Clusterin Deficiency Promotes Cellular Senescence in Human Astrocytes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
SVV-260683
Univerzita Karlova v Praze
LX22NPO5102
European Union - Next Generation EU
PubMed
39627493
PubMed Central
PMC11953114
DOI
10.1007/s12035-024-04650-2
PII: 10.1007/s12035-024-04650-2
Knihovny.cz E-zdroje
- Klíčová slova
- Astrocytes, Cellular senescence, Clusterin, Mitochondria, Oxidative stress,
- MeSH
- astrocyty * metabolismus patologie MeSH
- klusterin * nedostatek metabolismus MeSH
- lidé MeSH
- membránový potenciál mitochondrií MeSH
- mitochondrie metabolismus MeSH
- nádorové buněčné linie MeSH
- oxidační stres MeSH
- oxidativní fosforylace MeSH
- poškození DNA MeSH
- proliferace buněk MeSH
- reaktivní formy kyslíku metabolismus MeSH
- stárnutí buněk * fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- CLU protein, human MeSH Prohlížeč
- klusterin * MeSH
- reaktivní formy kyslíku MeSH
The glycoprotein clusterin (CLU) is involved in cell proliferation and DNA damage repair and is highly expressed in tumor cells. Here, we aimed to investigate the effects of CLU dysregulation on two human astrocytic cell lines: CCF-STTG1 astrocytoma cells and SV-40 immortalized normal human astrocytes. We observed that suppression of CLU expression by RNA interference inhibited cell proliferation, triggered the DNA damage response, and resulted in cellular senescence in both cell types tested. To further investigate the underlying mechanism behind these changes, we measured reactive oxygen species, assessed mitochondrial function, and determined selected markers of the senescence-associated secretory phenotype. Our results suggest that CLU deficiency triggers oxidative stress-mediated cellular senescence associated with pronounced alterations in mitochondrial membrane potential, mitochondrial mass, and expression levels of OXPHOS complex I, II, III and IV, indicating mitochondrial dysfunction. This report shows the important role of CLU in cell cycle maintenance in astrocytes. Based on these data, targeting CLU may serve as a potential therapeutic approach valuable for treating gliomas.
Zobrazit více v PubMed
Cohen J, Torres C (2019) Astrocyte senescence: evidence and significance. Aging Cell 18(3):e12937. 10.1111/acel.12937 PubMed PMC
Herranz N, Gil J (2016) Mitochondria and senescence: new actors for an old play. EMBO J 35(7):701–702. 10.15252/embj.201694025 PubMed PMC
Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM (2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 14(4):501–513. 10.1016/s1097-2765(04)00256-4 PubMed
Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88(5):593–602. 10.1016/s0092-8674(00)81902-9 PubMed
Childs BG, Baker DJ, Kirkland JL, Campisi J, van Deursen JM (2014) Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep 15(11):1139–1153. 10.15252/embr.201439245 PubMed PMC
Beausejour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, Campisi J (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 22(16):4212–4222 PubMed PMC
Deb M, Sengupta D, Rath SK, Kar S, Parbin S, Shilpi A, Pradhan N, Bhutia SK et al (2015) Clusterin gene is predominantly regulated by histone modifications in human colon cancer and ectopic expression of the nuclear isoform induces cell death. Biochim Biophys Acta 1852(8):1630–1645. 10.1016/j.bbadis.2015.04.021 PubMed
