Prevalence of Antifungal Resistance, Genetic Basis of Acquired Azole and Echinocandin Resistance, and Genotyping of Candida krusei Recovered from an International Collection
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34871096
PubMed Central
PMC8846461
DOI
10.1128/aac.01856-21
Knihovny.cz E-zdroje
- Klíčová slova
- C. krusei, Candida genotyping, azole resistance, echinocandin resistance, human-animal transmission,
- MeSH
- antifungální látky farmakologie terapeutické užití MeSH
- azoly * farmakologie MeSH
- echinokandiny * farmakologie MeSH
- fungální léková rezistence genetika MeSH
- genotyp MeSH
- mikrobiální testy citlivosti MeSH
- Pichia MeSH
- prevalence MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antifungální látky MeSH
- azoly * MeSH
- echinokandiny * MeSH
This study was designed to evaluate the prevalence of antifungal resistance, genetic mechanisms associated with in vitro induction of azole and echinocandin resistance and genotyping of Candida krusei, which is intrinsically resistant to fluconazole and is recovered from clinical and nonclinical sources from different countries. Our results indicated that all the isolates were susceptible or had the wild phenotype (WT) to azoles, amphotericin B, and only 1.27% showed non-WT for flucytosine. Although 70.88% of the isolates were resistant to caspofungin, none of them were categorized as echinocandin-resistant as all were susceptible to micafungin and no FKS1 hot spot 1 (HS1) or HS2 mutations were detected. In vitro induction of azole and echinocandin resistance confirmed the rapid development of resistance at low concentrations of fluconazole (4 μg/ml), voriconazole (0.06 μg/ml), and micafungin (0.03 μg/ml), with no difference between clinical and nonclinical isolates in the resistance development. Overexpression of ABC1 gene and FKS1 HS1 mutations were the major mechanisms responsible for azole and echinocandin resistance, respectively. Genotyping of our 79 isolates coupled with 217 other isolates from different sources and geography confirmed that the isolates belong to two main subpopulations, with isolates from human clinical material and Asia being more predominant in cluster 1, and environmental and animals isolates and those from Europe in cluster 2. Our results are of critical concern, since realizing that the C. krusei resistance mechanisms and their genotyping are crucial for guiding specific therapy and for exploring the potential infection source.
Antimicrobial Resistance Research Center National Institute of Infectious Diseases Tokyo Japan
Department of Botany Faculty of Science Charles University Prague Czech Republic
Department of Fungal Infection National Institute of Infectious Diseases Tokyo Japan
Division of Bio resources Medical Mycology Research Center Chiba University Chiba Japan
Division of Clinical Research Medical Mycology Research Center Chiba University Chiba Japan
Zobrazit více v PubMed
Denning DW, Bromley MJ. 2015. How to bolster the antifungal pipeline. Science 347:1414–1416. 10.1126/science.aaa6097. PubMed DOI
Khalifa HO, Arai T, Majima H, Watanabe A, Kamei K. 2020. Genetic basis of azole and echinocandin resistance in clinical Candida glabrata in Japan. Antimicrob Agents Chemother 64:e00783–20. 10.1128/AAC.00783-20. PubMed DOI PMC
Jamiu AT, Albertyn J, Sebolai OM, Pohl CH. 2021. Update on Candida krusei, a potential multidrug-resistant pathogen. Med Mycol 59:14–30. 10.1093/mmy/myaa031. PubMed DOI
Ricardo E, Grenouillet F, Miranda IM, Silva RM, Eglin G, Devillard N, Rodrigues AG, Pina-Vaz C. 2020. Mechanisms of acquired in vivo and in vitro resistance to voriconazole by Candida krusei following exposure to suboptimal drug concentration. Antimicrob Agents Chemother 64:e01651–19. 10.1128/AAC.01651-19. PubMed DOI PMC
Ricardo E, Miranda IM, Faria-Ramos I, Silva RM, Rodrigues AG, Pina-Vaz C. 2014. In vivo and in vitro acquisition of resistance to voriconazole by Candida krusei. Antimicrob Agents Chemother 58:4604–4611. 10.1128/AAC.02603-14. PubMed DOI PMC
