Development of a CRISPR/Cpf1 system for multiplex gene editing in Aspergillus oryzae
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37490214
DOI
10.1007/s12223-023-01081-9
PII: 10.1007/s12223-023-01081-9
Knihovny.cz E-zdroje
- Klíčová slova
- Aspergillus oryzae, CRISPR/Cpf1 system, Filamentous fungi, Multiplex gene editing,
- MeSH
- Aspergillus oryzae * genetika MeSH
- editace genu MeSH
- Francisella * MeSH
- vodící RNA, systémy CRISPR-Cas MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- vodící RNA, systémy CRISPR-Cas MeSH
CRISPR/Cas technology is a powerful tool for genome engineering in Aspergillus oryzae as an industrially important filamentous fungus. Previous study has reported the application of the CRISPR/Cpf1 system based on the Cpf1 (LbCpf1) from Lachnospiraceae bacterium in A. oryzae. However, multiplex gene editing have not been investigated using this system. Here, we presented a new CRISPR/Cpf1 multiplex gene editing system in A. oryzae, which contains the Cpf1 nuclease (FnCpf1) from Francisella tularensis subsp. novicida U112 and CRISPR-RNA expression cassette. The crRNA cassette consisted of direct repeats and guide sequences driven by the A. oryzae U6 promoter and U6 terminator. Using the constructed FnCpf1 gene editing system, the wA and pyrG genes were mutated successfully. Furthermore, simultaneous editing of wA and pyrG genes in A. oryzae was performed using two guide sequences targeting these gene loci in a single crRNA array. This promising CRISPR/Cpf1 genome-editing system provides a powerful tool for genetically engineering A. oryzae.
College of Pharmacy Shenzhen Technology University Shenzhen 518118 China
Institute of Horticulture Jiangxi Academy of Agricultural Sciences Nanchang 330200 China
Zobrazit více v PubMed
Abdulrachman D, Champreda V, Eurwilaichitr L, Chantasingh D, Pootanakit K (2022) Efficient multiplex CRISPR/Cpf1 (Cas12a) genome editing system in Aspergillus aculeatus TBRC 277. J Biotechnol 355:53–64. https://doi.org/10.1016/j.jbiotec.2022.06.011 DOI
Abdulrachman D, Eurwilaichitr L, Champreda V, Chantasingh D, Pootanakit K (2021) Development of a CRISPR/Cpf1 system for targeted gene disruption in Aspergillus aculeatus TBRC 277. BMC Biotechnol 21:15. https://doi.org/10.1186/s12896-021-00669-8 DOI
Braglia P, Percudani R, Dieci G (2005) Sequence context effects on oligo(dT) termination signal recognition by Saccharomyces cerevisiae RNA polymerase III. J Biol Chem 280:19551–19562. https://doi.org/10.1074/jbc.M412238200 DOI
DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41:4336–4343. https://doi.org/10.1093/nar/gkt135 DOI
Donohoue PD, Barrangou R, May AP (2018) Advances in industrial biotechnology using CRISPR-Cas systems. Trends Biotechnol 36:134–146. https://doi.org/10.1016/j.tibtech.2017.07.007 DOI
Fonfara I, Richter H, Bratovič M, Le Rhun A, Charpentier E (2016) The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532:517–521. https://doi.org/10.1038/nature17945 DOI
Ichishima E (2016) Development of enzyme technology for Aspergillus oryzae, A. sojae, and A. luchuensis, the national microorganisms of Japan. Biosci Biotechnol Biochem 80:1681–1692. https://doi.org/10.1080/09168451.2016.1177445 DOI
Ishi K, Watanabe T, Juvvadi PR, Maruyama J, Kitamoto K (2005) Development of a modified positive selection medium that allows to isolate Aspergillus oryzae strains cured of the integrated niaD-based plasmid. Biosci Biotechnol Biochem 69:2463–2465. https://doi.org/10.1271/bbb.69.2463 DOI
