The impact of antimicrobial food additives and sweeteners on the growth and metabolite production of gut bacteria

. 2023 Oct ; 68 (5) : 813-821. [epub] 20230722

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37480433

Grantová podpora
001 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Odkazy

PubMed 37480433
DOI 10.1007/s12223-023-01076-6
PII: 10.1007/s12223-023-01076-6
Knihovny.cz E-zdroje

Metabolic disorders caused by the imbalance of gut microbiota have been associated with the consumption of processed foods. Thus, this study aimed to evaluate the effects of antimicrobial food additives (benzoate, sorbate, nitrite, and bisulfite) and sweeteners (saccharin, stevia, sucralose, aspartame, and cyclamate) on the growth and metabolism of some gut and potentially probiotic bacterial species. The effects on the growth of Bifidobacterium longum, Enterococcus faecium, Lactobacillus acidophilus, and Lactococcus lactis subsp. lactis cultures were investigated using a turbidimetric test and by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). To evaluate the metabolic activity, the cultures were exposed to compounds with the highest antimicrobial activity, subjected to cultivation with inulin (1.5%), and analyzed by liquid chromatography for the production of short-chain fatty acids (acetate, propionate, and butyrate). The results showed that potassium sorbate (25 mg/mL), sodium bisulfite (0.7 mg/mL), sodium benzoate, and saccharin (5 mg/mL) presented greater antimicrobial activity against the studied species. L. lactis and L. acidophilus bacteria had reduced short-chain fatty acid production after exposure to saccharin and sorbate, and B. longum after exposure to sorbate, in comparison to controls (acetic acid reduction 1387 μg/mL and propionic 23 μg/mL p < 0.05).

Zobrazit více v PubMed

Abiega-Franyutti P, Freyre-Fonseca V (2021) Chronic consumption of food-additives lead to changes via microbiota gut-brain axis. Toxicology 464:153001. https://doi.org/10.1016/j.tox.2021.153001

Akatsu H, Iwabuchi N, Xiao JZ, Matsuyama Z, Kurihara R, Okuda K, Yamamoto K, Maruyama M (2013) Clinical effects of probiotic Bifidobacterium longum BB 536 on immune function and intestinal microbiota in elderly patients receiving enteral tube feeding. Jpen-Parenter Enter 37:631–640. https://doi.org/10.1177/0148607112467819 DOI

Anand SP, Sati N (2013) Artificial preservatives and their harmful effects: looking toward nature for safer alternatives. Int J Pharm Sci Res 4:2496–2501

Beards E, Tuohy K, Gibson G (2010) Bacterial, SCFA and gas profiles of a range of food ingredients following in vitro fermentation by human colonic microbiota. Anaerobe 16:420–425. https://doi.org/10.1016/j.anaerobe.2010.05.006 PubMed DOI

Bensid A, El Abed N, Houicher RJM, Özogul F (2022) Antioxidant and antimicrobial preservatives: properties, mechanism of action and applications in food – a review. Crit Rev Food Sci Nutr 62:2985–3001. https://doi.org/10.1080/10408398.2020.1862046 PubMed DOI

Bian X, Tu P, Chi L, Gao B, Ru H, Lu K (2017) Saccharin induced liver inflammation in mice by altering the gut microbiota and its metabolic functions. Food Chem Toxicol 107:530–539. https://doi.org/10.1016/j.fct.2017.04.045 PubMed DOI PMC

Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, Harris HMB, Coakley M, Lakshminarayanan B, O’Sullivan O, Fitzgerald GF, Deane J, O’Connor M, Harnedy N, O’Connor K, O’Mahony D, Sinderen D, Wallace M, Brennan L, Stanton C, Marchesi JR, Fitzgerald AP, Shanahan F, Hill C, Ross RP, O’Toole PW (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–184. https://doi.org/10.1038/nature11319 PubMed DOI

CLSI (2012) Methods for antimicrobial susceptibility testing of anaerobic bacteria, CLSI Standard Document M11-A8, 8

