MicroRNAs as a Potential Biomarker in the Diagnosis of Cardiovascular Diseases
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
CZ.02.1.01/0.0/0.0/16_019/0000798
European Regional Development Fund
PubMed
37512140
PubMed Central
PMC10386031
DOI
10.3390/medicina59071329
PII: medicina59071329
Knihovny.cz E-resources
- Keywords
- CVD, biomarker, microRNA,
- MeSH
- Biomarkers MeSH
- Cardiovascular Diseases * diagnosis genetics MeSH
- Humans MeSH
- MicroRNAs * genetics MeSH
- Prognosis MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Biomarkers MeSH
- MicroRNAs * MeSH
Cardiovascular diseases (CVD) are the leading cause of death in most developed countries. MicroRNAs (miRNAs) are highly investigated molecules not only in CVD but also in other diseases. Several studies on miRNAs continue to reveal novel miRNAs that may play a role in CVD, in their pathogenesis in diagnosis or prognosis, but evidence for clinical implementation is still lacking. The aim of this study is to clarify the diagnostic potential of miRNAs in some CVDs.
See more in PubMed
World Health Organization “Cardiovascular Diseases”. 2023. [(accessed on 30 June 2023)]. Available online: https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1.
World Health Organization “The Top 10 Causes of Death”. 2020. [(accessed on 30 June 2023)]. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.
Visseren F., Mach F., Smulders Y., Carballo D., Koskinas K., Bäck M., Benetos A., Biffi A., Boavida J., Capodanno D., et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021;42:3227–3337. doi: 10.1093/eurheartj/ehab484. PubMed DOI
Cífková R., Vaverková H., Filipovský J., Aschermann M. Summary of the European Guidelines on cardiovascular disease prevention in clinical practice (version 2012): Prepared by the Czech Society of Cardiology: Prepared by the Czech Society of Cardiology. Cor et Vasa. 2014;56:e169–e189. doi: 10.1016/j.crvasa.2014.02.009. DOI
Çakmak H., Demir M. Microrna and cardiovascular diseases. Balk. Med. J. 2020;37:60–71. doi: 10.4274/balkanmedj.galenos.2020.2020.1.94. PubMed DOI PMC
Rochette L. Emerging New Biomarkers for Cardiovascular Disease. Int. J. Mol. Sci. 2022;23:3274. doi: 10.3390/ijms23063274. PubMed DOI PMC
Djebali S., Davis C., Merkel A., Dobin A., Lassmann T., Mortazavi A., Tanzer A., Lagarde J., Lin W., Schlesinger F., et al. Landscape of transcription in human cells. Nature. 2012;489:101–108. doi: 10.1038/nature11233. PubMed DOI PMC
Grant B. The safe-neighborhood hypothesis of junk DNA. J. Theor. Biol. 1981;90:149–150. doi: 10.1016/0022-5193(81)90127-2. PubMed DOI
Bartel D. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function: Genomics, Biogenesis, Mechanism, and Function. Cell. 2004;116:281–297. doi: 10.1016/S0092-8674(04)00045-5. PubMed DOI
Lytle J., Yario T., Steitz J. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc. Natl. Acad. Sci. USA. 2007;104:9667–9672. doi: 10.1073/pnas.0703820104. PubMed DOI PMC
Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–355. doi: 10.1038/nature02871. PubMed DOI
Kozomara A., Birgaoanu M., Griffiths-Jones S. miRBase: From microRNA sequences to function: From microRNA sequences to function. Nucleic Acids Res. 2019;47:D155–D162. doi: 10.1093/nar/gky1141. PubMed DOI PMC
