Overview and Comparison of PLA Filaments Commercially Available in Europe for FFF Technology
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37514454
PubMed Central
PMC10386515
DOI
10.3390/polym15143065
PII: polym15143065
Knihovny.cz E-zdroje
- Klíčová slova
- 3D printing, FDM, FFF, PLA, additive manufacturing, filament comparison,
- Publikační typ
- časopisecké články MeSH
This study presents a comprehensive techno-economic analysis of PLA materials for fused filament fabrication (FFF) from eight European manufacturers. The comparison involved rigorous experimental assessments of the mechanical properties, dimensional accuracy, and print quality using standardized methods and equipment such as tensile and CT testing. What makes this study unique is the consistent methodology applied, considering factors such as material color, printing temperature, printing orientation, filament diameter, and printer selection, to ensure meaningful and reliable results. Contrary to the common belief that a higher price implies better quality, the study revealed that the second cheapest PLA material achieved the best overall performance within the methodology employed. The study also confirmed certain observations, such as the influence of printing orientation and geometry on dimensional accuracy and mechanical properties, as well as the significant disparities between manufacturer-provided values and actual measured mechanical properties, highlighting the importance of experimental verification. Hence, the findings of this study hold value not only for the scientific community but also for hobbyist printers and beginners in the 3D printing realm seeking guidance in material selection for their projects. Furthermore, the methodology employed in this research can be adapted for evaluating a broad range of other 3D printing materials.
Zobrazit více v PubMed
Khalid M.Y., Arif Z.U., Noroozi R., Zolfagharian A., Bodaghi M. 4D printing of shape memory polymer composites: A review on fabrication techniques, applications, and future perspectives. J. Manuf. Process. 2022;81:759–797. doi: 10.1016/j.jmapro.2022.07.035. DOI
Khalid M.Y., Arif Z.U., Ahmed W., Umer R., Zolfagharian A., Bodaghi M. 4D printing: Technological developments in robotics applications. Sens. Actuators A Phys. 2022;343:113670. doi: 10.1016/j.sna.2022.113670. DOI
Arif Z.U., Khalid M.Y., Ahmed W., Arshad H. A review on four-dimensional (4D) bioprinting in pursuit of advanced tissue engineering applications. Bioprinting. 2022;27:e00203. doi: 10.1016/j.bprint.2022.e00203. DOI
Khalid M.Y., Arif Z.U., Ahmed W. 4D Printing: Technological and Manufacturing Renaissance. Macromol. Mater. Eng. 2022;307:2200003. doi: 10.1002/mame.202200003. DOI
Arif Z.U., Khalid M.Y., Zolfagharian A., Bodaghi M. 4D bioprinting of smart polymers for biomedical applications: Recent progress, challenges, and future perspectives. React. Funct. Polym. 2022;179:105374. doi: 10.1016/j.reactfunctpolym.2022.105374. DOI
Worldwide Most Used 3D Printing Materials, as of July 2018, Statista/3D Hubs. [(accessed on 5 August 2022)]. Available online: https://www.statista.com/statistics/800454/worldwide-most-used-3d-printing-materials/
Arif Z.U., Khalid M.Y., Noroozi R., Hossain M., Shi H.H., Tariq A., Ramakrishna S., Umer R. Additive manufacturing of sustainable biomaterials for biomedical applications. Asian J. Pharm. Sci. 2023;18:100812. doi: 10.1016/j.ajps.2023.100812. PubMed DOI PMC
Arif Z.U., Khalid M.Y., Noroozi R., Sadeghianmaryan A., Jalalvand M., Hossain M. Recent advances in 3D-printed polylactide and polycaprolactone-based biomaterials for tissue engineering applications. Int. J. Biol. Macromol. 2022;218:930–968. doi: 10.1016/j.ijbiomac.2022.07.140. PubMed DOI