Eslick S, Thompson C, Berthon B, Wood L (2022) Short-chain fatty acids as anti-inflammatory agents in overweight and obesity: a systematic review and meta-analysis. Nutr Rev 80:838–856. https://doi.org/10.1093/nutrit/nuab059 PubMed DOI

Everis L (2001) Injured bacteria in foods. Nutr Food Sci 31:84–87. https://doi.org/10.1108/00346650110367008 DOI

Ferreira FS (2015) Aditivos alimentares e suas reações adversas no consumo infantil. Rev Univ Vale Do Rio Verde 13:397–407. https://doi.org/10.5892/ruvrd.v13i1.1845 DOI

Fitch C, Keim KS (2012) Position of the Academy of Nutrition and Dietetics: use of nutritive and nonnutritive sweeteners. J Acad Nutr Diet 112:739–758. https://doi.org/10.1016/j.jand.2012.03.009 PubMed DOI

Flores SH, Alegre RM (2001) Nisin production from Lactococcus lactis ATCC 7962 using supplemented whey permeate. Biotechnol Appl Bioc 34:103–107. https://doi.org/10.1042/ba20010030 DOI

Gardner C, Wylie-Rosett J, Gidding SS, Steffen LM, Jonhson RK, Reader D, Lichtenstein AH (2012) Nonnutritive sweeteners: current use and health perspectives: a scientific statement from the American Heart Association and the American Diabetes Association. Circulation 126:509–519. https://doi.org/10.1161/CIR.0b013e31825c42ee PubMed DOI

Gorska A, Przystupski D, Niemczura MJ, Kulbacka J (2019) Probiotic bacteria: a promising tool in cancer prevention and therapy. Curr Microbiol 76:939–949. https://doi.org/10.1007/s00284-019-01679-8 PubMed DOI PMC

Hafidh RR, Abdulamir AS, Vern LS, Bakar FA, Abas F, Jahanshiri F, Sekawi Z (2011) Inhibition of growth of highly resistant bacterial and fungal pathogens by a natural product. Open Microbiol J 5:96–106. https://doi.org/10.2174/2F1874285801105010096

Hrncirova L, Hudcovic T, Sukova E, Machova V, Trckova E, Krejsek J, Hrncir T (2019) Human gut microbes are susceptible to antimicrobial food additives in vitro. Folia Microbiol 64:497–508. https://doi.org/10.1007/s12223-018-00674-z DOI

Huvaere K, Vandevijvere S, Hasni M, Vinkx C, Van Loco J (2012) Dietary intake of artificial sweeteners by the Belgian population. Food Addit Contam A 29:54–65. https://doi.org/10.1080/19440049.2011.627572 DOI

Kasti AN, Nikolaki MD, Synodinou KD, Katsas KN, Petsis K, Lambrinou S, Pyrousis IA, Triantafyllou K (2022) The effects of stevia consumption on gut bacteria: friend or foe? Microorganisms 10:744. https://doi.org/10.3390/microorganisms10040744 PubMed DOI PMC

Kim JE, Kim SY, Lee KW, Lee HJ (2009) Arginine deiminase originating from Lactococcus lactis ssp. lactis American Type Culture Collection (ATCC) 7962 induces G1-phase cell-cycle arrest and apoptosis in SNU-1 stomach adenocarcinoma cells. Brit J Nutr 102:1469–1476. https://doi.org/10.1017/S0007114509990432 PubMed DOI

Kornienko VY, Minaev MY (2021) An effect of food additives on microbiome. Theor Pract Meat Process 6:259–268. https://doi.org/10.21323/2414-438X-2021-6-3-259-268

Kubica P, Namieśnik J, Wasik A (2015) Determination of eight artificial sweeteners and common Stevia rebaudiana glycosides in non-alcoholic and alcoholic beverages by reversed-phase liquid chromatography coupled with tandem mass spectrometry. Anal Bioanal Chem 407:1505–1512. https://doi.org/10.1007/s00216-014-8355-x PubMed DOI

