High-resolution app data reveal sustained increases in recreational fishing effort in Europe during and after COVID-19 lockdowns
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37476517
PubMed Central
PMC10354473
DOI
10.1098/rsos.230408
PII: rsos230408
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19, anthropause, inland and coastal fisheries, non-probabilistic methods, recreational fishing effort, smartphone applications,
- Publikační typ
- časopisecké články MeSH
It is well recognized that COVID-19 lockdowns impacted human interactions with natural ecosystems. One example is recreational fishing, which, in developed countries, involves approximately 10% of people. Fishing licence sales and observations at angling locations suggest that recreational fishing effort increased substantially during lockdowns. However, the extent and duration of this increase remain largely unknown. We used four years (2018-2021) of high-resolution data from a personal fish-finder device to explore the impact of COVID-19 lockdowns on angling effort in four European countries. We show that relative device use and angling effort increased 1.2-3.8-fold during March-May 2020 and generally remained elevated even at the end of 2021. Fishing during the first lockdown also became more frequent on weekdays. Statistical models explained 50-70% of the variation, suggesting that device use and angling effort were relatively consistent and predictable through space and time. Our study demonstrates that recreational fishing behaviour can change substantially and rapidly in response to societal shifts, with profound ecological, human well-being and economic implications. We also show the potential of angler devices and smartphone applications for high-resolution fishing effort analysis and encourage more extensive science and industry collaborations to take advantage of this information.
ALKA Wildlife Lidéřovice Czech Republic
Centre for Marine Socioecology Tasmania Australia
Deeper LT 10312 Vilnius Lithuania
Department of Biology Ball State University Muncie 47306 IN USA
Department of Ecology and Vertebrate Zoology University of Łódź Łódź Poland
Institute for Marine and Antarctic Studies University of Tasmania Tasmania Australia
Institute of Vertebrate Biology of the Czech Academy of Sciences Brno Czech Republic
Nature Research Centre Akademijos 2 Vilnius Lithuania
Potsdam Institute of Inland Fisheries Im Königswald 2 Potsdam Germany
Section of Freshwater Fisheries and Ecology Technical University of Denmark Denmark
Zobrazit více v PubMed
Rutz C, Loretto M-C, Bates AE, Davidson SC, Duarte CM, Jetz W. 2020. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat. Ecol. Evol 4, 1156-1159. (10.1038/s41559-020-1237-z) PubMed DOI
Manenti R, Mori E, Canio V, Mercurio S, Picone M, Caffi M, Rubolini D. 2020. The good, the bad and the ugly of COVID-19 lockdown effects on wildlife conservation: insights from the first European locked down country. Biol. Conserv. 249, 108728. (10.1016/j.biocon.2020.108728) PubMed DOI PMC
Łopucki R, Kitowski I, Perlińska-Teresiak M, Klich D. 2021. How is wildlife affected by the COVID-19 pandemic? Lockdown effect on the road mortality of hedgehogs. Animals 11, 868. (10.3390/ani11030868) PubMed DOI PMC
Derryberry EP, Phillips JN, Derryberry GE, Blum MJ, Luther D. 2020. Singing in a silent spring: birds respond to a half-century soundscape reversion during the COVID-19 shutdown. Science 370, 575-579. (10.1126/science.abd5777) PubMed DOI
Zuluaga Castañeda S, Speziale KL, Lambertucci SA. 2021. Global aerial habitat conservation post-COVID-19 anthropause. Trends Ecol. 36, 273-277. (10.1016/j.tree.2021.01.009) PubMed DOI PMC
Costa LL, Machado PM, Moura Barboza CA, Soares-Gomes A, Zalmon IR. 2022. Recovery of ghost crabs metapopulations on urban beaches during the Covid-19 ‘anthropause’. Mar. Environ. Res. 180, 105733. (10.1016/j.marenvres.2022.105733) PubMed DOI PMC