Treiber T., Treiber N., Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat. Rev. Mol. Cell Biol. 2019;20:5–20. doi: 10.1038/s41580-018-0059-1. PubMed DOI
Thum T., Gross C., Fiedler J., Fischer T., Kissler S., Bussen M., Galuppo P., Just S., Rottbauer W., Frantz S., et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456:980–984. doi: 10.1038/nature07511. PubMed DOI
Bang C., Batkai S., Dangwal S., Gupta S., Foinquinos A., Holzmann A., Just A., Remke J., Zimmer K., Zeug A., et al. Cardiac fibroblast–derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J. Clin. Investig. 2014;124:2136–2146. doi: 10.1172/JCI70577. PubMed DOI PMC
Colpaert R., Calore M. Epigenetics and microRNAs in cardiovascular diseases. Genomics. 2021;113:540–551. doi: 10.1016/j.ygeno.2020.12.042. PubMed DOI
Bartel D. MicroRNAs: Target Recognition and Regulatory Functions: Target Recognition and Regulatory Functions. Cell. 2009;136:215–233. doi: 10.1016/j.cell.2009.01.002. PubMed DOI PMC
Siasos G., Bletsa E., Stampouloglou P., Oikonomou E., Tsigkou V., Paschou S., Vlasis K., Marinos G., Vavuranakis M., Stefanadis C., et al. MicroRNAs in cardiovascular disease. Hell. J. Cardiol. 2020;61:165–173. doi: 10.1016/j.hjc.2020.03.003. PubMed DOI
Szelenberger R., Kacprzak M., Saluk-Bijak J., Zielinska M., Bijak M. Plasma MicroRNA as a novel diagnostic. Clin. Chim. Acta. 2019;499:98–107. doi: 10.1016/j.cca.2019.09.005. PubMed DOI
Schulte C., Karakas M., Zeller T. microRNAs in cardiovascular disease—Clinical application. Clin. Chem. Lab. Med. 2017;55:687–704. doi: 10.1515/cclm-2016-0576. PubMed DOI
Fazmin I., Achercouk Z., Edling C., Said A., Jeevaratnam K. Circulating microRNA as a Biomarker for Coronary Artery Disease. Biomolecules. 2020;10:1354. doi: 10.3390/biom10101354. PubMed DOI PMC
Cavarretta E., Frati G. MicroRNAs in Coronary Heart Disease: Ready to Enter the Clinical Arena? BioMed Res. Int. 2016;2016:2150763. doi: 10.1155/2016/2150763. PubMed DOI PMC
Jensen R., Hjortbak M., Bøtker H. Ischemic Heart Disease: An Update. Semin. Nucl. Med. 2020;50:195–207. doi: 10.1053/j.semnuclmed.2020.02.007. PubMed DOI
Churov A., Summerhill V., Grechko A., Orekhova V., Orekhov A. MicroRNAs as Potential Biomarkers in Atherosclerosis. Int. J. Mol. Sci. 2019;20:5547. doi: 10.3390/ijms20225547. PubMed DOI PMC
Cohen M.D.B. Coronary Heart Disease: From Diagnosis to Treatment. Addicus Books, Inc.; Omaha, NE, USA: 2019.
Fichtlscherer S., Rosa S., Fox H., Schwietz T., Fischer A., Liebetrau C., Weber M., Hamm C., Röxe T., Müller-Ardogan M., et al. Circulating microRNAs in patients with coronary artery disease. Circ. Res. 2010;107:677–684. doi: 10.1161/CIRCRESAHA.109.215566. PubMed DOI
Conroy R., Pyörälä K., Fitzgerald A., Sans S., Menotti A., Backer G., Bacquer D., Ducimetière P., Jousilahti P., Keil U., et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: The SCORE project: The SCORE project. Eur. Heart J. 2003;24:987–1003. doi: 10.1016/S0195-668X(03)00114-3. PubMed DOI
Cifkova R., Byma S., Ceska R., Horky K., Karen I., Kunesova M., Kralikova E., Rosolova H., Roztocil K., Soska V., et al. Prevence kardiovaskularnich onemocneni v dospelem veku. Spolecne doporuceni ceskych odbornych spolecnosti. Vnitr. Lek. 2005;51:1021–1036.