Li D, Kim JM, Jin Z, Zhou J (2008) Prebiotic effectiveness of inulin extracted from edible burdock. Anaerobe 14:29–34. https://doi.org/10.1016/j.anaerobe.2007.10.002 PubMed DOI

Marco ML, Hill C, Hutkins R, Slavin J, Tancredi DJ, Merenstein D, Sanders ME (2020) Should there be a recommended daily intake of microbes? J Nutr 150:3061–3067. https://doi.org/10.1093/jn/nxaa323 PubMed DOI PMC

Marcobal AM, Barboza JW, Froehlich JW, Block DE, German JB, Lebrilla CB, Mills DA (2010) Consumption of human milk oligosaccharides by gut-related microbes. J Agr Food Chem 58:5334–5340. https://doi.org/10.1021/jf9044205 DOI

Markowiak P, Slizewska K (2017) Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 9:1021–1039. https://doi.org/10.3390/nu9091021 PubMed DOI PMC

Mesquita PDL, Afonso RJDCF, Aquino SFD, Leite GDS (2013) Validação de método de cromatografia líquida para a determinação de sete ácidos graxos voláteis intermediários da digestão anaeróbia. Eng Sanit Ambient 18:295–302. https://doi.org/10.1590/S1413-41522013000400001 DOI

Mirza SK, Asema UK, Kasim SS (2017) To study the harmful effects of food preservatives on human health. J Med Chem Drug Discov 2:610–616

Moro TMA, Celegatti CM, Pereira APA, Lopes AS, Barbin DF, Pastore GM, Clerici MTPS (2018) Use of burdock root flour as a prebiotic ingredient in cookies. LWT Food Sci Technol 90:540–546. https://doi.org/10.1016/j.lwt.2017.12.059 DOI

Oliphant K, Allen-Vercoe E (2019) Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome 7:1–15. https://doi.org/10.1186/s40168-019-0704-8 DOI

Oriach CS, Robertson RC, Stanton C, Cryan JF, Dinan TG (2016) Food for thought: the role of nutrition in the microbiota-gut–brain axis. Clin Nutr Exp 6:25–38. https://doi.org/10.1016/j.yclnex.2016.01.003 DOI

Palmnäs MS, Cowan TE, Bomhof MR, Su J, Reimer RA, Vogel HJ, Hittel DS, Shearer J (2014) Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PloS One 9:109841. https://doi.org/10.1371/journal.pone.0109841

Park BH, Kim IS, Park JK, Zhi Z, Lee HM, Kwon OW, Lee BC (2021) Probiotic effect of Lactococcus lactis subsp. cremoris RPG-HL-0136 on intestinal mucosal immunity in mice. Appl Biol Chem 64:93. https://doi.org/10.1186/s13765-021-00667-6

Pekmez CT, Dragsted LO, Brahe LK (2019) Gut microbiota alterations and dietary modulation in childhood malnutrition–the role of short chain fatty acids. Clin Nutr 38:615–630. https://doi.org/10.1016/j.clnu.2018.02.014 PubMed DOI

Pepino MY (2015) Metabolic effects of non-nutritive sweeteners. Physiol Behav 152:450–455. https://doi.org/10.1016/j.physbeh.2015.06.024 PubMed DOI PMC

Puertollano E, Kolida S, Yaqoob P (2014) Biological significance of short-chain fatty acid metabolism by the intestinal microbiome. Curr Opin Clin Nutr Metab Care 17:139–144. https://doi.org/10.1097/mco.0000000000000025 PubMed DOI

Pylkas AM, Juneja LR, Slavin JL (2005) Comparison of different fibers for in vitro production of short-chain fatty acids by intestinal microflora. J Med Food 8:113–116. https://doi.org/10.1089/jmf.2005.8.113 PubMed DOI

Quigley EM (2010) Prebiotics and probiotics; modifying and mining the microbiota. Pharmacol Res 61:213–218. https://doi.org/10.1016/j.phrs.2010.01.004 PubMed DOI

