Methadone Potentiates the Cytotoxicity of Temozolomide by Impairing Calcium Homeostasis and Dysregulation of PARP in Glioblastoma Cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SVV-260571/2020
Charles University
1722218
Charles University
PubMed
37509230
PubMed Central
PMC10377588
DOI
10.3390/cancers15143567
PII: cancers15143567
Knihovny.cz E-zdroje
- Klíčová slova
- apoptosis, glioblastoma, methadone, oxidative stress, temozolomide,
- Publikační typ
- časopisecké články MeSH
Methadone is commonly used as an alternative to morphine in patients with pain associated with glioblastoma and other cancers. Although concomitant administration of methadone and cytostatics is relatively common, the effect of methadone on the efficacy of cytostatic drugs has not been well studied until recently. Moreover, the mechanism behind the effect of methadone on temozolomide efficacy has not been investigated in previous studies, or this effect has been automatically attributed to opioid receptors. Our findings indicate that methadone potentiates the effect of temozolomide on rat C6 glioblastoma cells and on human U251 and T98G glioblastoma cells and increases cell mortality by approximately 50% via a mechanism of action independent of opioid receptors. Our data suggest that methadone acts by affecting mitochondrial potential, the level of oxidative stress, intracellular Ca2+ concentration and possibly intracellular ATP levels. Significant effects were also observed on DNA integrity and on cleavage and expression of the DNA repair protein PARP-1. None of these effects were attributed to the activation of opioid receptors and Toll-like receptor 4. Our results provide an alternative perspective on the mechanism of action of methadone in combination with temozolomide and a potential strategy for the treatment of glioblastoma cell resistance to temozolomide.
Zobrazit více v PubMed
Marrero L., Wyczechowska D., Musto A.E., Wilk A., Vashistha H., Zapata A., Walker C., Velasco-Gonzalez C., Parsons C., Wieland S., et al. Therapeutic Efficacy of Aldoxorubicin in an Intracranial Xenograft Mouse Model of Human Glioblastoma. Neoplasia. 2014;16:874–882. doi: 10.1016/j.neo.2014.08.015. PubMed DOI PMC
Jovčevska I., Kočevar N., Komel R. Glioma and Glioblastoma-How Much Do We (Not) Know? Mol. Clin. Oncol. 2013;1:935–941. doi: 10.3892/mco.2013.172. PubMed DOI PMC
Stavrovskaya A.A., Shushanov S.S., Rybalkina E.Y. Problems of Glioblastoma Multiforme Drug Resistance. Biochemistry. 2016;81:91–100. doi: 10.1134/S0006297916020036. PubMed DOI
Yi G.Z., Liu Y.W., Xiang W., Wang H., Chen Z.Y., Xie S.D., Qi S.T. Akt and β-Catenin Contribute to TMZ Resistance and EMT of MGMT Negative Malignant Glioma Cell Line. J. Neurol. Sci. 2016;367:101–106. doi: 10.1016/j.jns.2016.05.054. PubMed DOI
Oliva C.R., Nozell S.E., Diers A., McClugage S.G., Sarkaria J.N., Markert J.M., Darley-Usmar V.M., Bailey S.M., Gillespie G.Y., Landar A., et al. Acquisition of Temozolomide Chemoresistance in Gliomas Leads to Remodeling of Mitochondrial Electron Transport Chain. J. Biol. Chem. 2010;285:39759–39767. doi: 10.1074/jbc.M110.147504. PubMed DOI PMC
Krantz M.J., Mehler P.S. Treating Opioid Dependence: Growing Implications for Primary Care. Arch. Intern. Med. 2004;164:277–288. doi: 10.1001/archinte.164.3.277. PubMed DOI
Mercadante S. Opioid Titration in Cancer Pain: A Critical Review. Eur. J. Pain. 2007;11:823–830. doi: 10.1016/j.ejpain.2007.01.003. PubMed DOI
Brawanski K., Brockhoff G., Hau P., Vollmann-Zwerenz A., Freyschlag C., Lohmeier A., Riemenschneider M.J., Thomé C., Brawanski A., Proescholdt M.A. Efficacy of D,L-Methadone in the Treatment of Glioblastoma in Vitro. CNS Oncol. 2018;7:CNS18. doi: 10.2217/cns-2018-0006. PubMed DOI PMC
