Methadone Potentiates the Cytotoxicity of Temozolomide by Impairing Calcium Homeostasis and Dysregulation of PARP in Glioblastoma Cells

. 2023 Jul 11 ; 15 (14) : . [epub] 20230711

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37509230

Grantová podpora
SVV-260571/2020 Charles University
1722218 Charles University

Methadone is commonly used as an alternative to morphine in patients with pain associated with glioblastoma and other cancers. Although concomitant administration of methadone and cytostatics is relatively common, the effect of methadone on the efficacy of cytostatic drugs has not been well studied until recently. Moreover, the mechanism behind the effect of methadone on temozolomide efficacy has not been investigated in previous studies, or this effect has been automatically attributed to opioid receptors. Our findings indicate that methadone potentiates the effect of temozolomide on rat C6 glioblastoma cells and on human U251 and T98G glioblastoma cells and increases cell mortality by approximately 50% via a mechanism of action independent of opioid receptors. Our data suggest that methadone acts by affecting mitochondrial potential, the level of oxidative stress, intracellular Ca2+ concentration and possibly intracellular ATP levels. Significant effects were also observed on DNA integrity and on cleavage and expression of the DNA repair protein PARP-1. None of these effects were attributed to the activation of opioid receptors and Toll-like receptor 4. Our results provide an alternative perspective on the mechanism of action of methadone in combination with temozolomide and a potential strategy for the treatment of glioblastoma cell resistance to temozolomide.

Zobrazit více v PubMed

Marrero L., Wyczechowska D., Musto A.E., Wilk A., Vashistha H., Zapata A., Walker C., Velasco-Gonzalez C., Parsons C., Wieland S., et al. Therapeutic Efficacy of Aldoxorubicin in an Intracranial Xenograft Mouse Model of Human Glioblastoma. Neoplasia. 2014;16:874–882. doi: 10.1016/j.neo.2014.08.015. PubMed DOI PMC

Jovčevska I., Kočevar N., Komel R. Glioma and Glioblastoma-How Much Do We (Not) Know? Mol. Clin. Oncol. 2013;1:935–941. doi: 10.3892/mco.2013.172. PubMed DOI PMC

Stavrovskaya A.A., Shushanov S.S., Rybalkina E.Y. Problems of Glioblastoma Multiforme Drug Resistance. Biochemistry. 2016;81:91–100. doi: 10.1134/S0006297916020036. PubMed DOI

Yi G.Z., Liu Y.W., Xiang W., Wang H., Chen Z.Y., Xie S.D., Qi S.T. Akt and β-Catenin Contribute to TMZ Resistance and EMT of MGMT Negative Malignant Glioma Cell Line. J. Neurol. Sci. 2016;367:101–106. doi: 10.1016/j.jns.2016.05.054. PubMed DOI

Oliva C.R., Nozell S.E., Diers A., McClugage S.G., Sarkaria J.N., Markert J.M., Darley-Usmar V.M., Bailey S.M., Gillespie G.Y., Landar A., et al. Acquisition of Temozolomide Chemoresistance in Gliomas Leads to Remodeling of Mitochondrial Electron Transport Chain. J. Biol. Chem. 2010;285:39759–39767. doi: 10.1074/jbc.M110.147504. PubMed DOI PMC

Krantz M.J., Mehler P.S. Treating Opioid Dependence: Growing Implications for Primary Care. Arch. Intern. Med. 2004;164:277–288. doi: 10.1001/archinte.164.3.277. PubMed DOI

Mercadante S. Opioid Titration in Cancer Pain: A Critical Review. Eur. J. Pain. 2007;11:823–830. doi: 10.1016/j.ejpain.2007.01.003. PubMed DOI

Brawanski K., Brockhoff G., Hau P., Vollmann-Zwerenz A., Freyschlag C., Lohmeier A., Riemenschneider M.J., Thomé C., Brawanski A., Proescholdt M.A. Efficacy of D,L-Methadone in the Treatment of Glioblastoma in Vitro. CNS Oncol. 2018;7:CNS18. doi: 10.2217/cns-2018-0006. PubMed DOI PMC

Friesen C., Hormann I., Roscher M., Fichtner I., Alt A., Hilger R., Debatin K.M., Miltner E. Opioid Receptor Activation Triggering Downregulation of CAMP Improves Effectiveness of Anti-Cancer Drugs in Treatment of Glioblastoma. Cell Cycle. 2014;13:1560–1570. doi: 10.4161/cc.28493. PubMed DOI PMC

Friesen C., Roscher M., Hormann I., Fichtner I., Alt A., Hilger R.A., Debatin K.M., Miltner E. Cell Death Sensitization of Leukemia Cells by Opioid Receptor Activation. Oncotarget. 2013;4:677–690. doi: 10.18632/oncotarget.952. PubMed DOI PMC

