Development and Production of a Children's Upper-Limb Cycling Adapter Using 3D Printing
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
39410302
PubMed Central
PMC11477795
DOI
10.3390/ma17194731
PII: ma17194731
Knihovny.cz E-zdroje
- Klíčová slova
- 3D printed, bicycle adapter, children adapter, prototyping product design, upper-limb adapter, upper-limb prosthesis,
- Publikační typ
- časopisecké články MeSH
The research described in this study focuses on the development of an innovative upper-limb adapter for young children aged 1-3 years who have congenital upper-limb defects. The objective was to create a functional and affordable solution that allows children to engage more safely and actively in physical activities such as cycling. The adapter was designed within the DESIGN+ project at the University of West Bohemia in Pilsen in collaboration with the German company Ottobock. The development included a detailed analysis of hand movements during cycling, modelling using CAD software (NX 1888), prototype manufacturing through 3D printing, and subsequent testing. The result is an adapter that allows 360° rotation around the arm axis, provides natural hand movement while turning, and is made of soft material to enhance safety. Despite initial challenges and necessary prototype adjustments, a functional and reliable design was achieved. This adapter will contribute to improving the quality of life for children with upper-limb disabilities, supporting their coordination, strength, and confidence in daily activities.
Zobrazit více v PubMed
Yiİĝiiter K., Ülger Ö., Şener G., Akdoğan S., Erbahçecî F., Bayar K. Demography and Function of Children with Limb Loss. Prosthet. Orthot. Int. 2005;29:131–138. doi: 10.1080/03093640500199703. PubMed DOI
Resnik L., Borgia M., Acluche F. Timed activity performance in persons with upper limb amputation: A preliminary study. J. Hand Ther. 2017;30:468–476. doi: 10.1016/j.jht.2017.03.008. PubMed DOI
Al-Worikat A.F., Dameh W. Children with limb deficiencies: Demographic characteristics. Prosthet. Orthot. Int. 2008;32:23. doi: 10.1080/03093640701517083. PubMed DOI
Vasluian E., van der Sluis C.K., van Essen A.J., Bergman J.E.H., Dijkstra P.U., Reinders-Messelink H.A., de Walle H.E.K. Birth prevalence for congenital limb defects in the northern Netherlands: A 30-year population-based study. BMC Musculoskelet. Disord. 2013;14:323. doi: 10.1186/1471-2474-14-323. PubMed DOI PMC
Day H.J.B. The ISO/ISPO classification of congenital limb deficiency. Prosthet. Orthot. Int. 1991;15:67–69. doi: 10.3109/03093649109164635. PubMed DOI
Bedard T., Lowry R.B., Sibbald B., Kiefer G.N., Metcalfe A. Congenital limb deficiencies in Alberta—A review of 33 years (1980–2012) from the Alberta Congenital Anomalies Surveillance System (ACASS) Am. J. Med. Genet. Part A. 2015;167:2599–2609. doi: 10.1002/ajmg.a.37240. PubMed DOI
European Platform on Rare Disease Registration. [(accessed on 19 September 2024)]. Available online: https://eu-rd-platform.jrc.ec.europa.eu.
Congenital Anomalies in Australia, How Many Babies Have a Congenital Anomaly? Australian Institute of Health and Welfare. [(accessed on 19 September 2024)];2024 May 28; Available online: https://www.aihw.gov.au/reports/mothers-babies/congenital-anomalies-in-australia/contents/how-many-babies-have-a-congenital-anomaly.
CDC Data and Statistics on Birth Defects Birth Defects. [(accessed on 19 September 2024)];2024 June 3; Available online: https://www.cdc.gov/birth-defects/data-research/facts-stats/index.html.