Soto EH, Botero CM, Milanés CB, Rodríguez-Santiago A, Palacios-Moreno M, Díaz-Ferguson E, Souza Filho JR. 2021. How does the beach ecosystem change without tourists during COVID-19 lockdown? Biol. Conserv. 255, 108972. (10.1016/j.biocon.2021.108972) PubMed DOI PMC
Edward JP, Jayanthi M, Malleshappa H, Jeyasanta KI, Laju RL, Patterson J, Grimsditch G. 2021. COVID-19 lockdown improved the health of coastal environment and enhanced the population of reef-fish. Mar. Pollut. Bull. 165, 112124. (10.1016/j.marpolbul.2021.112124) PubMed DOI PMC
Bates AE, Primack RB, Biggar BS, Bird TJ, Clinton ME, Command RJ, Parmelee JR. 2021. Global COVID-19 lockdown highlights humans as both threats and custodians of the environment. Biol. Conserv. 263, 109175. (10.1016/j.biocon.2021.109175) PubMed DOI PMC
Kemp PS, Froese R, Pauly D. 2020. COVID-19 provides an opportunity to advance a sustainable UK fisheries policy in a post-Brexit brave new world. Mar. Pol. 120, 104114. (10.1016/j.marpol.2020.104114) PubMed DOI PMC
Coll M, Ortega-Cerdà M, Mascarell-Rocher Y. 2021. Ecological and economic effects of COVID-19 in marine fisheries from the Northwestern Mediterranean Sea. Biol. Conserv. 255, 108997. (10.1016/j.biocon.2021.108997) PubMed DOI PMC
Asante EO, Blankson GK, Sabau G. 2021. Building back sustainably: COVID-19 impact and adaptation in Newfoundland and Labrador fisheries. Sustainability 13, 2219. (10.3390/su13042219) DOI
Bennett NJ, Finkbeiner EM, Ban NC, Belhabib D, Jupiter SD, Kittinger JN, Christie P. 2020. The COVID-19 pandemic, small-scale fisheries and coastal fishing communities. Coast. Manag. 48, 336-347. (10.1080/08920753.2020.1766937) DOI
Campbell SJ, Jakub R, Valdivia A, Setiawan H, Setiawan A, Cox C, Box S. 2021. Immediate impact of COVID-19 across tropical small-scale fishing communities. Ocean Coast. Manag. 200, 105485. (10.1016/j.ocecoaman.2020.105485) PubMed DOI PMC
Knight CJ, Burnham TL, Mansfield EJ, Crowder LB, Micheli F. 2020. COVID-19 reveals vulnerability of small-scale fisheries to global market systems. Lancet Planet. Health 4, 219. (10.1016/s2542-5196(20)30128-5) PubMed DOI
Asche F, Sogn-Grundvåg G, Zhang D. 2022. Large-scale fisheries during the COVID-19 pandemic: the case of the oceangoing groundfish fleet in Norway. Mar. Pol. 144, 105223. (10.1016/j.marpol.2022.105223) PubMed DOI PMC
White ER, Froehlich HE, Gephart JA, Cottrell RS, Branch TA, Agrawal Bejarano R, Baum JK. 2021. Early effects of COVID-19 on US fisheries and seafood consumption. Fish Fish. 22, 232-239. (10.1111/faf.12525) PubMed DOI PMC
Pita P, Ainsworth GB, Alba B, Anderson AB, Antelo M, Alós J, Zarauz L. 2021. First assessment of the impacts of the COVID-19 pandemic on global marine recreational fisheries. Front. Mar. Sci. 8, 735741. (10.3389/fmars.2021.735741) DOI
Cooke SJ, Cowx IG. 2004. The role of recreational fishing in global fish crises. BioScience 54, 857-859. (10.1641/0006-3568(2004)054[0857:trorfi]2.0.co;2) DOI
Arlinghaus R, Tillner R, Bork M. 2015. Explaining participation rates in recreational fishing across industrialised countries. Fish. Manage. Ecol. 22, 45-55. (10.1111/fme.12075) DOI
Abbott JK, Lew DK, Whitehead JC, Woodward RT. 2022. The future of fishing for fun: the economics and sustainable management of recreational fisheries. Rev. Environ. Econ. Policy 16, 262-281. (10.1086/720987) DOI
Nyboer EA, et al. 2022. Overturning stereotypes: the fuzzy boundary between recreational and subsistence inland fisheries. Fish Fish. 23, 1282-1298. (10.1111/faf.12688) DOI
McManus A, Hunt DW, Storey J, White J. 2011. Identifying the health and well-being benefits of recreational fishing. Report No. 2011/217. Curtin University of Technology, Centre of Excellence for Science, Seafood & Health (CoESSH). See https://espace.curtin.edu.au/handle/20.500.11937/27359.
