Development and Production of a Children's Upper-Limb Cycling Adapter Using 3D Printing

. 2024 Sep 26 ; 17 (19) : . [epub] 20240926

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39410302

The research described in this study focuses on the development of an innovative upper-limb adapter for young children aged 1-3 years who have congenital upper-limb defects. The objective was to create a functional and affordable solution that allows children to engage more safely and actively in physical activities such as cycling. The adapter was designed within the DESIGN+ project at the University of West Bohemia in Pilsen in collaboration with the German company Ottobock. The development included a detailed analysis of hand movements during cycling, modelling using CAD software (NX 1888), prototype manufacturing through 3D printing, and subsequent testing. The result is an adapter that allows 360° rotation around the arm axis, provides natural hand movement while turning, and is made of soft material to enhance safety. Despite initial challenges and necessary prototype adjustments, a functional and reliable design was achieved. This adapter will contribute to improving the quality of life for children with upper-limb disabilities, supporting their coordination, strength, and confidence in daily activities.

Zobrazit více v PubMed

Yiİĝiiter K., Ülger Ö., Şener G., Akdoğan S., Erbahçecî F., Bayar K. Demography and Function of Children with Limb Loss. Prosthet. Orthot. Int. 2005;29:131–138. doi: 10.1080/03093640500199703. PubMed DOI

Resnik L., Borgia M., Acluche F. Timed activity performance in persons with upper limb amputation: A preliminary study. J. Hand Ther. 2017;30:468–476. doi: 10.1016/j.jht.2017.03.008. PubMed DOI

Al-Worikat A.F., Dameh W. Children with limb deficiencies: Demographic characteristics. Prosthet. Orthot. Int. 2008;32:23. doi: 10.1080/03093640701517083. PubMed DOI

Vasluian E., van der Sluis C.K., van Essen A.J., Bergman J.E.H., Dijkstra P.U., Reinders-Messelink H.A., de Walle H.E.K. Birth prevalence for congenital limb defects in the northern Netherlands: A 30-year population-based study. BMC Musculoskelet. Disord. 2013;14:323. doi: 10.1186/1471-2474-14-323. PubMed DOI PMC

Day H.J.B. The ISO/ISPO classification of congenital limb deficiency. Prosthet. Orthot. Int. 1991;15:67–69. doi: 10.3109/03093649109164635. PubMed DOI

Bedard T., Lowry R.B., Sibbald B., Kiefer G.N., Metcalfe A. Congenital limb deficiencies in Alberta—A review of 33 years (1980–2012) from the Alberta Congenital Anomalies Surveillance System (ACASS) Am. J. Med. Genet. Part A. 2015;167:2599–2609. doi: 10.1002/ajmg.a.37240. PubMed DOI

European Platform on Rare Disease Registration. [(accessed on 19 September 2024)]. Available online: https://eu-rd-platform.jrc.ec.europa.eu.

Congenital Anomalies in Australia, How Many Babies Have a Congenital Anomaly? Australian Institute of Health and Welfare. [(accessed on 19 September 2024)];2024 May 28; Available online: https://www.aihw.gov.au/reports/mothers-babies/congenital-anomalies-in-australia/contents/how-many-babies-have-a-congenital-anomaly.

CDC Data and Statistics on Birth Defects Birth Defects. [(accessed on 19 September 2024)];2024 June 3; Available online: https://www.cdc.gov/birth-defects/data-research/facts-stats/index.html.

Alghamdi M.S., Alenazi A.M., Alghadier M., Elnaggar R.K., Alshehri M.M., Alqahtani B.A., Al-Nowaisri K., Ghazal H., Alodaibi F., Alhowimel A.S. Demographic and clinical characteristics of children with limb loss in Saudi Arabia: A retrospective study. Prosthet. Orthot. Int. 2024;48:170. doi: 10.1097/PXR.0000000000000236. PubMed DOI

Hadders-Algra M., Reinders-Messelink H.A., Huizing K., van den Berg R., van der Sluis C.K., Maathuis C.G.B. Use and functioning of the affected limb in children with unilateral congenital below-elbow deficiency during infancy and preschool age: A longitudinal observational multiple case study. Early Hum. Dev. 2013;89:49–54. doi: 10.1016/j.earlhumdev.2012.07.011. PubMed DOI

Anderson B., Schanandore J.V. Using a 3D-Printed Prosthetic to Improve Participation in a Young Gymnast. Pediatr. Phys. Ther. Off. Publ. Sect. Pediatr. Am. Phys. Ther. Assoc. 2021;33:E1–E6. doi: 10.1097/PEP.0000000000000768. PubMed DOI

Montañá I., Page J.C., Molina F., Escribano D. Assesment of a physiotherapy programme, physical activity, sports and pyschomotricity for amputee children using myoelectric prosthesis. Trauma. 2015;26:49–54.