Najafi-Shoushtari S., Kristo F., Li Y., Shioda T., Cohen D., Gerszten R., Näär A. MicroRNA-33 and the SREBP Host Genes Cooperate to Control Cholesterol Homeostasis. Science. 2010;328:1566–1569. doi: 10.1126/science.1189123. PubMed DOI PMC
Allen R., Marquart T., Albert C., Suchy F., Wang D., Ananthanarayanan M., Ford D., Baldán Á. miR-33 controls the expression of biliary transporters, and mediates statin- and diet-induced hepatotoxicity. EMBO Mol. Med. 2012;4:882–895. doi: 10.1002/emmm.201201228. PubMed DOI PMC
Vickers K., Shoucri B., Levin M., Wu H., Pearson D., Osei-Hwedieh D., Collins F., Remaley A., Sethupathy P. MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia. Hepatology. 2013;57:533–542. doi: 10.1002/hep.25846. PubMed DOI PMC
Goedeke L., Rotllan N., Canfrán-Duque A., Aranda J., Ramírez C., Araldi E., Lin C., Anderson N., Wagschal A., de Cabo R., et al. MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nat. Med. 2015;21:1280–1289. doi: 10.1038/nm.3949. PubMed DOI PMC
Vickers K., Landstreet S., Levin M., Shoucri B., Toth C., Taylor R., Palmisano B., Tabet F., Cui H., Rye K., et al. MicroRNA-223 coordinates cholesterol homeostasis. Proc. Natl. Acad. Sci. USA. 2014;111:14518–14523. doi: 10.1073/pnas.1215767111. PubMed DOI PMC
Rayner K., Sheedy F., Esau C., Hussain F., Temel R., Parathath S., van Gils J., Rayner A., Chang A., Suarez Y., et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J. Clin. Investig. 2011;121:2921–2931. doi: 10.1172/JCI57275. PubMed DOI PMC
Li H., Zhao X., Liu Y., Meng Z., Wang D., Yang F., Shi Q. Plasma MicroRNA-126-5p is Associated with the Complexity and Severity of Coronary Artery Disease in Patients with Stable Angina Pectoris. Cell. Physiol. Biochem. 2016;39:837–846. doi: 10.1159/000447794. PubMed DOI
Wang H., Huang T., Lo H., Huang P., Lin C., Chang S., Liao K., Tsai C., Chan C., Tsai C., et al. Deficiency of the MicroRNA-31-MicroRNA-720 pathway in the plasma and endothelial progenitor cells from patients with coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 2014;34:857–869. doi: 10.1161/ATVBAHA.113.303001. PubMed DOI
Zhou J., Shao G., Chen X., Yang X., Huang X., Peng P., Ba Y., Zhang L., Jehangir T., Bu S., et al. miRNA 206 and miRNA 574-5p are highly expression in coronary artery disease. Biosci. Rep. 2016;36:295. doi: 10.1042/BSR20150206. PubMed DOI PMC
Sayed A., Xia K., Li F., Deng X., Salma U., Li T., Deng H., Yang D., Haoyang Z., Yang T., et al. The diagnostic value of circulating microRNAs for middle-aged (40–60-year-old) coronary artery disease patients. Clinics. 2015;70:257–263. doi: 10.6061/clinics/2015(04)07. PubMed DOI PMC
Han H., Qu G., Han C., Wang Y., Sun T., Li F., Wang J., Luo S. MiR-34a, miR-21 and miR-23a as potential biomarkers for coronary artery disease: A pilot microarray study and confirmation in a 32 patient cohort: A pilot microarray study and confirmation in a 32 patient cohort. Exp. Mol. Med. 2015;47:e138. doi: 10.1038/emm.2014.81. PubMed DOI PMC
Du Y., Yang S.H., Li S., Cui C.J., Zhang Y., Zhu C.G., Guo Y.L., Wu N.Q., Gao Y., Sun J., et al. Circulating MicroRNAs as Novel Diagnostic Biomarkers for Very Early-onset (≤40 years) Coronary Artery Disease. Biomed. Environ. Sci. 2016;29:545–554. doi: 10.3967/BES2016.073. PubMed DOI