Morgan TE, Laping NJ, Rozovsky I, Oda T, Hogan TH, Finch CE, Pasinetti GM (1995) Clusterin expression by astrocytes is influenced by transforming growth factor beta 1 and heterotypic cell interactions. J Neuroimmunol 58(1):101–110. 10.1016/0165-5728(94)00194-s PubMed
Trougakos IP, Gonos ES (2002) Clusterin/apolipoprotein J in human aging and cancer. Int J Biochem Cell Biol 34(11):1430–1448 PubMed
Pasinetti GM, Johnson SA, Oda T, Rozovsky I, Finch CE (1994) Clusterin (SGP-2): a multifunctional glycoprotein with regional expression in astrocytes and neurons of the adult rat brain. J Comp Neurol 339(3):387–400. 10.1002/cne.903390307 PubMed
Yao M, Fang M, Zheng W, Dong Z, Yao D (2018) Role of secretory clusterin in hepatocarcinogenesis. Transl Gastroenterol Hepatol 3:48. 10.21037/tgh.2018.07.13 PubMed PMC
Pucci S, Bonanno E, Pichiorri F, Angeloni C, Spagnoli LG (2004) Modulation of different clusterin isoforms in human colon tumorigenesis. Oncogene 23(13):2298–2304. 10.1038/sj.onc.1207404 PubMed
Wang X, Xie J, Lu X, Li H, Wen C, Huo Z, Xie J, Shi M et al (2017) Melittin inhibits tumor growth and decreases resistance to gemcitabine by downregulating cholesterol pathway gene CLU in pancreatic ductal adenocarcinoma. Cancer Lett 399:1–9. 10.1016/j.canlet.2017.04.012 PubMed
Arumugam P, Samson A, Ki J, Song JM (2017) Knockdown of clusterin alters mitochondrial dynamics, facilitates necrosis in camptothecin-induced cancer stem cells. Cell Biol Toxicol 33(3):307–321. 10.1007/s10565-016-9378-1 PubMed
Chun YJ (2014) Knockdown of clusterin expression increases the in vitro sensitivity of human prostate cancer cells to paclitaxel. J Toxicol Environ Health A 77(22–24):1443–1450. 10.1080/15287394.2014.951760 PubMed
Chi KN, Zoubeidi A, Gleave ME (2008) Custirsen (OGX-011): a second-generation antisense inhibitor of clusterin for the treatment of cancer. Expert Opin Investig Drugs 17(12):1955–1962. 10.1517/13543780802528609 PubMed
Shi H, Deng JH, Wang Z, Cao KY, Zhou L, Wan H (2013) Knockdown of clusterin inhibits the growth and migration of renal carcinoma cells and leads to differential gene expression. Mol Med Rep 8(1):35–40. 10.3892/mmr.2013.1470 PubMed
So A, Sinnemann S, Huntsman D, Fazli L, Gleave M (2005) Knockdown of the cytoprotective chaperone, clusterin, chemosensitizes human breast cancer cells both in vitro and in vivo. Mol Cancer Ther 4(12):1837–1849. 10.1158/1535-7163.Mct-05-0178 PubMed
Tan J, Guo W, Yang S, Han D, Li H (2021) The multiple roles and therapeutic potential of clusterin in non-small-cell lung cancer: a narrative review. Transl Lung Cancer Res 10(6):2683–2697. 10.21037/tlcr-20-1298 PubMed PMC
Huang H, Wang L, Li M, Wang X, Zhang L (2014) Secreted clusterin (sCLU) regulates cell proliferation and chemosensitivity to cisplatin by modulating ERK1/2 signals in human osteosarcoma cells. World J Surg Oncol 12:255. 10.1186/1477-7819-12-255 PubMed PMC
Mitsufuji S, Iwagami Y, Kobayashi S, Sasaki K, Yamada D, Tomimaru Y, Akita H, Asaoka T et al (2022) Inhibition of clusterin represses proliferation by inducing cellular senescence in pancreatic cancer. Ann Surg Oncol 29(8):4937–4946. 10.1245/s10434-022-11668-0 PubMed