Ranjbar R, Vahdati SN, Tavakoli S, Khodaie R, Behboudi H (2021) Immunomodulatory roles of microbiota-derived short-chain fatty acids in bacterial infections. Biomed Pharmacother 141:111817. https://doi.org/10.1016/j.biopha.2021.111817

Rehman A, Heinsen FA, Koenen ME, Venema K, Knecht H, Hellmig S, Stefan S, Ott SJ (2012) Effects of probiotics and antibiotics on the intestinal homeostasis in a computer controlled model of the large intestine. BMC Microbiol 12:1–10. https://doi.org/10.1186/1471-2180-12-47 DOI

Ruiz-Ojeda FJ, Plaza-Díaz J, Sáez-Lara MJ, Gil A (2019) Effects of sweeteners on the gut microbiota: a review of experimental studies and clinical trials. Adv Nutr 10:S31–S48. https://doi.org/10.1093/advances/nmy037 PubMed DOI PMC

Shariati M, Matin S, Ghanei M, Kalani N (2016) Nitrate, sorbate and benzoate a justification for the conflicting results of epidemiological studies of cancer in nutrition. J Fund Appl Sci 8:2473–2485. https://doi.org/10.4314//jfas.v8i3s.357 DOI

Shastry RP, Rekha PD (2021) Bacterial cross talk with gut microbiome and its implications: a short review. Folia Microbiol 66:15–24. https://doi.org/10.1007/s12223-020-00821-5 DOI

Soldavini J, Kaunitz JD (2013) Pathobiology and potential therapeutic value of intestinal short-chain fatty acids in gut inflammation and obesity. Digest Dis Sci 58:2756–2766. https://doi.org/10.1007/s10620-013-2744-4 PubMed DOI

Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, Israeli D, Zmora N, Gilad S, Weinberger A, Kuperman Y, Harmelin A, Kolodkin-Gal I, Shapiro H, Halpern Z, Segal E, Elinav E (2014) Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514:181–186. https://doi.org/10.1038/nature13793 PubMed DOI

Thursby E, Juge N (2017) Introduction to the human gut microbiota. Biochem J 474:1823–1836. https://doi.org/10.1042/BCJ20160510 PubMed DOI

Wong CB, Odamaki T, Xiao JZ (2019) Beneficial effects of Bifidobacterium longum subsp. longum BB536 on human health: modulation of gut microbiome as the principal action. J Funct Foods 54:506–519. https://doi.org/10.1016/j.jff.2019.02.002 DOI

Wu W, Fu G, Xuan R, Zhai L, Lu Y, Tang M, Liu J, Zhang C, Chen H, Wang F (2022) Food additive sodium bisulfite induces intracellular imbalance of biothiols levels in NCM460 colonic cells to trigger intestinal inflammation in mice. Toxicol Lett 359:73–83. https://doi.org/10.1016/j.toxlet.2022.01.019

Xiong RG, Zhou DD, Wu SX, Huang SY, Saimaiti A, Yang ZJ, Shang A, Zhao CN, Ry G, Li HB (2022) Health benefits and side effects of short-chain fatty acids. Foods 11:2863. https://doi.org/10.3390/foods11182863 PubMed DOI PMC

Yardimci BK, Sahin SC, Sever NI, Ozek NS (2022) Biochemical effects of sodium benzoate, potassium sorbate and sodium nitrite on food spoilage yeast Saccharomyces cerevisiae. Biologia 77:547–557. https://doi.org/10.1007/s11756-021-00964-x DOI

Yu Z, Henderson IR, Guo J (2023) Non-caloric artificial sweeteners modulate conjugative transfer of multi-drug resistance plasmid in the gut microbiota. Gut Microbes 15:2157698. https://doi.org/10.1080/19490976.2022.2157698 PubMed DOI

Yu Z, Guo J (2022) Non-caloric artificial sweeteners exhibit antimicrobial activity against bacteria and promote bacterial evolution of antibiotic tolerance. J Hazard Mater 433:128840. https://doi.org/10.1016/j.jhazmat.2022.128840

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...