Thyroid and androgen receptor signaling are antagonized by μ-Crystallin in prostate cancer
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
I 4157
Austrian Science Fund FWF - Austria
BB/M008770/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
33034050
PubMed Central
PMC7756625
DOI
10.1002/ijc.33332
Knihovny.cz E-zdroje
- Klíčová slova
- PSMA-PET, androgen receptor, prostate cancer, thyroid hormone receptor, μ-Crystallin,
- MeSH
- androgenní receptory genetika metabolismus MeSH
- buňky PC-3 MeSH
- cholin aplikace a dávkování analogy a deriváty MeSH
- čipová analýza tkání MeSH
- down regulace * MeSH
- kohortové studie MeSH
- krystaliny genetika metabolismus MeSH
- lidé MeSH
- metabolomika MeSH
- mu-krystaliny MeSH
- nádorové buněčné linie MeSH
- nádory prostaty diagnostické zobrazování genetika metabolismus patologie MeSH
- PET/CT MeSH
- prognóza MeSH
- receptory thyreoidních hormonů genetika MeSH
- regulace genové exprese u nádorů MeSH
- sekvenční analýza RNA MeSH
- signální transdukce * MeSH
- staging nádorů MeSH
- stanovení celkové genové exprese MeSH
- trijodthyronin antagonisté a inhibitory metabolismus MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- androgenní receptory MeSH
- AR protein, human MeSH Prohlížeč
- cholin MeSH
- CRYM protein, human MeSH Prohlížeč
- fluoromethylcholine MeSH Prohlížeč
- krystaliny MeSH
- mu-krystaliny MeSH
- receptory thyreoidních hormonů MeSH
- trijodthyronin MeSH
Androgen deprivation therapy (ADT) remains a key approach in the treatment of prostate cancer (PCa). However, PCa inevitably relapses and becomes ADT resistant. Besides androgens, there is evidence that thyroid hormone thyroxine (T4) and its active form 3,5,3'-triiodo-L-thyronine (T3) are involved in the progression of PCa. Epidemiologic evidences show a higher incidence of PCa in men with elevated thyroid hormone levels. The thyroid hormone binding protein μ-Crystallin (CRYM) mediates intracellular thyroid hormone action by sequestering T3 and blocks its binding to cognate receptors (TRα/TRβ) in target tissues. We show in our study that low CRYM expression levels in PCa patients are associated with early biochemical recurrence and poor prognosis. Moreover, we found a disease stage-specific expression of CRYM in PCa. CRYM counteracted thyroid and androgen signaling and blocked intracellular choline uptake. CRYM inversely correlated with [18F]fluoromethylcholine (FMC) levels in positron emission tomography/magnetic resonance imaging of PCa patients. Our data suggest CRYM as a novel antagonist of T3- and androgen-mediated signaling in PCa. The role of CRYM could therefore be an essential control mechanism for the prevention of aggressive PCa growth.
Center for Biomarker Research in Medicine Graz Austria
Christian Doppler Laboratory for Applied Metabolomics Medical University of Vienna Vienna Austria
Department for Pharmaceutical Technology and Biopharmaceutics University of Vienna Vienna Austria
Department of Biomedical Imaging and Image Guided Therapy Medical University Vienna Vienna Austria
Department of Laboratory Medicine Medical University Vienna Vienna Austria
Department of Pathology Medical University Vienna Vienna Austria
Department of Pathology Rudolfinerhaus Privatklinik Gmbh Vienna Austria
Department of Urology 2nd Faculty of Medicine Charles University Prague Czech Republic
Department of Urology Innsbruck Medical University Innsbruck Austria
Department of Urology Medical University Vienna Vienna Austria
Department of Urology University of Texas Southwestern Dallas Texas USA
Departments of Urology Weill Cornell Medical College New York New York USA
Histo Consulting Inc Ulm Germany
Institute for Urology and Reproductive Health Sechenov University Moscow Russia
Institute of Animal Breeding and Genetics University of Veterinary Medicine Vienna Vienna Austria