Alghamdi M.S., Alenazi A.M., Alghadier M., Elnaggar R.K., Alshehri M.M., Alqahtani B.A., Al-Nowaisri K., Ghazal H., Alodaibi F., Alhowimel A.S. Demographic and clinical characteristics of children with limb loss in Saudi Arabia: A retrospective study. Prosthet. Orthot. Int. 2024;48:170. doi: 10.1097/PXR.0000000000000236. PubMed DOI
Hadders-Algra M., Reinders-Messelink H.A., Huizing K., van den Berg R., van der Sluis C.K., Maathuis C.G.B. Use and functioning of the affected limb in children with unilateral congenital below-elbow deficiency during infancy and preschool age: A longitudinal observational multiple case study. Early Hum. Dev. 2013;89:49–54. doi: 10.1016/j.earlhumdev.2012.07.011. PubMed DOI
Anderson B., Schanandore J.V. Using a 3D-Printed Prosthetic to Improve Participation in a Young Gymnast. Pediatr. Phys. Ther. Off. Publ. Sect. Pediatr. Am. Phys. Ther. Assoc. 2021;33:E1–E6. doi: 10.1097/PEP.0000000000000768. PubMed DOI
Montañá I., Page J.C., Molina F., Escribano D. Assesment of a physiotherapy programme, physical activity, sports and pyschomotricity for amputee children using myoelectric prosthesis. Trauma. 2015;26:49–54.
Kanas J.L., Holowka M. Adaptive upper extremity prostheses for recreation and play. J. Pediatr. Rehabil. Med. 2009;2:181–187. doi: 10.3233/PRM-2009-0082. PubMed DOI
Górski F., Sahaj N., Kuczko W., Żukowska M., Hamrol A. Risk assessment of individualized 3D printed prostheses using failure mode and effect analysis. Adv. Sci. Technol. Res. J. 2022;16:189–200. doi: 10.12913/22998624/152735. DOI
Kyberd P.J., Hill W. Survey of upper limb prosthesis users in Sweden, the United Kingdom and Canada. Prosthet. Orthot. Int. 2011;35:234. doi: 10.1177/0309364611409099. PubMed DOI
Mano H., Fujiwara S., Haga N. Adaptive behaviour and motor skills in children with upper limb deficiency. Prosthet. Orthot. Int. 2018;42:236–240. doi: 10.1177/0309364617718411. PubMed DOI
Meurs M., Maathuis C.G.B., Lucas C., Hadders-Algra M., van der Sluis C.K. Prescription of the First Prosthesis and Later use in Children with Congenital Unilateral Upper Limb Deficiency: A Systematic Review. Prosthet. Orthot. Int. 2006;30:165. doi: 10.1080/03093640600731710. PubMed DOI
Huizing K., Reinders-Messelink H., Maathuis C., Hadders-Algra M., van der Sluis C.K. Age at first prosthetic fitting and later functional outcome in children and young adults with unilateral congenital below-elbow deficiency: A cross-sectional study. Prosthet. Orthot. Int. 2010;34:166–174. doi: 10.3109/03093640903584993. PubMed DOI
A Personalized 3D-Printed Hand Prosthesis for Early Intervention in Children with Congenital Below-Elbow Deficiency: User-Centered Design Case Study Web of Science Web of Science. [(accessed on 3 July 2024)]. Available online: https://www.webofscience.com/wos/woscc/full-record/WOS:001005489700001.
Postema K., van der Donk V., van Limbeek J., Rijken R. a. J., Poelma M.J. Prosthesis rejection in children with a unilateral congenital arm defect. Clin. Rehabil. 1999;13:243–249. doi: 10.1177/026921559901300308. PubMed DOI
Zuniga J.M., Carson A.M., Peck J.M., Kalina T., Srivastava R.M., Peck K. The development of a low-cost three-dimensional printed shoulder, arm, and hand prostheses for children. Prosthet. Orthot. Int. 2017;41:205. doi: 10.1177/0309364616640947. PubMed DOI
Mohammadi A., Lavranos J., Tan Y., Choong P., Oetomo D. A Paediatric 3D-Printed Soft Robotic Hand Prosthesis for Children with Upper Limb Loss; Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); Montreal, QC, Canada. 20–24 July 2020; pp. 3310–3313. PubMed
Bhat A.K., Vamsikrishna M., Acharya A.M. Functional Assessment of 3D Printed Prosthesis in Children with Congenital Hand Differences-A Prospective Observational Study. J. Hand Surg. (Asian-Pac. Vol.) 2021;26:535–544. doi: 10.1142/S2424835521500508. PubMed DOI
Satriawan A., Trusaji W., Irianto D., Anshori I., Setianingsih C., Nurtriandari E., Goesasi R.Z. Karla: A Simple and Affordable 3-D Printed Body-Powered Prosthetic Hand with Versatile Gripping Technology. Designs. 2023;7:37. doi: 10.3390/designs7020037. DOI
Mühlbauer P., Löhnert L., Siegle C., Stewart K.W., Pott P.P. Demonstrator of a Low-Cost Hand Prosthesis. IFAC-PapersOnLine. 2020;53:15998–16003. doi: 10.1016/j.ifacol.2020.12.398. DOI
The Complete Guide To Arm & Hand Amputations and Prosthetics|MCOP MCOP Prosthetics. [(accessed on 19 September 2024)]. Available online: https://mcopro.com/blog/resources/arm-hand-prosthetics/
Andrianesis K., Tzes A. Development and Control of a Multifunctional Prosthetic Hand with Shape Memory Alloy Actuators. J. Intell. Robot. Syst. 2015;78:257–289. doi: 10.1007/s10846-014-0061-6. DOI
O’Neill C. An advanced, low cost prosthetic arm; Proceedings of the 2014 IEEE SENSORS; Valencia, Spain. 2–5 November 2014; pp. 494–498.