Wang F., Long G., Zhao C., Li H., Chaugai S., Wang Y., Chen C., Wang D. Plasma microRNA-133a is a new marker for both acute myocardial infarction and underlying coronary artery stenosis. J. Transl. Med. 2013;11:222. doi: 10.1186/1479-5876-11-222. PubMed DOI PMC
Faccini J., Ruidavets J., Cordelier P., Martins F., Maoret J., Bongard V., Ferrières J., Roncalli J., Elbaz M., Vindis C. Circulating MIR-155, MIR-145 and let-7c as diagnostic biomarkers of the coronary artery disease. Sci. Rep. 2017;7:srep42916. doi: 10.1038/srep42916. PubMed DOI PMC
Ibanez B., James S., Agewall S., Antunes M., Bucciarelli-Ducci C., Bueno H., Caforio A., Crea F., Goudevenos J., Halvorsen S., et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur. Heart J. 2018;39:119–177. doi: 10.1093/eurheartj/ehx393. PubMed DOI
Panteghini P. Recommendations on Use of Biochemical Markers in Acute Coronary Syndrome: IFCC Proposals: IFCC Proposals. EJIFCC. 2003;14:104. PubMed PMC
Dekker M., Mosterd A., Van’t Hof A., Hoes A. Novel biochemical markers in suspected acute coronary syndrome: Systematic review and critical appraisal: Systematic review and critical appraisal. Heart. 2010;96:1001. doi: 10.1136/hrt.2009.189886. PubMed DOI
Jacob R., Khan M. Cardiac Biomarkers: What Is and What Can Be. Indian J. Cardiovasc. Dis. Women WINCARS. 2019;3:240–244. doi: 10.1055/s-0039-1679104. PubMed DOI PMC
Chistiakov D., Orekhov A., Bobryshev Y. Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction) J. Mol. Cell. Cardiol. 2016;94:107–121. doi: 10.1016/j.yjmcc.2016.03.015. PubMed DOI
Wang G., Zhu J., Zhang J., Li Q., Li Y., He J., Qin Y., Jing Q. Circulating microRNA: A novel potential biomarker for early diagnosis of acute myocardial infarction in humans: A novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur. Heart J. 2010;31:659–666. doi: 10.1093/eurheartj/ehq013. PubMed DOI
Navickas R., Gal D., Laucevičius A., Taparauskaite A., Zdanyte M., Holvoet P. Identifying circulating microRNAs as biomarkers of cardiovascular disease: A systematic review: A systematic review. Cardiovasc. Res. 2016;111:322–337. doi: 10.1093/cvr/cvw174. PubMed DOI PMC
Li S., Lee C., Song J., Lu C., Liu J., Cui Y., Liang H., Cao C., Zhang F., Chen H. Circulating microRNAs as potential biomarkers for coronary plaque rupture. Oncotarget. 2017;8:48145–48156. doi: 10.18632/oncotarget.18308. PubMed DOI PMC
Zhong J., He Y., Chen W., Shui X., Chen C., Lei W. Circulating microRNA-19a as a potential novel biomarker for diagnosis of acute myocardial infarction. Int. J. Mol. Sci. 2014;15:20355–20364. doi: 10.3390/ijms151120355. PubMed DOI PMC
Zeller T., Tanja T., Ojeda F., Reichlin T., Twerenbold R., Tzikas S., Wild P., Reiter M., Czyz E., Lackner K., et al. Assessment of microRNAs in patients with unstable angina pectoris. Eur. Heart J. 2014;35:2106–2114. doi: 10.1093/eurheartj/ehu151. PubMed DOI
Gidlöf O., Andersson P., Van Der Pals J., Götberg M., Erlinge D. Cardiospecific microRNA Plasma Levels Correlate with Troponin and Cardiac Function in Patients with ST Elevation Myocardial Infarction, Are Selectively Dependent on Renal Elimination, and Can Be Detected in Urine Samples. Cardiology. 2011;118:217–226. doi: 10.1159/000328869. PubMed DOI