Arlinghaus R, Mehner T, Cowx IG. 2002. Reconciling traditional inland fisheries management and sustainability in industrialized countries, with emphasis on Europe. Fish Fish. 3, 261-316. (10.1046/j.1467-2979.2002.00102.x) DOI
Post JR, Sullivan M, Cox S, Lester NP, Walters CJ, Parkinson EA, Paul AJ, Jackson L, Shuter BJ. 2002. Canada's recreational fisheries: the invisible collapse? Fisheries 27, 6-17. (10.1577/1548-8446(2002)027) DOI
Dainys J, Jakubavičiūtė E, Gorfine H, Kirka M, Raklevičiūtė A, Morkvėnas A, Pūtys Ž, Ložys L, Audzijonyte A. 2022. Impacts of recreational angling on fish population recovery after a commercial fishing ban. Fishes 7, 232. (10.3390/fishes7050232) DOI
Post JR. 2013. Resilient recreational fisheries or prone to collapse? A decade of research on the science and management of recreational fisheries. Fish. Manag. Ecol. 20, 99-110. (10.1111/fme.12008) DOI
Hook SA, Brown A, Bell B, Kroese J, Radford Z, Hyder K. 2022. The impact of COVID-19 on participation, effort, physical activity, and well-being of sea anglers in the UK. Front. Mar. Sci. 9, 815617. (10.3389/fmars.2022.815617) DOI
Gundelund C, Skov C. 2021. Changes in angler demography and angling patterns during the Covid-19 lockdown in spring 2020 measured through a citizen science platform. Mar. Pol. 131, 104602. (10.1016/j.marpol.2021.104602) PubMed DOI PMC
Midway SR, Lynch AJ, Peoples BK, Dance M, Caffey R. 2021. COVID-19 influences on US recreational angler behavior. PLoS ONE 16, e0254652. (10.1371/journal.pone.0254652) PubMed DOI PMC
Ban NC, Miltner C, Matthews C, Ankenman M, Stelte S, Haggarty D, Davies HL, Venturelli PA, Juanes F. 2022. Decrease in recreational fisher compliance during the COVID-19 pandemic: the case of Rockfish Conservation Areas. ICES J. Mar. Sci. 79, 2277-2285. (10.1093/icesjms/fsac160) DOI
Ryan KL, Desfosses CJ, Denham AM, Taylor SM, Jackson G. 2021. Initial insights on the impact of COVID-19 on boat-based recreational fishing in Western Australia. Mar. Pol. 132, 104646. (10.1016/j.marpol.2021.104646) PubMed DOI PMC
Arlinghaus R, et al. 2017. Understanding and managing freshwater recreational fisheries as complex adaptive social-ecological systems. Rev. Fish. Sci. Aquacult. 25, 1-41. (10.1080/23308249.2016.1209160) DOI
Xiong C, Hu S, Yang M, Younes H, Luo W, Ghader S, Zhang L. 2020. Mobile device location data reveal human mobility response to state-level stay-at-home orders during the COVID-19 pandemic in the USA. J. R. Soc. Interface 17, 20200344. (10.1098/rsif.2020.0344) PubMed DOI PMC
Nyhan MM, Kloog I, Britter R, Ratti C, Koutrakis P. 2019. Quantifying population exposure to air pollution using individual mobility patterns inferred from mobile phone data. J. Expo. Sci. Environ. Epidemiol. 29, 238-247. (10.1038/s41370-018-0038-9) PubMed DOI
Bailey M, Cao R, Kuchler T, Stroebel J. 2018. The economic effects of social networks: evidence from the housing market. J. Pol. Econ. 126, 2224-2276. (10.1086/700073) DOI