ten Kate J., Smit G., Breedveld P. 3D-printed upper limb prostheses: A review. Disabil. Rehabil. Assist. Technol. 2017;12:300–314. doi: 10.1080/17483107.2016.1253117. PubMed DOI
Campbell T., Williams C., Ivanova O., Garrett B. Could 3D Printing Change the World?: Technologies, Potential, and Implications of Additive Manufacturing. Atlantic Council; Washington, DC, USA: 2011. [(accessed on 3 July 2024)]. Available online: https://www.jstor.org/stable/resrep03564.
Şahinol M. 3D printed children’s prostheses as enabling technology? The experience of children with upper limb body differences. J. Enabling Technol. 2022;16:204–218. doi: 10.1108/JET-02-2022-0017. DOI
Xu G., Gao L., Tao K., Wan S., Lin Y., Xiong A., Kang B., Zeng H. Three-dimensional-printed upper limb prosthesis for a child with traumatic amputation of right wrist: A case report. Medicine. 2017;96:e9426. doi: 10.1097/MD.0000000000009426. PubMed DOI PMC
Morimoto S.Y.U., Cabral A.K.P.d.S., Sanguinetti D.C.d.M., Freitas E.d.S.R.d., Merino G.S.A.D., Costa J.A.P.d., Coelho W.K., Amaral D.S. Upper limbs orthesis and prostheses printed in 3D: An integrative review. Cad. de Ter. Ocup. da UFSCar. 2021;29:e2078. doi: 10.1590/2526-8910.ctoAO2078. DOI
3D Printed Upper Limb Prosthetics-Web of Science Core Collection. [(accessed on 4 July 2024)]. Available online: https://www.webofscience.com/wos/woscc/full-record/WOS:000445305800005.
Gibson I., Shi D. Material properties and fabrication parameters in selective laser sintering process. Rapid Prototyp. J. 1997;3:129–136. doi: 10.1108/13552549710191836. DOI
Mendes R., Fanzio P., Campo-Deaño L., Galindo-Rosales F.J. Microfluidics as a Platform for the Analysis of 3D Printing Problems. Materials. 2019;12:2839. doi: 10.3390/ma12172839. PubMed DOI PMC
Kantaros A., Piromalis D., Tsaramirsis G., Papageorgas P., Tamimi H. 3D Printing and Implementation of Digital Twins: Current Trends and Limitations. Appl. Syst. Innov. 2022;5:7. doi: 10.3390/asi5010007. DOI
Hsiang Loh G., Pei E., Gonzalez-Gutierrez J., Monzón M. An Overview of Material Extrusion Troubleshooting. Appl. Sci. 2020;10:4776. doi: 10.3390/app10144776. DOI
Gong H., Huang J., Wang J., Zhao P., Liang C., Guo W., Cao R., Bai D. Research on the printing mechanism of electrohydrodynamic satellite-free droplets in pulsed voltage. J. Manuf. Process. 2023;101:300–310. doi: 10.1016/j.jmapro.2023.05.062. DOI
Zhang Y., Hu G., Liu Y., Wang J., Yang G., Li D. Suppression and Utilization of Satellite Droplets for Inkjet Printing: A Review. Processes. 2022;10:932. doi: 10.3390/pr10050932. DOI
Ccorimanya L., Hassan M., Watanabe R., Ueno T., Hada Y., Suzuki K. A Personalized 3D-Printed Hand Prosthesis for Early Intervention in Children with Congenital Below-Elbow Deficiency: User-Centered Design Case Study. IEEE J. Mag. IEEE Xplore. 2023;11:50235–50251. doi: 10.1109/ACCESS.2023.3277494. DOI
da Silva L.A., Medola F.O., Rodrigues O.V., Rodrigues A.C.T., Sandnes F.E. Interdisciplinary-Based Development of User-Friendly Customized 3D Printed Upper Limb Prosthesis. In: Ahram T.Z., Falcão C., editors. Proceedings of the Advances in Usability, User Experience and Assistive Technology; Orlando, FL, USA. 21–25 July 2018; Cham, Germany: Springer International Publishing; 2019. pp. 899–908.