Forastiero A, Garcia-Gil V, Rivero-Menendez O, Garcia-Rubio R, Monteiro MC, Alastruey-Izquierdo A, Jordan R, Agorio I, Mellado E. 2015. Rapid development of Candida krusei echinocandin resistance during caspofungin therapy. Antimicrob Agents Chemother 59:6975–6982. 10.1128/AAC.01005-15. PubMed DOI PMC
Khalifa HO, Watanabe A, Kamei K. 2022. Azole and echinocandin resistance mechanisms and genotyping of Candida tropicalis in Japan: cross-boundary dissemination and animal-human transmission of C. tropicalis infection. Clin Microbiol Infect (In press). 10.1016/j.cmi.2021.10.004. PubMed DOI
Kahn JN, Garcia-Effron G, Hsu MJ, Park S, Marr KA, Perlin DS. 2007. Acquired echinocandin resistance in a Candida krusei isolate due to modification of glucan synthase. Antimicrob Agents Chemother 51:1876–1878. 10.1128/AAC.00067-07. PubMed DOI PMC
Morio F, Jensen RH, Le Pape P, Arendrup MC. 2017. Molecular basis of antifungal drug resistance in yeasts. Int J Antimicrob Agents 50:599–606. 10.1016/j.ijantimicag.2017.05.012. PubMed DOI
Khalifa HO, Arai T, Majima H, Watanabe A, Kamei K. 2021. Evaluation of Surveyor nuclease for rapid identification of FKS genes mutations in Candida glabrata. J Infect Chemother 27:834–839. 10.1016/j.jiac.2021.01.016. PubMed DOI
Khalifa HO, Majima H, Watanabe A, Kamei K. 2021. In vitro characterization of twenty-one antifungal combinations against echinocandin-resistant and -susceptible Candida glabrata. J Fungi 7:108. 10.3390/jof7020108. PubMed DOI PMC
Espinel-Ingroff A, Arendrup MC, Pfaller MA, Bonfietti LX, Bustamante B, Canton E, Chryssanthou E, Cuenca-Estrella M, Dannaoui E, Fothergill A, Fuller J, Gaustad P, Gonzalez GM, Guarro J, Lass-Florl C, Lockhart SR, Meis JF, Moore CB, Ostrosky-Zeichner L, Pelaez T, Pukinskas S, St-Germain G, Szeszs MW, Turnidge J. 2013. Interlaboratory variability of caspofungin MICs for Candida spp. using CLSI and EUCAST methods: should the clinical laboratory be testing this agent? Antimicrob Agents Chemother 57:5836–5842. 10.1128/AAC.01519-13. PubMed DOI PMC
Castanheira M, Deshpande LM, Messer SA, Rhomberg PR, Pfaller MA. 2020. Analysis of global antifungal surveillance results reveals predominance of Erg11 Y132F alteration among azole-resistant Candida parapsilosis and Candida tropicalis and country-specific isolate dissemination. Int J Antimicrob Agents 55:105799. 10.1016/j.ijantimicag.2019.09.003. PubMed DOI
Pfaller MA, Messer SA, Jones RN, Castanheira M. 2015. Antifungal susceptibilities of Candida, Cryptococcus neoformans and Aspergillus fumigatus from the Asia and Western Pacific region: data from the SENTRY antifungal surveillance program (2010–2012). J Antibiot (Tokyo) 68:556–561. 10.1038/ja.2015.29. PubMed DOI
Pfaller MA, Diekema DJ, Turnidge JD, Castanheira M, Jones RN. 2019. Twenty years of the SENTRY Antifungal Surveillance Program: results for Candida species from 1997–2016. Open Forum Infect Dis 6:S79–S94. 10.1093/ofid/ofy358. PubMed DOI PMC
Holmes AR, Lin YH, Niimi K, Lamping E, Keniya M, Niimi M, Tanabe K, Monk BC, Cannon RD. 2008. ABC transporter Cdr1p contributes more than Cdr2p does to fluconazole efflux in fluconazole-resistant Candida albicans clinical isolates. Antimicrob Agents Chemother 52:3851–3862. 10.1128/AAC.00463-08. PubMed DOI PMC
Bennett JE, Izumikawa K, Marr KA. 2004. Mechanism of increased fluconazole resistance in Candida glabrata during prophylaxis. Antimicrob Agents Chemother 48:1773–1777. 10.1128/AAC.48.5.1773-1777.2004. PubMed DOI PMC
Lamping E, Ranchod A, Nakamura K, Tyndall JD, Niimi K, Holmes AR, Niimi M, Cannon RD. 2009. Abc1p is a multidrug efflux transporter that tips the balance in favor of innate azole resistance in Candida krusei. Antimicrob Agents Chemother 53:354–369. 10.1128/AAC.01095-08. PubMed DOI PMC
Katiyar SK, Alastruey-Izquierdo A, Healey KR, Johnson ME, Perlin DS, Edlind TD. 2012. Fks1 and Fks2 are functionally redundant but differentially regulated in Candida glabrata: implications for echinocandin resistance. Antimicrob Agents Chemother 56:6304–6309. 10.1128/AAC.00813-12. PubMed DOI PMC