Landgraf V., Griessmann M., Roller J., Polednik C., Schmidt M. DL-Methadone as an Enhancer of Chemotherapeutic Drugs in Head and Neck Cancer Cell Lines. Anticancer Res. 2019;39:3633–3639. doi: 10.21873/anticanres.13511. PubMed DOI

Kaina B., Beltzig L., Piee-Staffa A., Haas B. Cytotoxic and Senolytic Effects of Methadone in Combination with Temozolomide in Glioblastoma Cells. Int. J. Mol. Sci. 2020;21:7006. doi: 10.3390/ijms21197006. PubMed DOI PMC

Friesen C., Roscher M., Alt A., Miltner E. Methadone, Commonly Used as Maintenance Medication for Outpatient Treatment of Opioid Dependence, Kills Leukemia Cells and Overcomes Chemoresistance. Cancer Res. 2008;68:6059–6064. doi: 10.1158/0008-5472.CAN-08-1227. PubMed DOI

Tognoli E., Proto P.L., Motta G., Galeone C., Mariani L., Valenza F. Methadone for Postoperative Analgesia: Contribution of N-Methyl-D-Aspartate Receptor Antagonism: A Randomised Controlled Trial. Eur. J. Anaesthesiol. 2020;37:934–943. doi: 10.1097/EJA.0000000000001217. PubMed DOI

Pakkanen J.S., Nousiainen H., Yli-Kauhaluoma J., Kylänlahti I., Möykkynen T., Korpi E.R., Peng J.H., Lukas R.J., Ahtee L., Tuominen R.K. Methadone Increases Intracellular Calcium in SH-SY5Y and SH-EP1-Hα7 Cells by Activating Neuronal Nicotinic Acetylcholine Receptors. J. Neurochem. 2005;94:1329–1341. doi: 10.1111/j.1471-4159.2005.03279.x. PubMed DOI

Perez-Alvarez S., Solesio M.E., Cuenca-Lopez M.D., Melero-Fernndez De Mera R.M., Villalobos C., Kmita H., Galindo M.F., Jordán J. Pharmacological Characterization of the Mechanisms Involved in Delayed Calcium Deregulation in SH-SY5Y Cells Challenged with Methadone. Int. J. Cell Biol. 2012;2012:642482. doi: 10.1155/2012/642482. PubMed DOI PMC

Theile D., Mikus G. Methadone against Cancer: Lost in Translation. Int. J. Cancer. 2018;143:1840–1848. doi: 10.1002/ijc.31356. PubMed DOI

Voelker D.R. Phosphatidylserine Translocation to the Mitochondrion Is an ATP-Dependent Process in Permeabilized Animal Cells. Proc. Natl. Acad. Sci. USA. 1989;86:9921–9925. doi: 10.1073/pnas.86.24.9921. PubMed DOI PMC

Monteiro L.D.B., Davanzo G.G., de Aguiar C.F., Moraes-Vieira P.M.M. Using Flow Cytometry for Mitochondrial Assays. MethodsX. 2020;7:100938. doi: 10.1016/j.mex.2020.100938. PubMed DOI PMC

Ledur P.F., Onzi G.R., Zong H., Lenz G. Culture Conditions Defining Glioblastoma Cells Behavior: What Is the Impact for Novel Discoveries? Oncotarget. 2017;8:69185. doi: 10.18632/oncotarget.20193. PubMed DOI PMC

Perez-Alvarez S., Iglesias-Guimarais V., Solesio M.E., Melero-Fernandez De Mera R.M., Yuste V.J., Galindo M.F., Jordán J. Methadone Induces CAD Degradation and AIF-Mediated Necrotic-like Cell Death in Neuroblastoma Cells. Pharmacol. Res. 2011;63:352–360. doi: 10.1016/j.phrs.2010.12.001. PubMed DOI

Nicholls D.G., Budd S.L. Mitochondria and Neuronal Survival. Physiol. Rev. 2000;80:315–360. doi: 10.1152/physrev.2000.80.1.315. PubMed DOI

Bagkos G., Koufopoulos K., Piperi C. A New Model for Mitochondrial Membrane Potential Production and Storage. Med. Hypotheses. 2014;83:175–181. doi: 10.1016/j.mehy.2014.05.001. PubMed DOI

Brookes P.S., Yoon Y., Robotham J.L., Anders M.W., Sheu S.S. Calcium, ATP, and ROS: A Mitochondrial Love-Hate Triangle. Am. J. Physiol. Cell Physiol. 2004;287:817–833. doi: 10.1152/ajpcell.00139.2004. PubMed DOI