Ferreira R.T.L., Amatte I.C., Dutra T.A., Bürger D. Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers. Compos. Part B Eng. 2017;124:88–100. doi: 10.1016/j.compositesb.2017.05.013. DOI
Buj-Corral I., Sanz-Fraile H., Ulldemolins A., Tejo-Otero A., Domínguez-Fernández A., Almendros I., Otero J. Characterization of 3D Printed Metal-PLA Composite Scaffolds for Biomedical Applications. Polymers. 2022;14:2754. doi: 10.3390/polym14132754. PubMed DOI PMC
Tang C., Liu J., Yang Y., Liu Y., Jiang S., Hao W. Effect of process parameters on mechanical properties of 3D printed PLA lattice structures. Compos. Part C Open Access. 2020;3:100076. doi: 10.1016/j.jcomc.2020.100076. DOI
Hsueh M.-H., Lai C.-J., Wang S.-H., Zeng Y.-S., Hsieh C.-H., Pan C.-Y., Huang W.-C. Effect of Printing Parameters on the Thermal and Mechanical Properties of 3D-Printed PLA and PETG, Using Fused Deposition Modeling. Polymers. 2021;13:1758. doi: 10.3390/polym13111758. PubMed DOI PMC
Hsueh M.-H., Lai C.-J., Liu K.-Y., Chung C.-F., Wang S.-H., Pan C.-Y., Huang W.-C., Hsieh C.-H., Zeng Y.-S. Effects of Printing Temperature and Filling Percentage on the Mechanical Behavior of Fused Deposition Molding Technology Components for 3D Printing. Polymers. 2021;13:2910. doi: 10.3390/polym13172910. PubMed DOI PMC
Nugroho A., Ardiansyah R., Rusita L., Larasati I.L. Effect of layer thickness on flexural properties of PLA (PolyLactid Acid) by 3D printing. J. Phys. Conf. Ser. 2018;1130:012017. doi: 10.1088/1742-6596/1130/1/012017. DOI
Pandzic A., Hodzic D., Milovanovic A. Influence of Material Colour on Mechanical Properties of PLA Material in FDM Technology; Proceedings of the 30th International DAAAM Symposium 2019; Zadar, Croatia. 23–26 October 2019; pp. 0555–0561. DOI
Al Rashid A., Koç M. Fused Filament Fabrication Process: A Review of Numerical Simulation Techniques. Polymers. 2021;13:3534. doi: 10.3390/polym13203534. PubMed DOI PMC
Corapi D., Morettini G., Pascoletti G., Zitelli C. Characterization of a Polylactic acid (PLA) produced by Fused Deposition Modeling (FDM) technology. Procedia Struct. Integr. 2019;24:289–295. doi: 10.1016/j.prostr.2020.02.026. DOI
Hsueh M.-H., Lai C.-J., Chung C.-F., Wang S.-H., Huang W.-C., Pan C.-Y., Zeng Y.-S., Hsieh C.-H. Effect of Printing Parameters on the Tensile Properties of 3D-Printed Polylactic Acid (PLA) Based on Fused Deposition Modeling. Polymers. 2021;13:2387. doi: 10.3390/polym13142387. PubMed DOI PMC
Lim T., Cheng H., Song W., Lee J., Kim S., Jung W. Simulated and Experimental Investigation of Mechanical Properties for Improving Isotropic Fracture Strength of 3D-Printed Capsules. Materials. 2021;14:4677. doi: 10.3390/ma14164677. PubMed DOI PMC
Hanon M.M., Marczis R., Zsidai L. Influence of the 3D Printing Process Settings on Tensile Strength of PLA and HT-PLA. Period. Polytech. Mech. Eng. 2020;65:38–46. doi: 10.3311/PPme.13683. DOI
Naveed N. Investigating the Material Properties and Microstructural Changes of Fused Filament Fabricated PLA and Tough-PLA Parts. Polymers. 2021;13:1487. doi: 10.3390/polym13091487. PubMed DOI PMC
Letcher T., Waytashek M. Material Property Testing of 3D-Printed Specimen in PLA on an Entry-Level 3D Printer, Volume 2A: Advanced Manufacturing; Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition; Montreal, QC, Canada. 14–20 November 2014; DOI
Zhang X., Chen L., Mulholland T., Osswald T.A. Effects of raster angle on the mechanical properties of PLA and Al/PLA composite part produced by fused deposition modeling. Polym. Adv. Technol. 2019;30:2122–2135. doi: 10.1002/pat.4645. DOI
