High-resolution app data reveal sustained increases in recreational fishing effort in Europe during and after COVID-19 lockdowns

. 2023 Jul ; 10 (7) : 230408. [epub] 20230719

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37476517

It is well recognized that COVID-19 lockdowns impacted human interactions with natural ecosystems. One example is recreational fishing, which, in developed countries, involves approximately 10% of people. Fishing licence sales and observations at angling locations suggest that recreational fishing effort increased substantially during lockdowns. However, the extent and duration of this increase remain largely unknown. We used four years (2018-2021) of high-resolution data from a personal fish-finder device to explore the impact of COVID-19 lockdowns on angling effort in four European countries. We show that relative device use and angling effort increased 1.2-3.8-fold during March-May 2020 and generally remained elevated even at the end of 2021. Fishing during the first lockdown also became more frequent on weekdays. Statistical models explained 50-70% of the variation, suggesting that device use and angling effort were relatively consistent and predictable through space and time. Our study demonstrates that recreational fishing behaviour can change substantially and rapidly in response to societal shifts, with profound ecological, human well-being and economic implications. We also show the potential of angler devices and smartphone applications for high-resolution fishing effort analysis and encourage more extensive science and industry collaborations to take advantage of this information.

Zobrazit více v PubMed

Rutz C, Loretto M-C, Bates AE, Davidson SC, Duarte CM, Jetz W. 2020. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat. Ecol. Evol 4, 1156-1159. (10.1038/s41559-020-1237-z) PubMed DOI

Manenti R, Mori E, Canio V, Mercurio S, Picone M, Caffi M, Rubolini D. 2020. The good, the bad and the ugly of COVID-19 lockdown effects on wildlife conservation: insights from the first European locked down country. Biol. Conserv. 249, 108728. (10.1016/j.biocon.2020.108728) PubMed DOI PMC

Łopucki R, Kitowski I, Perlińska-Teresiak M, Klich D. 2021. How is wildlife affected by the COVID-19 pandemic? Lockdown effect on the road mortality of hedgehogs. Animals 11, 868. (10.3390/ani11030868) PubMed DOI PMC

Derryberry EP, Phillips JN, Derryberry GE, Blum MJ, Luther D. 2020. Singing in a silent spring: birds respond to a half-century soundscape reversion during the COVID-19 shutdown. Science 370, 575-579. (10.1126/science.abd5777) PubMed DOI

Zuluaga Castañeda S, Speziale KL, Lambertucci SA. 2021. Global aerial habitat conservation post-COVID-19 anthropause. Trends Ecol. 36, 273-277. (10.1016/j.tree.2021.01.009) PubMed DOI PMC

Costa LL, Machado PM, Moura Barboza CA, Soares-Gomes A, Zalmon IR. 2022. Recovery of ghost crabs metapopulations on urban beaches during the Covid-19 ‘anthropause’. Mar. Environ. Res. 180, 105733. (10.1016/j.marenvres.2022.105733) PubMed DOI PMC

Soto EH, Botero CM, Milanés CB, Rodríguez-Santiago A, Palacios-Moreno M, Díaz-Ferguson E, Souza Filho JR. 2021. How does the beach ecosystem change without tourists during COVID-19 lockdown? Biol. Conserv. 255, 108972. (10.1016/j.biocon.2021.108972) PubMed DOI PMC

Edward JP, Jayanthi M, Malleshappa H, Jeyasanta KI, Laju RL, Patterson J, Grimsditch G. 2021. COVID-19 lockdown improved the health of coastal environment and enhanced the population of reef-fish. Mar. Pollut. Bull. 165, 112124. (10.1016/j.marpolbul.2021.112124) PubMed DOI PMC

Bates AE, Primack RB, Biggar BS, Bird TJ, Clinton ME, Command RJ, Parmelee JR. 2021. Global COVID-19 lockdown highlights humans as both threats and custodians of the environment. Biol. Conserv. 263, 109175. (10.1016/j.biocon.2021.109175) PubMed DOI PMC

Kemp PS, Froese R, Pauly D. 2020. COVID-19 provides an opportunity to advance a sustainable UK fisheries policy in a post-Brexit brave new world. Mar. Pol. 120, 104114. (10.1016/j.marpol.2020.104114) PubMed DOI PMC

Coll M, Ortega-Cerdà M, Mascarell-Rocher Y. 2021. Ecological and economic effects of COVID-19 in marine fisheries from the Northwestern Mediterranean Sea. Biol. Conserv. 255, 108997. (10.1016/j.biocon.2021.108997) PubMed DOI PMC

