after SARS-CoV-2 infection. J Clin Endocrinol Metab. 2022;107:e1009–e1019. doi: 10.1210/clinem/dgab792. PubMed DOI PMC
Liu Y, Lu R, Wang J, Cheng Q, Zhang R, Zhang S, et al. Diabetes, even newly defined by HbA1c testing, is associated with an increased risk of in-hospital death in adults with COVID-19. BMC Endocr Disord. 2021;21. 10.1186/S12902-021-00717-6. PubMed PMC
Lampasona V, Secchi M, Scavini M, Bazzigaluppi E, Brigatti C, Marzinotto I, et al. Antibody response to multiple antigens of SARS-CoV-2 in patients with diabetes: an observational cohort study. Diabetologia. 2020;63:2548–58. doi: 10.1007/s00125-020-05284-4. PubMed DOI PMC
Cariou B, Pichelin M, Goronflot T, Gonfroy C, Marre M, Raffaitin-Cardin C, et al. Phenotypic characteristics and prognosis of newly diagnosed diabetes in hospitalized patients with COVID-19: Results from the CORONADO study. Diabetes Res Clin Pract. 2021;175. 10.1016/J.DIABRES.2021.108695. PubMed PMC
Ryrsø CK, Dungu AM, Hegelund MH, Jensen AV, Sejdic A, Faurholt-Jepsen D, et al. Comparison of body composition, physical capacity, and immuno-metabolic profile of hospitalized patients with community-acquired pneumonia caused COVID-19, influenza, and bacteria. In:
Plummer MP, Rait L, Finnis ME, French CJ, Bates CCRN S, Douglas J. et al. Diabetes mellitus, glycaemic control and severe COVID-19 in the Australian Critical Care Setting—a nested cohort study. Australian Critical Care. 2022. 10.1016/j.aucc.2022.05.002. PubMed PMC
Clinical Spectrum | COVID-19 Treatment Guidelines. https://www.covid19treatmentguidelines.nih.gov/overview/clinical-spectrum/. Accessed 30 Jan 2023.
Baecke JA, Burema J, Frijters JE. A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am J Clin Nutr. 1982;36:936–42. doi: 10.1093/ajcn/36.5.936. PubMed DOI
Tůma P, Gojda J. Rapid determination of branched chain amino acids in human blood plasma by pressure-assisted capillary electrophoresis with contactless conductivity detection. Electrophoresis. 2015;36:1969–75. doi: 10.1002/elps.201400585. PubMed DOI
Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9. doi: 10.1007/BF00280883. PubMed DOI
Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22:1462–70. doi: 10.2337/diacare.22.9.1462. PubMed DOI
Kile AJ, Hanna C, Hannon TS, Kirkman MS, Considine RV, Patel Y, et al. The linearized disposition index augments understanding of treatment effects in diabetes. Am J Physiol Endocrinol Metab. 2021;320:E169–E177. doi: 10.1152/ajpendo.00397.2020. PubMed DOI PMC
Association AD. Classification and diagnosis of diabetes: standards of medical care in diabetes—2020. Diabetes Care. 2020;43:S14–S31. doi: 10.2337/dc20-S002. PubMed DOI
Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol Respir Environ Exerc Physiol. 1983;55:628–34. PubMed
Ferrannini E. The theoretical bases of indirect calorimetry: a review. Metabolism. 1988;37:287–301. doi: 10.1016/0026-0495(88)90110-2. PubMed DOI
Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr. 1990;51:241–7. doi: 10.1093/ajcn/51.2.241. PubMed DOI
Niederer LE, Miller H, Haines KL, Molinger J, Whittle J, MacLeod DB, et al. Prolonged progressive hypermetabolism during COVID-19 hospitalization undetected by common predictive energy equations. Clin Nutr ESPEN. 2021;45:341–50. doi: 10.1016/j.clnesp.2021.07.021. PubMed DOI PMC