Zuniga J.M., Young K.J., Peck J.L., Srivastava R., Pierce J.E., Dudley D.R., Salazar D.A., Bergmann J. Remote fitting procedures for upper limb 3d printed prostheses. Expert Rev. Med. Devices. 2019;16:257–266. doi: 10.1080/17434440.2019.1572506. PubMed DOI
Lunguţ E.F., Matei L., Roşu M.M., Iliescu M., Radu (Frenţ) C. Biomechanical Hand Prosthesis Design. Machines. 2023;11:964. doi: 10.3390/machines11100964. DOI
Baker S.A., Calhoun V.D. A custom bicycle handlebar adaptation for children with below elbow amputations. J. Hand Ther. 2014;27:258–260. doi: 10.1016/j.jht.2014.02.001. PubMed DOI
THINGIVERSE.COM Limb Difference Bike Adaptation—LimbBo Foundation Bike Cup V2 by LimbBoFoundation. Thingivers. [(accessed on 8 July 2024)]. Available online: https://www.thingiverse.com/thing:3710893.
Strider Launches Customized Adaptive Bikes for Young Kids. Bicycling. 31. Srpen 2022. [(accessed on 8 July 2024)]. Available online: https://www.bicycling.com/news/a41032234/strider-adaptive-kids-bikes/
Mission Boy Riding Bike for First Time Thanks to Special-Prosthetic Device from War Amps. Mission City Record. 23. červenec 2020. [(accessed on 8 July 2024)]. Available online: https://www.missioncityrecord.com/news/mission-boy-riding-bike-for-first-time-thanks-to-special-prosthetic-device-from-war-amps-2148030.
DESIGN+ [(accessed on 2 July 2024)]. Available online: https://www.kks.zcu.cz/cs/Education/Desing_plus.html.
About Us. [(accessed on 2 July 2024)]. Available online: https://www.ottobock.com/en-au/about-us.
Mallikarjuna B., Bhargav P., Hiremath S., Jayachristiyan K.G., Jayanth N. A review on the melt extrusion-based fused deposition modeling (FDM): Background, materials, process parameters and military applications. Int. J. Interact. Des. Manuf. (IJIDeM) 2023 doi: 10.1007/s12008-023-01354-0. DOI
Tosto C., Saitta L., Pergolizzi E., Patti A., Celano G., Cicala G. Fused Deposition Modelling (FDM): New Standards for Mechanical Characterization. Macromol. Symp. 2021;395:2000253. doi: 10.1002/masy.202000253. DOI
Acierno D., Patti A. Fused Deposition Modelling (FDM) of Thermoplastic-Based Filaments: Process and Rheological Properties—An Overview. Materials. 2023;16:7664. doi: 10.3390/ma16247664. PubMed DOI PMC
Aida H.J., Nadlene R., Mastura M.T., Yusriah L., Sivakumar D., Ilyas R.A. Natural fibre filament for Fused Deposition Modelling (FDM): A review. Int. J. Sustain. Eng. 2021;14:1988–2008. doi: 10.1080/19397038.2021.1962426. DOI
Andronov V., Beránek L., Krůta V., Hlavůňková L., Jeníková Z. Overview and Comparison of PLA Filaments Commercially Available in Europe for FFF Technology. Polymers. 2023;15:3065. doi: 10.3390/polym15143065. PubMed DOI PMC
Hidalgo-Carvajal D., Muñoz Á.H., Garrido-González J.J., Carrasco-Gallego R., Alcázar Montero V. Recycled PLA for 3D Printing: A Comparison of Recycled PLA Filaments from Waste of Different Origins after Repeated Cycles of Extrusion. Polymers. 2023;15:3651. doi: 10.3390/polym15173651. PubMed DOI PMC
Tammaro L., Martone A., Palmieri B., Borriello C., Portofino S., Iovane P., Cilento F., Giordano M., Galvagno S. Reinforcing Efficiency of Recycled Carbon Fiber PLA Filament Suitable for Additive Manufacturing. Polymers. 2024;16:2100. doi: 10.3390/polym16152100. PubMed DOI PMC