Dezaki M.L., Ariffin M.K.A.M. The Effects of Combined Infill Patterns on Mechanical Properties in FDM Process. Polymers. 2020;12:2792. doi: 10.3390/polym12122792. PubMed DOI PMC
Reverte J.M., Caminero M., Chacón J.M., García-Plaza E., Núñez P.J., Becar J.P. Mechanical and Geometric Performance of PLA-Based Polymer Composites Processed by the Fused Filament Fabrication Additive Manufacturing Technique. Materials. 2020;13:1924. doi: 10.3390/ma13081924. PubMed DOI PMC
Yaman U. Shrinkage compensation of holes via shrinkage of interior structure in FDM process. Int. J. Adv. Manuf. Technol. 2018;94:2187–2197. doi: 10.1007/s00170-017-1018-2. DOI
Zhou C., Han T. Research on the Influencing Factors of FDM 3D Printing Accuracy. J. Phys. Conf. Ser. 2021;1838:012027. doi: 10.1088/1742-6596/1838/1/012027. DOI
Plaza E.G., López P.J.N., Torija M.C., Muñoz J.M.C. Analysis of PLA Geometric Properties Processed by FFF Additive Manufacturing: Effects of Process Parameters and Plate-Extruder Precision Motion. Polymers. 2019;11:1581. doi: 10.3390/polym11101581. PubMed DOI PMC
Hodžić D., Pandzic A., Hajro I., Tasić P. Strength Comparison of FDM 3D Printed PLA Made by Different Manufacturers. TEM J. 2020;9:966–970. doi: 10.18421/TEM93-18. DOI
Matos B.D.M., Rocha V., da Silva E.J., Moro F.H., Bottene A.C., Ribeiro C.A., Dias D.D.S., Antonio S.G., Amaral A.C.D., Cruz S.A., et al. Evaluation of commercially available polylactic acid (PLA) filaments for 3D printing applications. J. Therm. Anal. Calorim. 2019;137:555–562. doi: 10.1007/s10973-018-7967-3. DOI
PLA, RepRap. [(accessed on 13 August 2022)]. Available online: https://reprap.org/wiki/PLA.
Prusament PLA Vanilla White 1kg, Prusa Research Eshop. [(accessed on 13 August 2022)]. Available online: https://www.prusa3d.com/cs/produkt/prusament-pla-vanilla-white-1kg/
Devil Design, What We Offer. [(accessed on 13 August 2022)]. Available online: https://devildesign.com/en/oferta/
SUNLU 1KG PLA & PLA Plus 3D Filaments, Fit Most of FDM Printer, 1KG/roll, Sunlu. [(accessed on 13 August 2022)]. Available online: https://www.sunlu.com/collections/pla-plus-pla-3d-filament-1-75mm/products/pla-pla-plus-3d-filaments-1kg-2-2lbs-fit-most-of-fdm-printerpla-pla-plus-3d-filaments-1kg-2-2lbs-fit-most-of-fdm-printer.
PLA WHITE BÍLÁ C TECH, 1,75MM, 1KG, Ctech. [(accessed on 13 August 2022)]. Available online: http://www.c-tech.info/product/3d-tiskove-struny/pla-white-bila-c-tech_-1_75mm_-1kg/1014.
Vlákno Verbatim PLA, Verbatim. [(accessed on 13 August 2022)]. Available online: https://www.verbatim-europe.cz/cz/prod/verbatim-pla-filament-1-75mm-1kg-white-55315/
Tronxy New 1.75mm White PLA Filament, Tronxy. [(accessed on 13 August 2022)]. Available online: https://www.tronxy3d.com/products/tronxy-new-1-75mm-white-pla-filament.
PLA—Bílá, Filament PM. [(accessed on 13 August 2022)]. Available online: https://www.filament-pm.cz/pla-bila-1-75-mm-1-kg/p61.
DP-PLA1.75-01-W Filament, PLA White, 1.75 mm, 1 kg, Gembird. [(accessed on 13 August 2022)]. Available online: https://www.gembird.com/item.aspx?id=8854.
Tóth T., Varga P., Štefanovič B., Bednarčíková L., Schnitzer M., Hudák R., Živčák J. Accuracy Verification of an Anatomical Model Manufactured Using Low-Cost Additive Production. Appl. Sci. 2021;11:594. doi: 10.3390/app11020594. DOI
Krůta V. Bachelor Thesis. Czech Technical University in Prague; Prague, Czechia: 2021. Overview and Comparison of PLA Materials for Plastic 3D Printing.
Syrlybayev D., Perveen A., Talamona D. Fused deposition modelling: Effect of extrusion temperature on the accuracy of print. Mater. Today Proc. 2021;44:832–837. doi: 10.1016/j.matpr.2020.10.716. DOI
Development and Production of a Children's Upper-Limb Cycling Adapter Using 3D Printing