Ludwig Boltzmann Institute Applied Diagnostics Vienna Austria
MLL Munich Leukemia Laboratory Munich Germany
School of Pharmacy University of Nottingham Nottingham UK
Unit for Laboratory Animal Pathology University of Veterinary Medicine Vienna Vienna Austria
Zobrazit více v PubMed
Huggins C, Hodges CV. Studies on prostate cancer. I. The effect of castration, of estrogen and of androgen injection on serum phosphatase in metastatic carcinoma of the prostate. Cancer Res. 1941;1:239‐297. PubMed
Porkka KP, Visakorpi T. Molecular mechanisms of prostate cancer. Eur Urol. 2004;45(6):683‐691. PubMed
Haile S, Sadar MD. Androgen receptor and its splice variants in prostate cancer. Cell Mol Life Sci. 2011;68(24):3971‐3981. PubMed PMC
Watson PA, Chen YF, Balbas MD, et al. Constitutively active androgen receptor splice variants expressed in castration‐resistant prostate cancer require full‐length androgen receptor. Proc Natl Acad Sci U S A. 2010;107(39):16759‐16765. PubMed PMC
Visser WE, Wong WS, van Mullem AA, Friesema EC, Geyer J, Visser TJ. Study of the transport of thyroid hormone by transporters of the SLC10 family. Mol Cell Endocrinol. 2010;315(1‐2):138‐145. PubMed
Bernal J, Guadano‐Ferraz A, Morte B. Thyroid hormone transporters‐functions and clinical implications. Nat Rev Endocrinol. 2015;11(12):690. PubMed
Vie MP, Evrard C, Osty J, et al. Purification, molecular cloning, and functional expression of the human nicodinamide‐adenine dinucleotide phosphate‐regulated thyroid hormone‐binding protein. Mol Endocrinol. 1997;11(11):1728‐1736. PubMed
Kim RY, Gasser R, Wistow GJ. mu‐crystallin is a mammalian homologue of Agrobacterium ornithine cyclodeaminase and is expressed in human retina. Proc Natl Acad Sci U S A. 1992;89(19):9292‐9296. PubMed PMC
Shukla‐Dave A, Castillo‐Martin M, Chen M, et al. Ornithine decarboxylase is sufficient for prostate tumorigenesis via androgen receptor signaling. Am J Pathol. 2016;186(12):3131‐3145. PubMed PMC
Moeller LC, Fuhrer D. Thyroid hormone, thyroid hormone receptors, and cancer: a clinical perspective. Endocr Relat Cancer. 2013;20(2):R19‐R29. PubMed
Suzuki S, Mori J, Hashizume K. mu‐crystallin, a NADPH‐dependent T(3)‐binding protein in cytosol. Trends Endocrinol Metab. 2007;18(7):286‐289. PubMed
Malinowska K, Cavarretta IT, Susani M, et al. Identification of mu‐crystallin as an androgen‐regulated gene in human prostate cancer. Prostate. 2009;69(10):1109‐1118. PubMed
Mousses S, Bubendorf L, Wagner U, et al. Clinical validation of candidate genes associated with prostate cancer progression in the CWR22 model system using tissue microarrays. Cancer Res. 2002;62(5):1256‐1260. PubMed
Schlederer M, Mueller KM, Haybaeck J, et al. Reliable quantification of protein expression and cellular localization in histological sections. PLoS One. 2014;9(7):e100822. PubMed PMC
Pencik J, Schlederer M, Gruber W, et al. STAT3 regulated ARF expression suppresses prostate cancer metastasis. Nat Commun. 2015;6:7736. PubMed PMC
Moazzami AA, Andersson R, Kamal‐Eldin A. Changes in the metabolic profile of rat liver after alpha‐tocopherol deficiency as revealed by metabolomics analysis. NMR Biomed. 2011;24(5):499‐505. PubMed
Moazzami AA, Shrestha A, Morrison DA, Poutanen K, Mykkanen H. Metabolomics reveals differences in postprandial responses to breads and fasting metabolic characteristics associated with postprandial insulin demand in postmenopausal women. J Nutr. 2014;144(6):807‐814. PubMed
Proestling K, Hebar A, Pruckner N, Marton E, Vinatzer U, Schreiber M. The Pro allele of the p53 codon 72 polymorphism is associated with decreased intratumoral expression of BAX and p21, and increased breast cancer risk. PLoS One. 2012;7(10):e47325. PubMed PMC
Rhodes DR, Yu J, Shanker K, et al. ONCOMINE: a cancer microarray database and integrated data‐mining platform. Neoplasia. 2004;6(1):1‐6. PubMed PMC