Oerlemans M., Mosterd A., Dekker M., de Vrey E., van Mil A., Pasterkamp G., Doevendans P., Hoes A., Sluijter J. Early assessment of acute coronary syndromes in the emergency department: The potential diagnostic value of circulating microRNAs: The potential diagnostic value of circulating microRNAs. EMBO Mol. Med. 2012;4:1176. doi: 10.1002/emmm.201201749. PubMed DOI PMC
Devaux Y., Mueller M., Haaf P., Goretti E., Twerenbold R., Zangrando J., Vausort M., Reichlin T., Wildi K., Moehring B., et al. Diagnostic and prognostic value of circulating microRNAs in patients with acute chest pain. J. Intern. Med. 2015;277:260–271. doi: 10.1111/joim.12183. PubMed DOI
Widera C., Gupta S., Lorenzen J., Bang C., Bauersachs J., Bethmann K., Kempf T., Wollert K., Thum T. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J. Mol. Cell. Cardiol. 2011;51:872–875. doi: 10.1016/j.yjmcc.2011.07.011. PubMed DOI
Zhang L., Chen X., Su T., Li H., Huang Q., Wu D., Yang C., Han Z. Circulating miR-499 are novel and sensitive biomarker of acute myocardial infarction. J. Thorac. Dis. 2015;7:303. doi: 10.1016/j.jacc.2015.06.318. PubMed DOI PMC
Corsten M., Dennert R., Jochems S., Kuznetsova T., Devaux Y., Hofstra L., Wagner D., Staessen J., Heymans S., Schroen B. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ. Cardiovasc. Genet. 2010;3:499–506. doi: 10.1161/CIRCGENETICS.110.957415. PubMed DOI
Gacon J., Kablak-Ziembicka A., Stepien E., Enguita F., Karch I., Derlaga B., Zmudka K., Przewlocki T. Decision-making microRNAs (miR-124, -133a/b, -34a and -134) in patients with occluded target vessel in acute coronary syndrome. Kardiol. Pol. 2016;74:280–288. doi: 10.5603/KP.a2015.0174. PubMed DOI
Gao H., Guddeti R., Matsuzawa Y., Liu L., Su L., Guo D., Nie S., Du J., Zhang M. Plasma Levels of microRNA-145 Are Associated with Severity of Coronary Artery Disease. PLoS ONE. 2015;10:e0123477. doi: 10.1371/journal.pone.0123477. PubMed DOI PMC
Matsumoto S., Sakata Y., Nakatani D., Suna S., Mizuno H., Shimizu M., Usami M., Sasaki T., Sato H., Kawahara Y., et al. A subset of circulating microRNAs are predictive for cardiac death after discharge for acute myocardial infarction. Biochem. Biophys. Res. Commun. 2012;427:280–284. doi: 10.1016/j.bbrc.2012.09.039. PubMed DOI
Devaux Y., Vausort M., McCann G., Kelly D., Collignon O., Ng L., Wagner D., Squire I. A Panel of 4 microRNAs Facilitates the Prediction of Left Ventricular Contractility after Acute Myocardial Infarction. PLoS ONE. 2013;8:e70644. doi: 10.1371/annotation/458a1f6a-6327-429a-81cb-992c97f04bd6. PubMed DOI PMC
Bye A., Røsjø H., Nauman J., Silva G., Follestad T., Omland T., Wisløff U. Circulating microRNAs predict future fatal myocardial infarction in healthy individuals—The HUNT study. J. Mol. Cell. Cardiol. 2016;97:162–168. doi: 10.1016/j.yjmcc.2016.05.009. PubMed DOI
Karakas M., Schulte C., Appelbaum S., Ojeda F., Lackner K., Münzel T., Schnabel R., Blankenberg S., Zeller T. Circulating microRNAs strongly predict cardiovascular death in patients with coronary artery disease—Results from the large AtheroGene study. Eur. Heart J. 2017;38:516–523. doi: 10.1093/eurheartj/ehw250. PubMed DOI
Zampetaki A., Willeit P., Tilling L., Drozdov I., Prokopi M., Renard J., Mayr A., Weger S., Schett G., Shah A., et al. Prospective Study on Circulating MicroRNAs and Risk of Myocardial Infarction. J. Am. Coll. Cardiol. 2012;60:290–299. doi: 10.1016/j.jacc.2012.03.056. PubMed DOI