Friesen C., Hormann I., Roscher M., Fichtner I., Alt A., Hilger R., Debatin K.M., Miltner E. Opioid Receptor Activation Triggering Downregulation of CAMP Improves Effectiveness of Anti-Cancer Drugs in Treatment of Glioblastoma. Cell Cycle. 2014;13:1560–1570. doi: 10.4161/cc.28493. PubMed DOI PMC
Friesen C., Roscher M., Hormann I., Fichtner I., Alt A., Hilger R.A., Debatin K.M., Miltner E. Cell Death Sensitization of Leukemia Cells by Opioid Receptor Activation. Oncotarget. 2013;4:677–690. doi: 10.18632/oncotarget.952. PubMed DOI PMC
Landgraf V., Griessmann M., Roller J., Polednik C., Schmidt M. DL-Methadone as an Enhancer of Chemotherapeutic Drugs in Head and Neck Cancer Cell Lines. Anticancer Res. 2019;39:3633–3639. doi: 10.21873/anticanres.13511. PubMed DOI
Kaina B., Beltzig L., Piee-Staffa A., Haas B. Cytotoxic and Senolytic Effects of Methadone in Combination with Temozolomide in Glioblastoma Cells. Int. J. Mol. Sci. 2020;21:7006. doi: 10.3390/ijms21197006. PubMed DOI PMC
Friesen C., Roscher M., Alt A., Miltner E. Methadone, Commonly Used as Maintenance Medication for Outpatient Treatment of Opioid Dependence, Kills Leukemia Cells and Overcomes Chemoresistance. Cancer Res. 2008;68:6059–6064. doi: 10.1158/0008-5472.CAN-08-1227. PubMed DOI
Tognoli E., Proto P.L., Motta G., Galeone C., Mariani L., Valenza F. Methadone for Postoperative Analgesia: Contribution of N-Methyl-D-Aspartate Receptor Antagonism: A Randomised Controlled Trial. Eur. J. Anaesthesiol. 2020;37:934–943. doi: 10.1097/EJA.0000000000001217. PubMed DOI
Pakkanen J.S., Nousiainen H., Yli-Kauhaluoma J., Kylänlahti I., Möykkynen T., Korpi E.R., Peng J.H., Lukas R.J., Ahtee L., Tuominen R.K. Methadone Increases Intracellular Calcium in SH-SY5Y and SH-EP1-Hα7 Cells by Activating Neuronal Nicotinic Acetylcholine Receptors. J. Neurochem. 2005;94:1329–1341. doi: 10.1111/j.1471-4159.2005.03279.x. PubMed DOI
Perez-Alvarez S., Solesio M.E., Cuenca-Lopez M.D., Melero-Fernndez De Mera R.M., Villalobos C., Kmita H., Galindo M.F., Jordán J. Pharmacological Characterization of the Mechanisms Involved in Delayed Calcium Deregulation in SH-SY5Y Cells Challenged with Methadone. Int. J. Cell Biol. 2012;2012:642482. doi: 10.1155/2012/642482. PubMed DOI PMC
Theile D., Mikus G. Methadone against Cancer: Lost in Translation. Int. J. Cancer. 2018;143:1840–1848. doi: 10.1002/ijc.31356. PubMed DOI
Voelker D.R. Phosphatidylserine Translocation to the Mitochondrion Is an ATP-Dependent Process in Permeabilized Animal Cells. Proc. Natl. Acad. Sci. USA. 1989;86:9921–9925. doi: 10.1073/pnas.86.24.9921. PubMed DOI PMC
Monteiro L.D.B., Davanzo G.G., de Aguiar C.F., Moraes-Vieira P.M.M. Using Flow Cytometry for Mitochondrial Assays. MethodsX. 2020;7:100938. doi: 10.1016/j.mex.2020.100938. PubMed DOI PMC
Ledur P.F., Onzi G.R., Zong H., Lenz G. Culture Conditions Defining Glioblastoma Cells Behavior: What Is the Impact for Novel Discoveries? Oncotarget. 2017;8:69185. doi: 10.18632/oncotarget.20193. PubMed DOI PMC
Perez-Alvarez S., Iglesias-Guimarais V., Solesio M.E., Melero-Fernandez De Mera R.M., Yuste V.J., Galindo M.F., Jordán J. Methadone Induces CAD Degradation and AIF-Mediated Necrotic-like Cell Death in Neuroblastoma Cells. Pharmacol. Res. 2011;63:352–360. doi: 10.1016/j.phrs.2010.12.001. PubMed DOI
Nicholls D.G., Budd S.L. Mitochondria and Neuronal Survival. Physiol. Rev. 2000;80:315–360. doi: 10.1152/physrev.2000.80.1.315. PubMed DOI
Bagkos G., Koufopoulos K., Piperi C. A New Model for Mitochondrial Membrane Potential Production and Storage. Med. Hypotheses. 2014;83:175–181. doi: 10.1016/j.mehy.2014.05.001. PubMed DOI