Asante EO, Blankson GK, Sabau G. 2021. Building back sustainably: COVID-19 impact and adaptation in Newfoundland and Labrador fisheries. Sustainability 13, 2219. (10.3390/su13042219) DOI

Bennett NJ, Finkbeiner EM, Ban NC, Belhabib D, Jupiter SD, Kittinger JN, Christie P. 2020. The COVID-19 pandemic, small-scale fisheries and coastal fishing communities. Coast. Manag. 48, 336-347. (10.1080/08920753.2020.1766937) DOI

Campbell SJ, Jakub R, Valdivia A, Setiawan H, Setiawan A, Cox C, Box S. 2021. Immediate impact of COVID-19 across tropical small-scale fishing communities. Ocean Coast. Manag. 200, 105485. (10.1016/j.ocecoaman.2020.105485) PubMed DOI PMC

Knight CJ, Burnham TL, Mansfield EJ, Crowder LB, Micheli F. 2020. COVID-19 reveals vulnerability of small-scale fisheries to global market systems. Lancet Planet. Health 4, 219. (10.1016/s2542-5196(20)30128-5) PubMed DOI

Asche F, Sogn-Grundvåg G, Zhang D. 2022. Large-scale fisheries during the COVID-19 pandemic: the case of the oceangoing groundfish fleet in Norway. Mar. Pol. 144, 105223. (10.1016/j.marpol.2022.105223) PubMed DOI PMC

White ER, Froehlich HE, Gephart JA, Cottrell RS, Branch TA, Agrawal Bejarano R, Baum JK. 2021. Early effects of COVID-19 on US fisheries and seafood consumption. Fish Fish. 22, 232-239. (10.1111/faf.12525) PubMed DOI PMC

Pita P, Ainsworth GB, Alba B, Anderson AB, Antelo M, Alós J, Zarauz L. 2021. First assessment of the impacts of the COVID-19 pandemic on global marine recreational fisheries. Front. Mar. Sci. 8, 735741. (10.3389/fmars.2021.735741) DOI

Cooke SJ, Cowx IG. 2004. The role of recreational fishing in global fish crises. BioScience 54, 857-859. (10.1641/0006-3568(2004)054[0857:trorfi]2.0.co;2) DOI

Arlinghaus R, Tillner R, Bork M. 2015. Explaining participation rates in recreational fishing across industrialised countries. Fish. Manage. Ecol. 22, 45-55. (10.1111/fme.12075) DOI

Abbott JK, Lew DK, Whitehead JC, Woodward RT. 2022. The future of fishing for fun: the economics and sustainable management of recreational fisheries. Rev. Environ. Econ. Policy 16, 262-281. (10.1086/720987) DOI

Nyboer EA, et al. 2022. Overturning stereotypes: the fuzzy boundary between recreational and subsistence inland fisheries. Fish Fish. 23, 1282-1298. (10.1111/faf.12688) DOI

McManus A, Hunt DW, Storey J, White J. 2011. Identifying the health and well-being benefits of recreational fishing. Report No. 2011/217. Curtin University of Technology, Centre of Excellence for Science, Seafood & Health (CoESSH). See https://espace.curtin.edu.au/handle/20.500.11937/27359.

Arlinghaus R, Mehner T, Cowx IG. 2002. Reconciling traditional inland fisheries management and sustainability in industrialized countries, with emphasis on Europe. Fish Fish. 3, 261-316. (10.1046/j.1467-2979.2002.00102.x) DOI

Post JR, Sullivan M, Cox S, Lester NP, Walters CJ, Parkinson EA, Paul AJ, Jackson L, Shuter BJ. 2002. Canada's recreational fisheries: the invisible collapse? Fisheries 27, 6-17. (10.1577/1548-8446(2002)027) DOI

Dainys J, Jakubavičiūtė E, Gorfine H, Kirka M, Raklevičiūtė A, Morkvėnas A, Pūtys Ž, Ložys L, Audzijonyte A. 2022. Impacts of recreational angling on fish population recovery after a commercial fishing ban. Fishes 7, 232. (10.3390/fishes7050232) DOI

Post JR. 2013. Resilient recreational fisheries or prone to collapse? A decade of research on the science and management of recreational fisheries. Fish. Manag. Ecol. 20, 99-110. (10.1111/fme.12008) DOI

Hook SA, Brown A, Bell B, Kroese J, Radford Z, Hyder K. 2022. The impact of COVID-19 on participation, effort, physical activity, and well-being of sea anglers in the UK. Front. Mar. Sci. 9, 815617. (10.3389/fmars.2022.815617) DOI