Lee K, Sener IN. 2020. Emerging data for pedestrian and bicycle monitoring: sources and applications. Transport. Res. Interdiscip. Perspect. 4, 100095. (10.1016/j.trip.2020.100095) DOI
Adarbah HY, Al Badi A, Golzar J. 2022. The impact of emerging data sources and social media on decision making: a culturally responsive framework. Int. J. Soc. Cult. Lang. 11, 1-14. (10.22034/ijscl.2022.555909.2666) DOI
Venturelli PA, Hyder K, Skov C. 2017. Angler apps as a source of recreational fisheries data: opportunities, challenges and proposed standards. Fish Fish. 18, 578-595. (10.1111/faf.12189) DOI
Cooke SJ, et al. 2022. Technoscience and the modernization of freshwater fisheries assessment and management. Environ. Technol. Innov. 28, 102865. (10.1016/j.eti.2022.102865) DOI
Cooke SJ, et al. 2021. Technological innovations in the recreational fishing sector: implications for fisheries management and policy. Rev. Fish Biol. Fish. 31, 253-288. (10.1007/s11160-021-09643-1) PubMed DOI PMC
Dainys J, Gorfine H, Mateos-González F, Skov C, Urbanavičius R, Audzijonyte A. 2022. Angling counts: harnessing the power of technological advances for recreational fishing surveys. Fish. Res. 254, 106410. (10.1016/j.fishres.2022.106410) DOI
Bachiller E, Korta M, Mateo M, Mugerza E, Zarauz L. 2022. Assessing the unassessed marine recreational fishery in the Eastern Cantabrian coast. Front. Mar. Sci. 9, 975089. (10.3389/fmars.2022.975089) DOI
Lacko J. 2022. RCzechia: Spatial Objects of the Czech Republic. J. Open Source Softw. 8, 5082. (10.21105/joss.05082) DOI
Esri Deutschland Open Data Portal. 2021. Gewässerflächen Deutschlands aus dem Basis DLM Ebene GEW01. See https://opendata-esri-de.opendata.arcgis.com/datasets/esri-de-content::dlm250-gew%C3%A4sserfl%C3%A4chen (accessed on 14 November 2022).
Styrelsen for Dataforsyning og Infrastruktur. 2022. See https://dataforsyningen.dk/ (accessed on 16 November 2022).
R Core Team. 2022. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. See https://www.R-project.org/.
Wickham H, et al. 2019. Welcome to the tidyverse. J. Open Source Softw. 4, 1686. (10.21105/joss.01686) DOI
Pebesma E. 2018. Simple features for R: Standardized support for spatial vector data. R J. 10, 439-446. (10.32614/rj-2018-009) DOI
Allensbach. 2020. Allensbacher Markt- und Werbeträger-Analyse - AWA. See https://www.ifd-allensbach.de/awa/startseite.html.
Sparrevohn CR, Storr-Paulsen M. 2012. Using interview-based recall surveys to estimate cod Gadus morhua and eel Anguilla anguilla harvest in Danish recreational fishing. ICES J. Mar. Sci. 69, 323-330. (10.1093/icesjms/fss005) DOI
Mořický J, Mareš L, Ženíšková H, Chalupa P. 2020. Situační a výhledová zpráva ryby. See https://eagri.cz/public/web/file/694649/SVZ_Ryby_2021.pdf (last accessed on 13 July 2023).
Mathieu E, et al. . 2020. Coronavirus pandemic (COVID-19). See https://ourworldindata.org/coronavirus (last accessed on 13 July 2023).