Lakenman PLM, van der Hoven B, Schuijs JM, Eveleens RD, van Bommel J, Olieman JF, et al. Energy expenditure and feeding practices and tolerance during the acute and late phase of critically ill COVID-19 patients. Clin Nutr ESPEN. 2021;43:383–9. doi: 10.1016/j.clnesp.2021.03.019. PubMed DOI PMC
von Renesse J, von Bonin S, Held HC, Schneider R, Seifert AM, Seifert L, et al. Energy requirements of long-term ventilated COVID-19 patients with resolved SARS-CoV-2 infection. Clin Nutr ESPEN. 2021;44:211–7. doi: 10.1016/j.clnesp.2021.06.016. PubMed DOI PMC
Yu PJ, Cassiere H, DeRosa S, Bocchieri K, Yar S, Hartman A. Hypermetabolism and coronavirus disease 2019. J Parenter Enter Nutr. 2020;44:1234–6. doi: 10.1002/jpen.1948. PubMed DOI PMC
Martindale R, Patel JJ, Taylor B, Arabi YM, Warren M, McClave SA. Nutrition therapy in critically ill patients with coronavirus disease 2019. JPEN J Parenter Enter Nutr. 2020;44:1174–84. doi: 10.1002/jpen.1930. PubMed DOI PMC
Whittle J, Molinger J, MacLeod D, Haines K, Wischmeyer PE. Persistent hypermetabolism and longitudinal energy expenditure in critically ill patients with COVID-19. Crit Care. 2020;24:581. doi: 10.1186/s13054-020-03286-7. PubMed DOI PMC
McClave SA, Taylor BE, Martindale RG, Warren MM, Johnson DR, Braunschweig C, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient. J Parenter Enter Nutr. 2016;40:159–211. doi: 10.1177/0148607115621863. PubMed DOI
Brillon DJ, Zheng B, Campbell RG, Matthews DE. Effect of cortisol on energy expenditure and amino acid metabolism in humans. Am J Physiol Endocrinol Metab. 1995;268. 10.1152/ajpendo.1995.268.3.e501. PubMed
Sathish T, Kapoor N, Cao Y, Tapp RJ, Zimmet P. Proportion of newly diagnosed diabetes in COVID-19 patients: a systematic review and meta-analysis. Diabetes Obes Metab. 2021;23:870–4. doi: 10.1111/dom.14269. PubMed DOI PMC
Makris K, Spanou L. Is there a relationship between mean blood glucose and glycated hemoglobin? J Diabetes Sci Technol. 2011;5:1572. doi: 10.1177/193229681100500634. PubMed DOI PMC
Shestakova M, Kononenko I, Kalmykov Z, Markova T, Kaplun E, Lysenko M, et al. Glycated hemoglobin level dynamics in COVID-19 survivors: 12 months follow-up study after discharge from hospital. PLoS ONE. 2022;17. 10.1371/JOURNAL.PONE.0275381. PubMed PMC
Qi D, Rodrigues B. Glucocorticoids produce whole body insulin resistance with changes in cardiac metabolism. Am J Physiol Endocrinol Metab. 2007;292. 10.1152/ajpendo.00453.2006. PubMed
Wu J, MacKie SL, Pujades-Rodriguez M. Glucocorticoid dose-dependent risk of type 2 diabetes in six immune-mediated inflammatory diseases: a population-based cohort analysis. BMJ Open Diabetes Res Care. 2020;8. 10.1136/BMJDRC-2020-001220. PubMed PMC
Fine NHF, Doig CL, Elhassan YS, Vierra NC, Marchetti P, Bugliani M, et al. Glucocorticoids reprogram b-cell signaling to preserve insulin secretion. In: Diabetes. American Diabetes Association Inc.; 2018. p. 278–90. PubMed PMC
Vanweert F, Schrauwen P, Phielix E. Role of branched-chain amino acid metabolism in the pathogenesis of obesity and type 2 diabetes-related metabolic disturbances BCAA metabolism in type 2 diabetes. Nutr Diabetes. 2022;12:35. doi: 10.1038/s41387-022-00213-3. PubMed DOI PMC