Gundelund C, Skov C. 2021. Changes in angler demography and angling patterns during the Covid-19 lockdown in spring 2020 measured through a citizen science platform. Mar. Pol. 131, 104602. (10.1016/j.marpol.2021.104602) PubMed DOI PMC

Midway SR, Lynch AJ, Peoples BK, Dance M, Caffey R. 2021. COVID-19 influences on US recreational angler behavior. PLoS ONE 16, e0254652. (10.1371/journal.pone.0254652) PubMed DOI PMC

Ban NC, Miltner C, Matthews C, Ankenman M, Stelte S, Haggarty D, Davies HL, Venturelli PA, Juanes F. 2022. Decrease in recreational fisher compliance during the COVID-19 pandemic: the case of Rockfish Conservation Areas. ICES J. Mar. Sci. 79, 2277-2285. (10.1093/icesjms/fsac160) DOI

Ryan KL, Desfosses CJ, Denham AM, Taylor SM, Jackson G. 2021. Initial insights on the impact of COVID-19 on boat-based recreational fishing in Western Australia. Mar. Pol. 132, 104646. (10.1016/j.marpol.2021.104646) PubMed DOI PMC

Arlinghaus R, et al. 2017. Understanding and managing freshwater recreational fisheries as complex adaptive social-ecological systems. Rev. Fish. Sci. Aquacult. 25, 1-41. (10.1080/23308249.2016.1209160) DOI

Xiong C, Hu S, Yang M, Younes H, Luo W, Ghader S, Zhang L. 2020. Mobile device location data reveal human mobility response to state-level stay-at-home orders during the COVID-19 pandemic in the USA. J. R. Soc. Interface 17, 20200344. (10.1098/rsif.2020.0344) PubMed DOI PMC

Nyhan MM, Kloog I, Britter R, Ratti C, Koutrakis P. 2019. Quantifying population exposure to air pollution using individual mobility patterns inferred from mobile phone data. J. Expo. Sci. Environ. Epidemiol. 29, 238-247. (10.1038/s41370-018-0038-9) PubMed DOI

Bailey M, Cao R, Kuchler T, Stroebel J. 2018. The economic effects of social networks: evidence from the housing market. J. Pol. Econ. 126, 2224-2276. (10.1086/700073) DOI

Lee K, Sener IN. 2020. Emerging data for pedestrian and bicycle monitoring: sources and applications. Transport. Res. Interdiscip. Perspect. 4, 100095. (10.1016/j.trip.2020.100095) DOI

Adarbah HY, Al Badi A, Golzar J. 2022. The impact of emerging data sources and social media on decision making: a culturally responsive framework. Int. J. Soc. Cult. Lang. 11, 1-14. (10.22034/ijscl.2022.555909.2666) DOI

Venturelli PA, Hyder K, Skov C. 2017. Angler apps as a source of recreational fisheries data: opportunities, challenges and proposed standards. Fish Fish. 18, 578-595. (10.1111/faf.12189) DOI

Cooke SJ, et al. 2022. Technoscience and the modernization of freshwater fisheries assessment and management. Environ. Technol. Innov. 28, 102865. (10.1016/j.eti.2022.102865) DOI

Cooke SJ, et al. 2021. Technological innovations in the recreational fishing sector: implications for fisheries management and policy. Rev. Fish Biol. Fish. 31, 253-288. (10.1007/s11160-021-09643-1) PubMed DOI PMC

Dainys J, Gorfine H, Mateos-González F, Skov C, Urbanavičius R, Audzijonyte A. 2022. Angling counts: harnessing the power of technological advances for recreational fishing surveys. Fish. Res. 254, 106410. (10.1016/j.fishres.2022.106410) DOI

Bachiller E, Korta M, Mateo M, Mugerza E, Zarauz L. 2022. Assessing the unassessed marine recreational fishery in the Eastern Cantabrian coast. Front. Mar. Sci. 9, 975089. (10.3389/fmars.2022.975089) DOI

Lacko J. 2022. RCzechia: Spatial Objects of the Czech Republic. J. Open Source Softw. 8, 5082. (10.21105/joss.05082) DOI

Esri Deutschland Open Data Portal. 2021. Gewässerflächen Deutschlands aus dem Basis DLM Ebene GEW01. See https://opendata-esri-de.opendata.arcgis.com/datasets/esri-de-content::dlm250-gew%C3%A4sserfl%C3%A4chen (accessed on 14 November 2022).

Styrelsen for Dataforsyning og Infrastruktur. 2022. See https://dataforsyningen.dk/ (accessed on 16 November 2022).