Schulte C., Molz S., Appelbaum S., Karakas M., Ojeda F., Lau D., Hartmann T., Lackner K., Westermann D., Schnabel R., et al. miRNA-197 and miRNA-223 Predict Cardiovascular Death in a Cohort of Patients with Symptomatic Coronary Artery Disease. PLoS ONE. 2015;10:e0145930. doi: 10.1371/journal.pone.0145930. PubMed DOI PMC
Tsutsui H., Isobe M., Ito H., Ito H., Okumura K., Ono M., Kitakaze M., Kinugawa K., Kihara Y., Goto Y., et al. JCS 2017/JHFS 2017 Guideline on Diagnosis and Treatment of Acute and Chronic Heart Failure—Digest Version. Circ. J. 2019;83:2084–2184. doi: 10.1253/circj.CJ-19-0342. PubMed DOI
McDonagh T., Metra M., Adamo M., Gardner R., Baumbach A., Böhm M., Burri H., Butler J., Čelutkienė J., Chioncel O., et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021;42:3599–3726. doi: 10.1093/eurheartj/ehab368. PubMed DOI
Wong L., Wang J., Liew O., Richards A., Chen Y. MicroRNA and Heart Failure. Int. J. Mol. Sci. 2016;17:502. doi: 10.3390/ijms17040502. PubMed DOI PMC
Duan Q., Chen C., Yang L., Li N., Gong W., Li S., Wang D. MicroRNA regulation of unfolded protein response transcription factor XBP1 in the progression of cardiac hypertrophy and heart failure in vivo. J. Transl. Med. 2015;13:363. doi: 10.1186/s12967-015-0725-4. PubMed DOI PMC
Da Costa Martins P., De Windt L. MicroRNAs in control of cardiac hypertrophy. Cardiovasc. Res. 2012;93:563–572. doi: 10.1093/cvr/cvs013. PubMed DOI
Pan Z., Sun X., Ren J., Li X., Gao X., Lu C., Zhang Y., Sun H., Wang Y., Wang H., et al. miR-1 Exacerbates Cardiac Ischemia-Reperfusion Injury in Mouse Models. PLoS ONE. 2012;7:e50515. doi: 10.1371/journal.pone.0050515. PubMed DOI PMC
Pan W., Zhong Y., Cheng C., Liu B., Wang L., Li A., Xiong L., Liu S. MiR-30-Regulated Autophagy Mediates Angiotensin II-Induced Myocardial Hypertrophy. PLoS ONE. 2013;8:e53950. doi: 10.1371/journal.pone.0053950. PubMed DOI PMC
Zhu H., Yang Y., Wang Y., Li J., Schiller P., Peng T. MicroRNA-195 promotes palmitate-induced apoptosis in cardiomyocytes by down-regulating Sirt1. Cardiovasc. Res. 2011;92:75–84. doi: 10.1093/cvr/cvr145. PubMed DOI
Wang J., Jia Z., Zhang C., Sun M., Wang W., Chen P., Ma K., Zhang Y., Li X., Zhou C. miR-499 protects cardiomyocytes from H2O2-induced apoptosis via its effects on Pdcd4 and Pacs2. RNA Biol. 2014;11:339. doi: 10.4161/rna.28300. PubMed DOI PMC
Zhang B., Zhou M., Li C., Zhou J., Li H., Zhu D., Wang Z., Chen A., Zhao Q. MicroRNA-92a Inhibition Attenuates Hypoxia/Reoxygenation-Induced Myocardiocyte Apoptosis by Targeting Smad7. PLoS ONE. 2014;9:e100298. doi: 10.1371/journal.pone.0100298. PubMed DOI PMC
Sayed D., He M., Hong C., Gao S., Rane S., Yang Z., Abdellatif M. MicroRNA-21 Is a Downstream Effector of AKT That Mediates Its Antiapoptotic Effects via Suppression of Fas Ligand. J. Biol. Chem. 2010;285:20281. doi: 10.1074/jbc.M110.109207. PubMed DOI PMC
Tijsen A., Creemers E., Moerland P., Windt L., Wal A., Kok W., Pinto Y. MiR423-5p as a circulating biomarker for heart failure. Circ. Res. 2010;106:1035–1039. doi: 10.1161/CIRCRESAHA.110.218297. PubMed DOI