Jiang F, Doudna JA (2017) CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529. https://doi.org/10.1146/annurev-biophys-062215010822 DOI
Jiménez A, Hoff B, Revuelta JL (2020) Multiplex genome editing in Ashbya gossypii using CRISPR-Cpf1. N Biotechnol 57:29–33. https://doi.org/10.1016/j.nbt.2020.02.002 DOI
Jin FJ, Maruyama J, Juvvadi PR, Arioka M, Kitamoto K (2004) Development of a novel quadruple auxotrophic host transformation system by argB gene disruption using adeA gene and exploiting adenine auxotrophy in Aspergillus oryzae. FEMS Microbiol Lett 239:79–85. https://doi.org/10.1016/j.femsle.2004.08.025 DOI
Kadooka C, Yamaguchi M, Okutsu K, Yoshizaki Y, Takamine K, Katayama T, Maruyama JI, Tamaki H, Futagami T (2020) A CRISPR/Cas9-mediated gene knockout system in Aspergillus luchuensis mut. kawachii. Biosci Biotechnol Biochem 84:2179–2183. https://doi.org/10.1080/09168451.2020.1792761 DOI
Katayama T, Maruyama JI (2022) CRISPR/Cpf1-mediated mutagenesis and gene deletion in industrial filamentous fungi Aspergillus oryzae and Aspergillus sojae. J Biosci Bioeng 133:353–361. https://doi.org/10.1016/j.jbiosc.2021.12.017 DOI
Katayama T, Nakamura H, Zhang Y, Pascal A, Fujii W, Maruyama JI (2019) Forced recycling of an AMA1-based genome-editing plasmid allows for efficient multiple gene deletion/integration in the industrial filamentous fungus Aspergillus oryzae. Appl Environ Microbiol 85:e01896–e1918. https://doi.org/10.1128/AEM.01896-18 DOI
Katayama T, Tanaka Y, Okabe T, Nakamura H, Fujii W, Kitamoto K, Maruyama J (2016) Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae. Biotechnol Lett 38:637–642. https://doi.org/10.1007/s10529-015-2015-x DOI
Kobayashi T, Abe K, Asai K, Gomi K, Juvvadi PR, Kato M, Kitamoto K, Takeuchi M, Machida M (2007) Genomics of Aspergillus oryzae. Biosci Biotechnol Biochem 71:646–670. https://doi.org/10.1271/bbb.60550 DOI
Kwon MJ, Schütze T, Spohner S, Haefner S, Meyer V (2019) Practical guidance for the implementation of the CRISPR genome editing tool in filamentous fungi. Fungal Biol Biotechnol 6:15. https://doi.org/10.1186/s40694-019-0079-4 DOI
Labuhn M, Adams FF, Ng M, Knoess S, Schambach A, Charpentier EM, Schwarzer A, Mateo JL, Klusmann JH, Heckl D (2018) Refined sgRNA efficacy prediction improves large- and small-scale CRISPR-Cas9 applications. Nucleic Acids Res 46:1375–1385. https://doi.org/10.1093/nar/gkx1268 DOI
Li YZ, Zhang HX, Chen ZM, Fan JX, Chen TM, Zeng B, Zhang Z (2022) Construction of single, double, or triple mutants within kojic acid synthesis genes kojA, kojR, and kojT by the CRISPR/Cas9 tool in Aspergillus oryzae. Folia Microbiol 67:459–468. https://doi.org/10.1007/s12223-022-00949-6 DOI
Ma XL, Zhang QY, Zhu QL, Liu W, Chen Y, Qiu R, Wang B, Yang ZF, Li HY, Lin YR, Xie YY, Shen RX, Chen SF, Wang Z, Chen YL, Guo JX, Chen LT, Zhao XC, Dong ZC, Liu YG (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8:1274–1284. https://doi.org/10.1016/j.molp.2015.04.007 DOI
Machida M, Yamada O, Gomi K (2008) Genomics of Aspergillus oryzae: learning from the history of Koji mold and exploration of its future. DNA Res 15:173–183. https://doi.org/10.1093/dnares/dsn020 DOI