Bhat R, Crowe EP, Bitto A, Moh M, Katsetos CD, Garcia FU, Johnson FB, Trojanowski JQ et al (2012) Astrocyte senescence as a component of Alzheimer’s disease. PLoS One 7(9):e45069. 10.1371/journal.pone.0045069 PubMed PMC
Bitto A, Sell C, Crowe E, Lorenzini A, Malaguti M, Hrelia S, Torres C (2010) Stress-induced senescence in human and rodent astrocytes. Exp Cell Res 316(17):2961–2968. 10.1016/j.yexcr.2010.06.021 PubMed
Jiang J, Jiang J, Zuo Y, Gu Z (2013) Rapamycin protects the mitochondria against oxidative stress and apoptosis in a rat model of Parkinson’s disease. Int J Mol Med 31(4):825–832. 10.3892/ijmm.2013.1280 PubMed
Davalli P, Mitic T, Caporali A, Lauriola A, D’Arca D (2016) ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid Med Cell Longev 2016:3565127. 10.1155/2016/3565127 PubMed PMC
Wiggins AK, Shen PJ, Gundlach AL (2003) Delayed, but prolonged increases in astrocytic clusterin (ApoJ) mRNA expression following acute cortical spreading depression in the rat: evidence for a role of clusterin in ischemic tolerance. Brain Res Mol Brain Res 114(1):20–30. 10.1016/s0169-328x(03)00124-4 PubMed
Feoktistova M, Geserick P, Leverkus M (2016) Crystal violet assay for determining viability of cultured cells. Cold Spring Harb Protoc 2016(4):pdb.prot087379. 10.1101/pdb.prot087379 PubMed
Honc O, Novotny J (2023) Methadone potentiates the cytotoxicity of temozolomide by impairing calcium homeostasis and dysregulation of PARP in glioblastoma cells. Cancers (Basel) 15(14). 10.3390/cancers15143567 PubMed PMC
Chen F, Swartzlander DB, Ghosh A, Fryer JD, Wang B, Zheng H (2021) Clusterin secreted from astrocyte promotes excitatory synaptic transmission and ameliorates Alzheimer’s disease neuropathology. Mol Neurodegener 16(1):5. 10.1186/s13024-021-00426-7 PubMed PMC
Kularatne RN, Bulumulla C, Catchpole T, Takacs A, Christie A, Stefan MC, Csaky KG (2020) Protection of human retinal pigment epithelial cells from oxidative damage using cysteine prodrugs. Free Radic Biol Med 152:386–394. 10.1016/j.freeradbiomed.2020.03.024 PubMed
Lee HC, Yin PH, Chi CW, Wei YH (2002) Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence. J Biomed Sci 9(6 Pt 1):517–526. 10.1007/bf02254978 PubMed
Park YY, Lee S, Karbowski M, Neutzner A, Youle RJ, Cho H (2010) Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1. J Cell Sci 123(Pt 4):619–626. 10.1242/jcs.061481 PubMed PMC
Foster EM, Dangla-Valls A, Lovestone S, Ribe EM, Buckley NJ (2019) Clusterin in Alzheimer’s disease: mechanisms, genetics, and lessons from other pathologies. Front Neurosci 13:164. 10.3389/fnins.2019.00164 PubMed PMC
Kang B-H, Shim Y-J, Tae Y-K, Song J-A, Choi B-K, Park I-S, Min B-H (2014) Clusterin stimulates the chemotactic migration of macrophages through a pertussis toxin sensitive G-protein-coupled receptor and Gβγ-dependent pathways. Biochem Biophys Res Commun 445(3):645–650. 10.1016/j.bbrc.2014.02.071 PubMed
Kumari R, Jat P (2021) Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front Cell Dev Biol 9:645593. 10.3389/fcell.2021.645593 PubMed PMC
He G, Siddik ZH, Huang Z, Wang R, Koomen J, Kobayashi R, Khokhar AR, Kuang J (2005) Induction of p21 by p53 following DNA damage inhibits both Cdk4 and Cdk2 activities. Oncogene 24(18):2929–2943. 10.1038/sj.onc.1208474 PubMed