R Core Team. 2022. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. See https://www.R-project.org/.

Wickham H, et al. 2019. Welcome to the tidyverse. J. Open Source Softw. 4, 1686. (10.21105/joss.01686) DOI

Pebesma E. 2018. Simple features for R: Standardized support for spatial vector data. R J. 10, 439-446. (10.32614/rj-2018-009) DOI

Allensbach. 2020. Allensbacher Markt- und Werbeträger-Analyse - AWA. See https://www.ifd-allensbach.de/awa/startseite.html.

Sparrevohn CR, Storr-Paulsen M. 2012. Using interview-based recall surveys to estimate cod Gadus morhua and eel Anguilla anguilla harvest in Danish recreational fishing. ICES J. Mar. Sci. 69, 323-330. (10.1093/icesjms/fss005) DOI

Mořický J, Mareš L, Ženíšková H, Chalupa P. 2020. Situační a výhledová zpráva ryby. See https://eagri.cz/public/web/file/694649/SVZ_Ryby_2021.pdf (last accessed on 13 July 2023).

Mathieu E, et al. . 2020. Coronavirus pandemic (COVID-19). See https://ourworldindata.org/coronavirus (last accessed on 13 July 2023).

Hale T, et al. 2021. A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker. Nat. Hum. Behav. 5, 529-538. (10.1038/s41562-021-01079-8) PubMed DOI

Danish Ministry of Health. 2022. Da covid-19 ramte verden og Danmark – se tidslinjen her. See https://www.ssi.dk/aktuelt/nyheder/2022/da-covid-19-ramte-verden-og-danmark-se-tidslinjen-her (last accessed on 13 July 2023).

Lüdecke. 2021. performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139. (10.21105/joss.03139) DOI

Audzijonyte A, González FM. 2023. astaaudzi/covid_angling: publication in Royal Society Open Science. Zenodo. (10.5281/ZENODO.8072917) DOI

Barlow J, Vodenska I. 2021. Socio-economic impact of the COVID-19 pandemic in the US. Entropy 23, 673. (10.3390/e23060673) PubMed DOI PMC

Moynihan R, et al. 2021. Impact of COVID-19 pandemic on utilisation of healthcare services: a systematic review. BMJ Open 11, 045343. (10.1136/bmjopen-2020-045343) PubMed DOI PMC

McDermid P, Sooppiyaragath S, Craig A, Sheel M, Blazek K, Talty S, Seale H. 2022. Psychological and financial impacts of COVID-19-related travel measures: an international cross-sectional study. PLoS ONE 17, e0271894. (10.1371/journal.pone.0271894) PubMed DOI PMC

Howarth A, et al. 2021. COVID-19 restrictions and recreational fisheries in Ontario, Canada: preliminary insights from an online angler survey. Fish. Res. 240, 105961. (10.1016/j.fishres.2021.105961) PubMed DOI PMC

Eurostat. 2022. Unemployment by sex and age – monthly data. See https://ec.europa.eu/eurostat/databrowser/view/une_rt_m/default/table?lang=en.

Danish Fishery Agency. 2021. Arsstatistik 202, fordelt paa regioner. See https://fiskeristyrelsen.dk/fileadmin/user_upload/Fiskeristyrelsen/Lyst-_og_fritidsfiskeri/Koeb_og_salg_af_fisketegn/Statistik_for_fisketegn/AArsstatistik_2021_fordelt_paa_regioner.PDF (accessed on 27 November 2022).

Gundelund C, Venturelli P, Hartill BW, Hyder K, Olesen HJ, Skov C. 2021. Evaluation of a citizen science platform for collecting fisheries data from coastal sea trout anglers. Can. J. Fish. Aquat. Sci. 78, 1576-1585. (10.1139/cjfas-2020-0364) DOI

Melville-Smith R, Thomson AW, Caputi N. 2004. Improved forecasts of recreational western rock lobster (Panulirus cygnus) catches in Western Australia, by predicting licence usage. Fish. Res 68, 203-208. (10.1016/j.fishres.2003.12.001) DOI

Hunt L, Bannister A, Drake A, Fera S, Johnson T. 2017. Do fish drive recreational fishing license sales? N. Am. J. Fish. Manag. 37, 122-132. (10.1080/02755947.2016.1245224) DOI

Pollock HS. 1994. Angler survey methods and their applications in fisheries management. Am. Fish. Soc. Spec. Publ. 25, 1-317.