Malina A, Cameron CJF, Robert F, Blanchette M, Dostie J, Pelletier J (2015) PAM multiplicity marks genomic target sites as inhibitory to CRISPR-Cas9 editing. Nat Commun 6:10124. https://doi.org/10.1038/ncomms10124 DOI
Maruyama J, Kitamoto K (2011) Targeted gene disruption in Koji mold Aspergillus oryzae. Methods Mol Biol 765:447–456. https://doi.org/10.1007/978-1-61779-197-0_27 DOI
Nguyen KT, Ho QN, Pham TH, Phan TN, Tran VT (2016) The construction and use of versatile binary vectors carrying pyrG auxotrophic marker and fluorescent reporter genes for Agrobacterium-mediated transformation of Aspergillus oryzae. World J Microbiol Biotechnol 32:204. https://doi.org/10.1007/s11274-016-2168-3 DOI
Nødvig CS, Hoof JB, Kogle ME, Jarczynska ZD, Lehmbeck J, Klitgaard DK, Mortensen UH (2018) Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in Aspergilli. Fungal Genet Biol 115:78–89. https://doi.org/10.1016/j.fgb.2018.01.004 DOI
Nødvig CS, Nielsen JB, Kogle ME, Mortensen UH (2015) A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PloS one 10:e0133085. https://doi.org/10.1371/journal.pone.0133085
Shan QW, Wang YP, Li J, Zhang Y, Chen KL, Liang Z, Zhang K, Liu JX, Xi JJ, Qiu JL, Gao CX (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688. https://doi.org/10.1038/nbt.2650 DOI
Song L, Ouedraogo JP, Kolbusz M, Nguyen TTM, Tsang A (2018) Efficient genome editing using tRNA promoter-driven CRISPR/Cas9 gRNA in Aspergillus niger. PloS one 13:e0202868. https://doi.org/10.1371/journal.pone.0202868
Vanegas KG, Jarczynska ZD, Strucko T, Mortensen UH (2019) Cpf1 enables fast and efficient genome editing in Aspergilli. Fungal Biol Biotechnol 6:6. https://doi.org/10.1186/s40694-019-0069-6 DOI
Verwaal R, Buiting-Wiessenhaan N, Dalhuijsen S, Roubos JA (2018) CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae. Yeast 35:201–211. https://doi.org/10.1002/yea.3278 DOI
Wang MG, Mao YF, Lu YM, Tao XP, Zhu JK (2017) Multiplex gene editing in rice using the CRISPR-Cpf1 system. Mol Plant 10:1011–1013. https://doi.org/10.1016/j.molp.2017.03.001 DOI
Wang Q, Coleman JJ (2019) Progress and challenges: development and implementation of CRISPR/Cas9 technology in filamentous fungi. Comput Struct Biotechnol J 17:761–769. https://doi.org/10.1016/j.csbj.2019.06.007 DOI
Wu XB, Kriz AJ, Sharp PA (2014) Target specificity of the CRISPR-Cas9 system. Quant Biol 2:59–70. https://doi.org/10.1007/s40484-014-0030-x DOI
Xin QL, Wang B, Pan L (2022) Development and application of a CRISPR-dCpf1 assisted multiplex gene regulation system in Bacillus amyloliquefaciens LB1ba02. Microbiol Res 263:127131. https://doi.org/10.1016/j.micres.2022.127131
Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771. https://doi.org/10.1016/j.cell.2015.09.038 DOI
Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J, DeGennaro EM, Winblad N, Choudhury SR, Abudayyeh OO, Gootenberg JS, Wu WY, Scott DA, Severinov K, van der Oost J, Zhang F (2016) Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array. Nat Biotechnol 35:31–34. https://doi.org/10.1038/nbt.3737 DOI
Zhang C, Meng X, Wei X, Lu L (2016) Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus. Fungal Genet Biol 86:47–57. https://doi.org/10.1016/j.fgb.2015.12.007 DOI
Zheng XM, Zheng P, Zhang K, Cairns TC, Meyer V, Sun JB, Ma YH (2019) 5S rRNA promoter for guide RNA expression enabled highly efficient CRISPR/Cas9 genome editing in Aspergillus niger. ACS Synth Biol 8:1568–1574. https://doi.org/10.1021/acssynbio.7b00456 DOI