Goren Y., Kushnir M., Zafrir B., Tabak S., Lewis B., Amir O. Serum levels of microRNAs in patients with heart failure. Eur. J. Heart Fail. 2012;14:147–154. doi: 10.1093/eurjhf/hfr155. PubMed DOI
Tutarel O., Dangwal S., Bretthauer J., Westhoff-Bleck M., Roentgen P., Anker S., Bauersachs J., Thum T. Circulating miR-423-5p fails as a biomarker for systemic ventricular function in adults after atrial repair for transposition of the great arteries. Int. J. Cardiol. 2013;167:63–66. doi: 10.1016/j.ijcard.2011.11.082. PubMed DOI
Scrutinio D., Conserva F., Passantino A., Iacoviello M., Lagioia R., Gesualdo L. Circulating microRNA-150-5p as a novel biomarker for advanced heart failure: A genome-wide prospective study: A genome-wide prospective study. J. Heart Lung Transplant. 2017;36:616–624. doi: 10.1016/j.healun.2017.02.008. PubMed DOI
Wong L., Zou R., Zhou L., Lim J., Phua D., Liu C., Chong J., Ng J., Liew O., Chan S., et al. Combining Circulating MicroRNA and NT-proBNP to Detect and Categorize Heart Failure Subtypes. J. Am. Coll. Cardiol. 2019;73:1300–1313. doi: 10.1016/j.jacc.2018.11.060. PubMed DOI
Zhang J., Xing Q., Zhou X., Li J., Li Y., Zhang L., Zhou Q., Tang B. Circulating miRNA-21 is a promising biomarker for heart failure. Mol. Med. Rep. 2017;16:7766–7774. doi: 10.3892/mmr.2017.7575. PubMed DOI
Masson S., Batkai S., Beermann J., Bär C., Pfanne A., Thum S., Magnoli M., Balconi G., Nicolosi G., Tavazzi L., et al. Circulating microRNA-132 levels improve risk prediction for heart failure hospitalization in patients with chronic heart failure. Eur. J. Heart Fail. 2018;20:78–85. doi: 10.1002/ejhf.961. PubMed DOI
Seronde M., Vausort M., Gayat E., Goretti E., Ng L., Squire I., Vodovar N., Sadoune M., Samuel J., Thum T., et al. Circulating microRNAs and outcome in patients with acute heart failure. PLoS ONE. 2015;10:e0142237. doi: 10.1371/journal.pone.0142237. PubMed DOI PMC
Van Boven N., Akkerhuis K., Anroedh S., Rizopoulos D., Pinto Y., Battes L., Hillege H., Caliskan K., Germans T., Manintveld O., et al. Serially measured circulating miR-22-3p is a biomarker for adverse clinical outcome in patients with chronic heart failure: The Bio-SHiFT study: The Bio-SHiFT study. Int. J. Cardiol. 2017;235:124–132. doi: 10.1016/j.ijcard.2017.02.078. PubMed DOI
Cakmak H., Coskunpinar E., Ikitimur B., Barman H., Karadag B., Tiryakioglu N., Kahraman K., Vural V. The prognostic value of circulating microRNAs in heart failure. J. Cardiovasc. Med. 2015;16:431–437. doi: 10.2459/JCM.0000000000000233. PubMed DOI
Duong J., Huyen V., Tible M., Gay A., Guillemain R., Aubert O., Varnous S., Iserin F., Rouvier P., François A., et al. MicroRNAs as non-invasive biomarkers of heart transplant rejection. Eur. Heart J. 2014;35:3194–3202. doi: 10.1093/eurheartj/ehu346. PubMed DOI
Sukma Dewi I., Torngren K., Gidlöf O., Kornhall B., Öhman J. Altered serum miRNA profiles during acute rejection after heart transplantation: Potential for non-invasive allograft surveillance: Potential for non-invasive allograft surveillance. J. Heart Lung Transplant. 2013;32:463–466. doi: 10.1016/j.healun.2012.12.007. PubMed DOI
Peterlin A., Počivavšek K., Petrovič D., Peterlin B. The Role of microRNAs in Heart Failure: A Systematic Review: A Systematic Review. Front. Cardiovasc. Med. 2020;7:161. doi: 10.3389/fcvm.2020.00161. PubMed DOI PMC