Hale T, et al. 2021. A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker. Nat. Hum. Behav. 5, 529-538. (10.1038/s41562-021-01079-8) PubMed DOI
Danish Ministry of Health. 2022. Da covid-19 ramte verden og Danmark – se tidslinjen her. See https://www.ssi.dk/aktuelt/nyheder/2022/da-covid-19-ramte-verden-og-danmark-se-tidslinjen-her (last accessed on 13 July 2023).
Lüdecke. 2021. performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139. (10.21105/joss.03139) DOI
Audzijonyte A, González FM. 2023. astaaudzi/covid_angling: publication in Royal Society Open Science. Zenodo. (10.5281/ZENODO.8072917) DOI
Barlow J, Vodenska I. 2021. Socio-economic impact of the COVID-19 pandemic in the US. Entropy 23, 673. (10.3390/e23060673) PubMed DOI PMC
Moynihan R, et al. 2021. Impact of COVID-19 pandemic on utilisation of healthcare services: a systematic review. BMJ Open 11, 045343. (10.1136/bmjopen-2020-045343) PubMed DOI PMC
McDermid P, Sooppiyaragath S, Craig A, Sheel M, Blazek K, Talty S, Seale H. 2022. Psychological and financial impacts of COVID-19-related travel measures: an international cross-sectional study. PLoS ONE 17, e0271894. (10.1371/journal.pone.0271894) PubMed DOI PMC
Howarth A, et al. 2021. COVID-19 restrictions and recreational fisheries in Ontario, Canada: preliminary insights from an online angler survey. Fish. Res. 240, 105961. (10.1016/j.fishres.2021.105961) PubMed DOI PMC
Eurostat. 2022. Unemployment by sex and age – monthly data. See https://ec.europa.eu/eurostat/databrowser/view/une_rt_m/default/table?lang=en.
Danish Fishery Agency. 2021. Arsstatistik 202, fordelt paa regioner. See https://fiskeristyrelsen.dk/fileadmin/user_upload/Fiskeristyrelsen/Lyst-_og_fritidsfiskeri/Koeb_og_salg_af_fisketegn/Statistik_for_fisketegn/AArsstatistik_2021_fordelt_paa_regioner.PDF (accessed on 27 November 2022).
Gundelund C, Venturelli P, Hartill BW, Hyder K, Olesen HJ, Skov C. 2021. Evaluation of a citizen science platform for collecting fisheries data from coastal sea trout anglers. Can. J. Fish. Aquat. Sci. 78, 1576-1585. (10.1139/cjfas-2020-0364) DOI
Melville-Smith R, Thomson AW, Caputi N. 2004. Improved forecasts of recreational western rock lobster (Panulirus cygnus) catches in Western Australia, by predicting licence usage. Fish. Res 68, 203-208. (10.1016/j.fishres.2003.12.001) DOI
Hunt L, Bannister A, Drake A, Fera S, Johnson T. 2017. Do fish drive recreational fishing license sales? N. Am. J. Fish. Manag. 37, 122-132. (10.1080/02755947.2016.1245224) DOI
Pollock HS. 1994. Angler survey methods and their applications in fisheries management. Am. Fish. Soc. Spec. Publ. 25, 1-317.
Bethlehem J. 2010. Selection bias in web surveys. Int. Stat. Rev. 78, 161-188. (10.1111/j.1751-5823.2010.00112.x) DOI
Bethlehem J. 2015. Essay: Sunday shopping – the case of three surveys. Surv. Res. Methods 9, 221-230.