Bethlehem J. 2010. Selection bias in web surveys. Int. Stat. Rev. 78, 161-188. (10.1111/j.1751-5823.2010.00112.x) DOI

Bethlehem J. 2015. Essay: Sunday shopping – the case of three surveys. Surv. Res. Methods 9, 221-230.

Brick JM, Andrews WR, Foster J. 2022. A review of nonprobability sampling using mobile apps for fishing effort and catch surveys. Trans. Am. Fish. Soc. 151, 42-49. (10.1002/tafs.10342) DOI

Vølstad JH, et al. 2020. Field surveying of marine recreational fisheries in Norway using a novel spatial sampling frame reveals striking under-coverage of alternative sampling frames. ICES J. Mar. Sci. 77, 2192-2205. (10.1093/icesjms/fsz108) DOI

Papenfuss JT, Phelps N, Fulton D, Venturelli PA. 2015. Smartphones reveal angler behavior: a case study of a popular mobile fishing application in Alberta Canada. Fisheries 40, 318-327. (10.1080/03632415.2015.1049693) DOI

Johnston FD, Simmons S, Poorten Bv, Venturelli P. 2022. Comparative analyses with conventional surveys reveal the potential for an angler app to contribute to recreational fisheries monitoring. Can. J. Fish. Aquat. Sci. 79, 31-46. (10.1139/cjfas-2021-0026) DOI

Arlinghaus R, et al. 2019. Governing the recreational dimension of global fisheries. Proc. Natl Acad. Sci. USA 116, 5209-5213. (10.1073/pnas.1902796116) PubMed DOI PMC

Weir JL, Vacura K, Bagga J, Berland A, Hyder K, Skov C, Attby J, Venturelli PA. 2022. Big data from a popular app reveals that fishing creates superhighways for aquatic invaders. PNAS Nexus 1, pgac075. (10.1093/pnasnexus/pgac075) PubMed DOI PMC

Birdsong M, Hunt LM, Arlinghaus R. 2021. Recreational angler satisfaction: What drives it? Fish Fish. 22, 682-706. (10.1111/faf.12545) DOI

Arlinghaus R, Schwab A, Riepe C, Teel T. 2012. A primer on anti-angling philosophy and its relevance for recreational fisheries in urbanized societies. Fisheries 37, 153-164. (10.1080/03632415.2012.666472) DOI

Ficke AD, Myrick CA, Hansen LJ. 2007. Potential impacts of global climate change on freshwater fisheries. Rev. Fish Biol. Fish. 17, 581-613. (10.1007/s11160-007-9059-5) DOI

Heino J, Virkkala R, Toivonen H. 2009. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biol. Rev. 84, 39-54. (10.1111/j.1469-185x.2008.00060.x) PubMed DOI

Jarić I, Lennox RJ, Kalinkat G, Cvijanović G, Radinger J. 2019. Susceptibility of European freshwater fish to climate change: species profiling based on life-history and environmental characteristics. Glob. Change Biol. 25, 448-458. (10.1111/gcb.14518) PubMed DOI

Malik DS, Sharma AK, Sharma AK, Thakur R, Sharma M. 2020. A review on impact of water pollution on freshwater fish species and their aquatic environment. Adv. Environ. Pollut. Manag.: Wastewater Impacts Treat. Technol. 1, 10-28. (10.26832/aesa-2020-aepm-02) DOI

Bell JD, Watson RA, Ye Y. 2017. Global fishing capacity and fishing effort from 1950 to 2012. Fish Fish. 18, 489-505. (10.1111/faf.12187) DOI

Gemert R, Koemle D, Winkler H, Arlinghaus R. 2022. Data-poor stock assessment of fish stocks co-exploited by commercial and recreational fisheries: applications to pike Esox lucius in the western Baltic Sea. Fish. Manage. Ecol. 29, 16-28. (10.1111/fme.12514) DOI

Audzijonyte A, Mateos-González F, Dainys J, Gundelund C, Skov C, Tyrell DeWeber J, Venturelli P, Vienožinskis V, Smit C. 2023. Code for: High-resolution app data reveal sustained increases in recreational fishing effort in Europe during and after COVID-19 lockdowns. Zenodo. (https://zenodo.org/record/8072917) PubMed PMC

Audzijonyte A, Mateos-González F, Dainys J, Gundelund C, Skov C, Tyrell DeWeber J, Venturelli P, Vienožinskis V, Smit C. 2023. High-resolution app data reveal sustained increases in recreational fishing effort in Europe during and after COVID-19 lockdowns. Figshare. (10.6084/m9.figshare.c.6729711) PubMed DOI PMC

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.c.6729711

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...