Brookes P.S., Yoon Y., Robotham J.L., Anders M.W., Sheu S.S. Calcium, ATP, and ROS: A Mitochondrial Love-Hate Triangle. Am. J. Physiol. Cell Physiol. 2004;287:817–833. doi: 10.1152/ajpcell.00139.2004. PubMed DOI
Danson S.J., Middleton M.R. Temozolomide: A Novel Oral Alkylating Agent. Expert Rev. Anticancer Ther. 2001;1:13–19. doi: 10.1586/14737140.1.1.13. PubMed DOI
Lomeli N., Di K., Pearre D.C., Chung T.F., Bota D.A. Mitochondrial-Associated Impairments of Temozolomide on Neural Stem/Progenitor Cells and Hippocampal Neurons. Mitochondrion. 2020;52:56–66. doi: 10.1016/j.mito.2020.02.001. PubMed DOI PMC
Zhang J., Stevens M.F.G., Bradshaw T.D. Temozolomide: Mechanisms of Action, Repair and Resistance. Curr. Mol. Pharmacol. 2012;5:102–114. doi: 10.2174/1874467211205010102. PubMed DOI
Wu S., Li X., Gao F., de Groot J.F., Koul D., Yung W.K.A. PARP-Mediated PARylation of MGMT Is Critical to Promote Repair of Temozolomide-Induced O6-Methylguanine DNA Damage in Glioblastoma. Neuro-Oncology. 2021;23:920–931. doi: 10.1093/neuonc/noab003. PubMed DOI PMC
Zampieri L.X., Sboarina M., Cacace A., Grasso D., Thabault L., Hamelin L., Vazeille T., Dumon E., Rossignol R., Frédérick R., et al. Olaparib Is a Mitochondrial Complex i Inhibitor That Kills Temozolomide-Resistant Human Glioblastoma Cells. Int. J. Mol. Sci. 2021;22:11938. doi: 10.3390/ijms222111938. PubMed DOI PMC
Oliva C.R., Moellering D.R., Gillespie G.Y., Griguer C.E. Acquisition of Chemoresistance in Gliomas Is Associated with Increased Mitochondrial Coupling and Decreased ROS Production. PLoS ONE. 2011;6:e24665. doi: 10.1371/journal.pone.0024665. PubMed DOI PMC
Mourdjeva M., Kyurkchiev D., Mandinova A., Altankova I., Kehayov I., Kyurkchiev S. Dynamics of Membrane Translocation of Phosphatidylserine during Apoptosis Detected by a Monoclonal Antibody. Apoptosis. 2005;10:209–217. doi: 10.1007/s10495-005-6076-5. PubMed DOI
Nagata S., Suzuki J., Segawa K., Fujii T. Exposure of Phosphatidylserine on the Cell Surface. Cell Death Differ. 2016;23:952–961. doi: 10.1038/cdd.2016.7. PubMed DOI PMC
Zimmerman M.A., Wilkison S., Qi Q., Chen G., Li P.A. Mitochondrial Dysfunction Contributes to Rapamycininduced Apoptosis of Human Glioblastoma Cells-A Synergistic Effect with Temozolomide. Int. J. Med. Sci. 2020;17:2831–2843. doi: 10.7150/ijms.40159. PubMed DOI PMC
Bonora M., Pinton P. The Mitochondrial Permeability Transition Pore and Cancer: Molecular Mechanisms Involved in Cell Death. Front. Oncol. 2014;4:302. doi: 10.3389/fonc.2014.00302. PubMed DOI PMC
Yuan Y., Xue X., Guo R.B., Sun X.L., Hu G. Resveratrol Enhances the Antitumor Effects of Temozolomide in Glioblastoma via ROS-Dependent AMPK-TSC-MTOR Signaling Pathway. CNS Neurosci. Ther. 2012;18:536–546. doi: 10.1111/j.1755-5949.2012.00319.x. PubMed DOI PMC
Koo H.N., Hong S.H., Kim C.Y., Ahn J.W., Lee Y.G., Kim J.J., Lyu Y.S., Kim H.M. Inhibitory Effect of Apoptosis in Human Astrocytes CCF-STTG1 Cells by Lemon Oil. Pharmacol. Res. 2002;45:469–473. doi: 10.1006/phrs.2002.0986. PubMed DOI
Chaitanya G.V., Alexander J.S., Babu P.P. PARP-1 Cleavage Fragments: Signatures of Cell-Death Proteases in Neurodegeneration. Cell Commun. Signal. 2010;8:31. doi: 10.1186/1478-811X-8-31. PubMed DOI PMC
Prasad C.B., Prasad S.B., Yadav S.S., Pandey L.K., Singh S., Pradhan S., Narayan G. Olaparib Modulates DNA Repair Efficiency, Sensitizes Cervical Cancer Cells to Cisplatin and Exhibits Anti-Metastatic Property. Sci. Rep. 2017;7:12876. doi: 10.1038/s41598-017-13232-3. PubMed DOI PMC
Clusterin Deficiency Promotes Cellular Senescence in Human Astrocytes