Brick JM, Andrews WR, Foster J. 2022. A review of nonprobability sampling using mobile apps for fishing effort and catch surveys. Trans. Am. Fish. Soc. 151, 42-49. (10.1002/tafs.10342) DOI
Vølstad JH, et al. 2020. Field surveying of marine recreational fisheries in Norway using a novel spatial sampling frame reveals striking under-coverage of alternative sampling frames. ICES J. Mar. Sci. 77, 2192-2205. (10.1093/icesjms/fsz108) DOI
Papenfuss JT, Phelps N, Fulton D, Venturelli PA. 2015. Smartphones reveal angler behavior: a case study of a popular mobile fishing application in Alberta Canada. Fisheries 40, 318-327. (10.1080/03632415.2015.1049693) DOI
Johnston FD, Simmons S, Poorten Bv, Venturelli P. 2022. Comparative analyses with conventional surveys reveal the potential for an angler app to contribute to recreational fisheries monitoring. Can. J. Fish. Aquat. Sci. 79, 31-46. (10.1139/cjfas-2021-0026) DOI
Arlinghaus R, et al. 2019. Governing the recreational dimension of global fisheries. Proc. Natl Acad. Sci. USA 116, 5209-5213. (10.1073/pnas.1902796116) PubMed DOI PMC
Weir JL, Vacura K, Bagga J, Berland A, Hyder K, Skov C, Attby J, Venturelli PA. 2022. Big data from a popular app reveals that fishing creates superhighways for aquatic invaders. PNAS Nexus 1, pgac075. (10.1093/pnasnexus/pgac075) PubMed DOI PMC
Birdsong M, Hunt LM, Arlinghaus R. 2021. Recreational angler satisfaction: What drives it? Fish Fish. 22, 682-706. (10.1111/faf.12545) DOI
Arlinghaus R, Schwab A, Riepe C, Teel T. 2012. A primer on anti-angling philosophy and its relevance for recreational fisheries in urbanized societies. Fisheries 37, 153-164. (10.1080/03632415.2012.666472) DOI
Ficke AD, Myrick CA, Hansen LJ. 2007. Potential impacts of global climate change on freshwater fisheries. Rev. Fish Biol. Fish. 17, 581-613. (10.1007/s11160-007-9059-5) DOI
Heino J, Virkkala R, Toivonen H. 2009. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biol. Rev. 84, 39-54. (10.1111/j.1469-185x.2008.00060.x) PubMed DOI
Jarić I, Lennox RJ, Kalinkat G, Cvijanović G, Radinger J. 2019. Susceptibility of European freshwater fish to climate change: species profiling based on life-history and environmental characteristics. Glob. Change Biol. 25, 448-458. (10.1111/gcb.14518) PubMed DOI
Malik DS, Sharma AK, Sharma AK, Thakur R, Sharma M. 2020. A review on impact of water pollution on freshwater fish species and their aquatic environment. Adv. Environ. Pollut. Manag.: Wastewater Impacts Treat. Technol. 1, 10-28. (10.26832/aesa-2020-aepm-02) DOI
Bell JD, Watson RA, Ye Y. 2017. Global fishing capacity and fishing effort from 1950 to 2012. Fish Fish. 18, 489-505. (10.1111/faf.12187) DOI
Gemert R, Koemle D, Winkler H, Arlinghaus R. 2022. Data-poor stock assessment of fish stocks co-exploited by commercial and recreational fisheries: applications to pike Esox lucius in the western Baltic Sea. Fish. Manage. Ecol. 29, 16-28. (10.1111/fme.12514) DOI
Audzijonyte A, Mateos-González F, Dainys J, Gundelund C, Skov C, Tyrell DeWeber J, Venturelli P, Vienožinskis V, Smit C. 2023. Code for: High-resolution app data reveal sustained increases in recreational fishing effort in Europe during and after COVID-19 lockdowns. Zenodo. (https://zenodo.org/record/8072917) PubMed PMC
Audzijonyte A, Mateos-González F, Dainys J, Gundelund C, Skov C, Tyrell DeWeber J, Venturelli P, Vienožinskis V, Smit C. 2023. High-resolution app data reveal sustained increases in recreational fishing effort in Europe during and after COVID-19 lockdowns. Figshare. (10.6084/m9.figshare.c.6729711) PubMed DOI PMC
figshare
10.6084/m9.figshare.c.6729711