Hodžić D., Pandžić A., Hajro I., Tasić P. Strength Comparison of FDM 3D Printed PLA Made by Different Manufacturers. TEM J. 2020;9:966–970. doi: 10.18421/TEM93-18. DOI
Popa A., Faur N., Hluscu M., Belin C. Evaluation of the Mechanical Properties of the Samples Made by FDM 3D Printing. Mater. Plast. 2019;56:500–504. doi: 10.37358/MP.19.3.5217. DOI
Maurya S., Malik B., Sharma P., Singh A., Chalisgaonkar R. Investigation of different parameters of cube printed using PLA by FDM 3D printer. Mater. Today Proc. 2022;64:1217–1222. doi: 10.1016/j.matpr.2022.03.700. DOI
Tagliaferri V., Trovalusci F., Guarino S., Venettacci S. Environmental and Economic Analysis of FDM, SLS and MJF Additive Manufacturing Technologies. Materials. 2019;12:4161. doi: 10.3390/ma12244161. PubMed DOI PMC
Lee J., Huang A. Fatigue analysis of FDM materials. Rapid Prototyp. J. 2013;19:291–299. doi: 10.1108/13552541311323290. DOI
Ráž K., Chval Z., Kemka V. Parametric Production of Prostheses Using the Additive Polymer Manufacturing Technology Multi Jet Fusion. Materials. 2024;17:2347. doi: 10.3390/ma17102347. PubMed DOI PMC
Mazzanti V., Malagutti L., Mollica F. FDM 3D Printing of Polymers Containing Natural Fillers: A Review of their Mechanical Properties. Polymers. 2019;11:1094. doi: 10.3390/polym11071094. PubMed DOI PMC
Calignano F., Giuffrida F., Galati M. Effect of the build orientation on the mechanical performance of polymeric parts produced by multi jet fusion and selective laser sintering. J. Manuf. Process. 2021;65:271–282. doi: 10.1016/j.jmapro.2021.03.018. DOI
Geng Z., Bidanda B. Geometric precision analysis for Additive Manufacturing processes: A comparative study. Precis. Eng. 2021;69:68–76. doi: 10.1016/j.precisioneng.2020.12.022. DOI
Olmos D., González-Benito J. Polymeric Materials with Antibacterial Activity: A Review. Polymers. 2021;13:613. doi: 10.3390/polym13040613. PubMed DOI PMC
Ráž K., Chval Z., Thomann S. Minimizing Deformations during HP MJF 3D Printing. Materials. 2023;16:7389. doi: 10.3390/ma16237389. PubMed DOI PMC
Bazan A., Turek P., Zakręcki A. Influence of Antibacterial Coating and Mechanical and Chemical Treatment on the Surface Properties of PA12 Parts Manufactured with SLS and MJF Techniques in the Context of Medical Applications. Materials. 2023;16:2405. doi: 10.3390/ma16062405. PubMed DOI PMC
Osswald P.V., Obst P., Mazzei Capote G.A., Friedrich M., Rietzel D., Witt G. Failure criterion for PA 12 multi-jet fusion additive manufactured parts. Addit. Manuf. 2021;37:101668. doi: 10.1016/j.addma.2020.101668. DOI
Magazzù A., Marcuello C. Investigation of Soft Matter Nanomechanics by Atomic Force Microscopy and Optical Tweezers: A Comprehensive Review. Nanomaterials. 2023;13:963. doi: 10.3390/nano13060963. PubMed DOI PMC
Tan Q., Wu C., Li L., Shao W., Luo M. Nanomaterial-Based Prosthetic Limbs for Disability Mobility Assistance: A Review of Recent Advances. J. Nanomater. 2022;2022:3425297. doi: 10.1155/2022/3425297. DOI
Wang W., Liao S., Zhu Y., Liu M., Zhao Q., Fu Y. Recent Applications of Nanomaterials in Prosthodontics. J. Nanomater. 2015;2015:408643. doi: 10.1155/2015/408643. DOI