Sadow PM, Chassande O, Koo EK, et al. Regulation of expression of thyroid hormone receptor isoforms and coactivators in liver and heart by thyroid hormone. Mol Cell Endocrinol. 2003;203(1‐2):65‐75. PubMed
Baron A, Migita T, Tang D, Loda M. Fatty acid synthase: a metabolic oncogene in prostate cancer? J Cell Biochem. 2004;91(1):47‐53. PubMed
Zadra G, Ribeiro CF, Chetta P, et al. Inhibition of de novo lipogenesis targets androgen receptor signaling in castration‐resistant prostate cancer. Proc Natl Acad Sci U S A. 2019;116(2):631‐640. PubMed PMC
Malinen M, Niskanen EA, Kaikkonen MU, Palvimo JJ. Crosstalk between androgen and pro‐inflammatory signaling remodels androgen receptor and NF‐kappaB cistrome to reprogram the prostate cancer cell transcriptome. Nucleic Acids Res. 2017;45(2):619‐630. PubMed PMC
Aoyama C, Liao H, Ishidate K. Structure and function of choline kinase isoforms in mammalian cells. Prog Lipid Res. 2004;43(3):266‐281. PubMed
Morigi JJ, Stricker PD, van Leeuwen PJ, et al. Prospective comparison of 18F‐fluoromethylcholine versus 68Ga‐PSMA PET/CT in prostate cancer patients who have rising PSA after curative treatment and are being considered for targeted therapy. J Nucl Med. 2015;56(8):1185‐1190. PubMed
Ohkubo Y, Sekido T, Nishio SI, et al. Loss of mu‐crystallin causes PPARγ activation and obesity in high‐fat diet‐fed mice. Biochem Biophys Res Commun. 2019;508(3):914‐920. PubMed
Mishra S, Tai Q, Gu X, et al. Estrogen and estrogen receptor alpha promotes malignancy and osteoblastic tumorigenesis in prostate cancer. Oncotarget. 2015;6(42):44388‐44402. PubMed PMC
Yu L, Shi J, Cheng S, et al. Estrogen promotes prostate cancer cell migration via paracrine release of ENO1 from stromal cells. Mol Endocrinol. 2012;26(9):1521‐1530. PubMed PMC
Khan SR, Chaker L, Ruiter R, et al. Thyroid function and cancer risk: the Rotterdam study. J Clin Endocrinol Metab. 2016;101(12):5030‐5036. PubMed
Suzuki S, Takei M, Nishio S, et al. Spiking expression of mu‐crystallin mRNA during treatment with methimazole in patients with graves' hyperthyroidism. Horm Metab Res. 2009;41(7):548‐553. PubMed
Arlauckas SP, Popov AV, Delikatny EJ. Choline kinase alpha‐putting the ChoK‐hold on tumor metabolism. Prog Lipid Res. 2016;63:28‐40. PubMed PMC
Swanson MG, Keshari KR, Tabatabai ZL, et al. Quantification of choline‐ and ethanolamine‐containing metabolites in human prostate tissues using 1H HR‐MAS total correlation spectroscopy. Magn Reson Med. 2008;60(1):33‐40. PubMed PMC
Asim M, Massie CE, Orafidiya F, et al. Choline kinase alpha as an androgen receptor chaperone and prostate cancer therapeutic target. J Natl Cancer Inst. 2016;108(5):1‐13. PubMed PMC
Contractor K, Challapalli A, Barwick T, et al. Use of [11C]choline PET‐CT as a noninvasive method for detecting pelvic lymph node status from prostate cancer and relationship with choline kinase expression. Clin Cancer Res. 2011;17(24):7673‐7683. PubMed
Hartenbach M, Hartenbach S, Bechtloff W, et al. Combined PET/MRI improves diagnostic accuracy in patients with prostate cancer: a prospective diagnostic trial. Clin Cancer Res. 2014;20(12):3244‐3253. PubMed
Cristofanilli M, Yamamura Y, Kau SW, et al. Thyroid hormone and breast carcinoma. Primary hypothyroidism is associated with a reduced incidence of primary breast carcinoma. Cancer. 2005;103(6):1122‐1128. PubMed
Mishkin SY, Pollack R, Yalovsky MA, Morris HP, Mishkin S. Inhibition of local and metastatic hepatoma growth and prolongation of survival after induction of hypothyroidism. Cancer Res. 1981;41(8):3040‐3045. PubMed
Lim W, Nguyen NH, Yang HY, Scanlan TS, Furlow JD. A thyroid hormone antagonist that inhibits thyroid hormone action in vivo. J Biol Chem. 2002;277(38):35664‐35670. PubMed
Hiroi Y, Kim HH, Ying H, et al. Rapid nongenomic actions of thyroid hormone. Proc Natl Acad Sci U S A. 2006;103(38):14104‐14109. PubMed PMC