Danson S.J., Middleton M.R. Temozolomide: A Novel Oral Alkylating Agent. Expert Rev. Anticancer Ther. 2001;1:13–19. doi: 10.1586/14737140.1.1.13. PubMed DOI

Lomeli N., Di K., Pearre D.C., Chung T.F., Bota D.A. Mitochondrial-Associated Impairments of Temozolomide on Neural Stem/Progenitor Cells and Hippocampal Neurons. Mitochondrion. 2020;52:56–66. doi: 10.1016/j.mito.2020.02.001. PubMed DOI PMC

Zhang J., Stevens M.F.G., Bradshaw T.D. Temozolomide: Mechanisms of Action, Repair and Resistance. Curr. Mol. Pharmacol. 2012;5:102–114. doi: 10.2174/1874467211205010102. PubMed DOI

Wu S., Li X., Gao F., de Groot J.F., Koul D., Yung W.K.A. PARP-Mediated PARylation of MGMT Is Critical to Promote Repair of Temozolomide-Induced O6-Methylguanine DNA Damage in Glioblastoma. Neuro-Oncology. 2021;23:920–931. doi: 10.1093/neuonc/noab003. PubMed DOI PMC

Zampieri L.X., Sboarina M., Cacace A., Grasso D., Thabault L., Hamelin L., Vazeille T., Dumon E., Rossignol R., Frédérick R., et al. Olaparib Is a Mitochondrial Complex i Inhibitor That Kills Temozolomide-Resistant Human Glioblastoma Cells. Int. J. Mol. Sci. 2021;22:11938. doi: 10.3390/ijms222111938. PubMed DOI PMC

Oliva C.R., Moellering D.R., Gillespie G.Y., Griguer C.E. Acquisition of Chemoresistance in Gliomas Is Associated with Increased Mitochondrial Coupling and Decreased ROS Production. PLoS ONE. 2011;6:e24665. doi: 10.1371/journal.pone.0024665. PubMed DOI PMC

Mourdjeva M., Kyurkchiev D., Mandinova A., Altankova I., Kehayov I., Kyurkchiev S. Dynamics of Membrane Translocation of Phosphatidylserine during Apoptosis Detected by a Monoclonal Antibody. Apoptosis. 2005;10:209–217. doi: 10.1007/s10495-005-6076-5. PubMed DOI

Nagata S., Suzuki J., Segawa K., Fujii T. Exposure of Phosphatidylserine on the Cell Surface. Cell Death Differ. 2016;23:952–961. doi: 10.1038/cdd.2016.7. PubMed DOI PMC

Zimmerman M.A., Wilkison S., Qi Q., Chen G., Li P.A. Mitochondrial Dysfunction Contributes to Rapamycininduced Apoptosis of Human Glioblastoma Cells-A Synergistic Effect with Temozolomide. Int. J. Med. Sci. 2020;17:2831–2843. doi: 10.7150/ijms.40159. PubMed DOI PMC

Bonora M., Pinton P. The Mitochondrial Permeability Transition Pore and Cancer: Molecular Mechanisms Involved in Cell Death. Front. Oncol. 2014;4:302. doi: 10.3389/fonc.2014.00302. PubMed DOI PMC

Yuan Y., Xue X., Guo R.B., Sun X.L., Hu G. Resveratrol Enhances the Antitumor Effects of Temozolomide in Glioblastoma via ROS-Dependent AMPK-TSC-MTOR Signaling Pathway. CNS Neurosci. Ther. 2012;18:536–546. doi: 10.1111/j.1755-5949.2012.00319.x. PubMed DOI PMC

Koo H.N., Hong S.H., Kim C.Y., Ahn J.W., Lee Y.G., Kim J.J., Lyu Y.S., Kim H.M. Inhibitory Effect of Apoptosis in Human Astrocytes CCF-STTG1 Cells by Lemon Oil. Pharmacol. Res. 2002;45:469–473. doi: 10.1006/phrs.2002.0986. PubMed DOI

Chaitanya G.V., Alexander J.S., Babu P.P. PARP-1 Cleavage Fragments: Signatures of Cell-Death Proteases in Neurodegeneration. Cell Commun. Signal. 2010;8:31. doi: 10.1186/1478-811X-8-31. PubMed DOI PMC

Prasad C.B., Prasad S.B., Yadav S.S., Pandey L.K., Singh S., Pradhan S., Narayan G. Olaparib Modulates DNA Repair Efficiency, Sensitizes Cervical Cancer Cells to Cisplatin and Exhibits Anti-Metastatic Property. Sci. Rep. 2017;7:12876. doi: 10.1038/s41598-017-13232-3. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...