Lawless C, Jurk D, Gillespie CS, Shanley D, Saretzki G, von Zglinicki T, Passos JF (2012) A stochastic step model of replicative senescence explains ROS production rate in ageing cell populations. PLoS One 7(2):e32117. 10.1371/journal.pone.0032117 PubMed PMC
Freund A, Patil CK, Campisi J (2011) p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J 30(8):1536–1548. 10.1038/emboj.2011.69 PubMed PMC
Passos JF, Nelson G, Wang C, Richter T, Simillion C, Proctor CJ, Miwa S, Olijslagers S et al (2010) Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol 6:347. 10.1038/msb.2010.5 PubMed PMC
Villeneuve C, Guilbeau-Frugier C, Sicard P, Lairez O, Ordener C, Duparc T, De Paulis D, Couderc B et al (2013) p53-PGC-1α pathway mediates oxidative mitochondrial damage and cardiomyocyte necrosis induced by monoamine oxidase-A upregulation: role in chronic left ventricular dysfunction in mice. Antioxid Redox Signal 18(1):5–18. 10.1089/ars.2011.4373 PubMed PMC
Lee S, Jeong SY, Lim WC, Kim S, Park YY, Sun X, Youle RJ, Cho H (2007) Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J Biol Chem 282(31):22977–22983. 10.1074/jbc.M700679200 PubMed
Sagiv A, Krizhanovsky V (2013) Immunosurveillance of senescent cells: the bright side of the senescence program. Biogerontology 14(6):617–628. 10.1007/s10522-013-9473-0 PubMed
Rodier F, Muñoz DP, Teachenor R, Chu V, Le O, Bhaumik D, Coppé JP, Campeau E et al (2011) DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J Cell Sci 124(Pt 1):68–81. 10.1242/jcs.071340 PubMed PMC
Hou J, Kim S, Sung C, Choi C (2017) Ginsenoside Rg3 prevents oxidative stress-induced astrocytic senescence and ameliorates senescence paracrine effects on glioblastoma. Molecules 22(9). 10.3390/molecules22091516 PubMed PMC
Benzing WC, Wujek JR, Ward EK, Shaffer D, Ashe KH, Younkin SG, Brunden KR (1999) Evidence for glial-mediated inflammation in aged APP(SW) transgenic mice. Neurobiol Aging 20(6):581–589. 10.1016/s0197-4580(99)00065-2 PubMed
Sultana P, Novotny J (2024) Clusterin: a double-edged sword in cancer and neurological disorders. EXCLI J 23:912–936. 10.17179/excli2024-7369 PubMed PMC
Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356. 10.1126/science.1072994 PubMed
Trougakos IP, So A, Jansen B, Gleave ME, Gonos ES (2004) Silencing expression of the clusterin/apolipoprotein j gene in human cancer cells using small interfering RNA induces spontaneous apoptosis, reduced growth ability, and cell sensitization to genotoxic and oxidative stress. Cancer Res 64(5):1834–1842. 10.1158/0008-5472.can-03-2664 PubMed
Scaltriti M, Bettuzzi S, Sharrard RM, Caporali A, Caccamo AE, Maitland NJ (2004) Clusterin overexpression in both malignant and nonmalignant prostate epithelial cells induces cell cycle arrest and apoptosis. Br J Cancer 91(10):1842–1850. 10.1038/sj.bjc.6602193 PubMed PMC
Serrano A, Redondo M, Tellez T, Castro-Vega I, Roldan MJ, Mendez R, Rueda A, Jimenez E (2009) Regulation of clusterin expression in human cancer via DNA methylation. Tumour Biol 30(5–6):286–291. 10.1159/000259912 PubMed
Heroux MS, Chesnik MA, Halligan BD, Al-Gizawiy M, Connelly JM, Mueller WM, Rand SD, Cochran EJ et al (2014) Comprehensive characterization of glioblastoma tumor tissues for biomarker identification using mass spectrometry-based label-free quantitative proteomics. Physiol Genomics 46(13):467–481. 10.1152/physiolgenomics.00034.2014 PubMed PMC