Arendrup MC, Garcia-Effron G, Lass-FlöRl C, Lopez AG, Rodriguez-Tudela JL, Cuenca-Estrella M, Perlin DS. 2010. Echinocandin susceptibility testing of Candida species: comparison of EUCAST EDef 7.1, CLSI M27-A3, Etest, disk diffusion, and agar dilution methods with RPMI and isosensitest media. Antimicrob Agents Chemother 54:426–439. 10.1128/AAC.01256-09. PubMed DOI PMC
Tavernier E, Desnos-Ollivier M, Honeyman F, Srour M, Fayard A, Cornillon J, Augeul-Meunier K, Guyotat D, Raberin H. 2015. Development of echinocandin resistance in Candida krusei isolates following exposure to micafungin and caspofungin in a BM transplant unit. Bone Marrow Transplant 50:158–160. 10.1038/bmt.2014.230. PubMed DOI
Jensen RH, Justesen US, Rewes A, Perlin DS, Arendrup MC. 2014. Echinocandin failure case due to a previously unreported FKS1 mutation in Candida krusei. Antimicrob Agents Chemother 58:3550–3552. 10.1128/AAC.02367-14. PubMed DOI PMC
White T, Burns T, Lee S, Taylor J, 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, p 315–322. In Innis MA, Gelfand DH, Sninsky JJ, White TJ. (ed), PCR protocols: a guide to methods and applications. Academic Press, San Diego, CA.
Clinical and Laboratory Standards Institute. 2017. Reference method for broth dilution antifungal susceptibility testing of yeasts, 4th ed CLSI document M27-Ed4. Clinical and Laboratory Standards Institute, Wayne, PA.
Clinical and Laboratory Standards Institute. 2017. Performance standards for antifungal susceptibility testing of yeasts, 1st ed CLSI document M60. Clinical and Laboratory Standards Institute, Wayne, PA.
Pfaller MA, Diekema DJ. 2012. Progress in antifungal susceptibility testing of Candida spp. by use of Clinical and Laboratory Standards Institute broth microdilution methods, 2010 to 2012. J Clin Microbiol 50:2846–2856. 10.1128/JCM.00937-12. PubMed DOI PMC
Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108. 10.1038/nprot.2008.73. PubMed DOI
Jacobsen MD, Gow NA, Maiden MC, Shaw DJ, Odds FC. 2007. Strain typing and determination of population structure of Candida krusei by multilocus sequence typing. J Clin Microbiol 45:317–323. 10.1128/JCM.01549-06. PubMed DOI PMC
Stephens M, Smith NJ, Donnelly P. 2001. A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989. 10.1086/319501. PubMed DOI PMC
Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. 10.1093/bioinformatics/btp187. PubMed DOI
Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. 2017. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol 34:772–773. 10.1093/molbev/msw260. PubMed DOI
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. 10.1093/molbev/msu300. PubMed DOI PMC
Letunic I, Bork P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49:W293–W296. 10.1093/nar/gkab301. PubMed DOI PMC
Villesen P. 2007. FaBox: an online toolbox for fasta sequences. Mol Ecol Notes 7:965–968. 10.1111/j.1471-8286.2007.01821.x. DOI
Aydın M, Kryvoruchko IS, Şakiroğlu M. 2019. widgetcon: a website and program for quick conversion among common population genetic data formats. Mol Ecol Resour 19:1374–1377. 10.1111/1755-0998.13047. PubMed DOI
Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155:945–959. 10.1093/genetics/155.2.945. PubMed DOI PMC
Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. 10.1111/j.1365-294X.2005.02553.x. PubMed DOI
Earl DA, vonHoldt BM. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genet Resour 4:359–361. 10.1007/s12686-011-9548-7. DOI
Ramasamy RK, Ramasamy S, Bindroo BB, Naik VG. 2014. Structure Plot: a program for drawing elegant Structurebar plots in user friendly interface. SpringerPlus 3:431–433. 10.1186/2193-1801-3-431. PubMed DOI PMC
Hammer Harper DAT, Ryan PD. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9.
Agapow PM, Burt A. 2001. Indices of multilocus linkage disequilibrium. Mol Ecol Notes 1:101–102. 10.1046/j.1471-8278.2000.00014.x. DOI
Excoffier L, Lischer HE. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. 10.1111/j.1755-0998.2010.02847.x. PubMed DOI