Kanas J.L., Holowka M. Adaptive upper extremity prostheses for recreation and play. J. Pediatr. Rehabil. Med. 2009;2:181–187. doi: 10.3233/PRM-2009-0082. PubMed DOI

Górski F., Sahaj N., Kuczko W., Żukowska M., Hamrol A. Risk assessment of individualized 3D printed prostheses using failure mode and effect analysis. Adv. Sci. Technol. Res. J. 2022;16:189–200. doi: 10.12913/22998624/152735. DOI

Kyberd P.J., Hill W. Survey of upper limb prosthesis users in Sweden, the United Kingdom and Canada. Prosthet. Orthot. Int. 2011;35:234. doi: 10.1177/0309364611409099. PubMed DOI

Mano H., Fujiwara S., Haga N. Adaptive behaviour and motor skills in children with upper limb deficiency. Prosthet. Orthot. Int. 2018;42:236–240. doi: 10.1177/0309364617718411. PubMed DOI

Meurs M., Maathuis C.G.B., Lucas C., Hadders-Algra M., van der Sluis C.K. Prescription of the First Prosthesis and Later use in Children with Congenital Unilateral Upper Limb Deficiency: A Systematic Review. Prosthet. Orthot. Int. 2006;30:165. doi: 10.1080/03093640600731710. PubMed DOI

Huizing K., Reinders-Messelink H., Maathuis C., Hadders-Algra M., van der Sluis C.K. Age at first prosthetic fitting and later functional outcome in children and young adults with unilateral congenital below-elbow deficiency: A cross-sectional study. Prosthet. Orthot. Int. 2010;34:166–174. doi: 10.3109/03093640903584993. PubMed DOI

A Personalized 3D-Printed Hand Prosthesis for Early Intervention in Children with Congenital Below-Elbow Deficiency: User-Centered Design Case Study Web of Science Web of Science. [(accessed on 3 July 2024)]. Available online: https://www.webofscience.com/wos/woscc/full-record/WOS:001005489700001.

Postema K., van der Donk V., van Limbeek J., Rijken R. a. J., Poelma M.J. Prosthesis rejection in children with a unilateral congenital arm defect. Clin. Rehabil. 1999;13:243–249. doi: 10.1177/026921559901300308. PubMed DOI

Zuniga J.M., Carson A.M., Peck J.M., Kalina T., Srivastava R.M., Peck K. The development of a low-cost three-dimensional printed shoulder, arm, and hand prostheses for children. Prosthet. Orthot. Int. 2017;41:205. doi: 10.1177/0309364616640947. PubMed DOI

Mohammadi A., Lavranos J., Tan Y., Choong P., Oetomo D. A Paediatric 3D-Printed Soft Robotic Hand Prosthesis for Children with Upper Limb Loss; Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); Montreal, QC, Canada. 20–24 July 2020; pp. 3310–3313. PubMed

Bhat A.K., Vamsikrishna M., Acharya A.M. Functional Assessment of 3D Printed Prosthesis in Children with Congenital Hand Differences-A Prospective Observational Study. J. Hand Surg. (Asian-Pac. Vol.) 2021;26:535–544. doi: 10.1142/S2424835521500508. PubMed DOI

Satriawan A., Trusaji W., Irianto D., Anshori I., Setianingsih C., Nurtriandari E., Goesasi R.Z. Karla: A Simple and Affordable 3-D Printed Body-Powered Prosthetic Hand with Versatile Gripping Technology. Designs. 2023;7:37. doi: 10.3390/designs7020037. DOI

Mühlbauer P., Löhnert L., Siegle C., Stewart K.W., Pott P.P. Demonstrator of a Low-Cost Hand Prosthesis. IFAC-PapersOnLine. 2020;53:15998–16003. doi: 10.1016/j.ifacol.2020.12.398. DOI

The Complete Guide To Arm & Hand Amputations and Prosthetics|MCOP MCOP Prosthetics. [(accessed on 19 September 2024)]. Available online: https://mcopro.com/blog/resources/arm-hand-prosthetics/

Andrianesis K., Tzes A. Development and Control of a Multifunctional Prosthetic Hand with Shape Memory Alloy Actuators. J. Intell. Robot. Syst. 2015;78:257–289. doi: 10.1007/s10846-014-0061-6. DOI

O’Neill C. An advanced, low cost prosthetic arm; Proceedings of the 2014 IEEE SENSORS; Valencia, Spain. 2–5 November 2014; pp. 494–498.

ten Kate J., Smit G., Breedveld P. 3D-printed upper limb prostheses: A review. Disabil. Rehabil. Assist. Technol. 2017;12:300–314. doi: 10.1080/17483107.2016.1253117. PubMed DOI

Campbell T., Williams C., Ivanova O., Garrett B. Could 3D Printing Change the World?: Technologies, Potential, and Implications of Additive Manufacturing. Atlantic Council; Washington, DC, USA: 2011. [(accessed on 3 July 2024)]. Available online: https://www.jstor.org/stable/resrep03564.

Şahinol M. 3D printed children’s prostheses as enabling technology? The experience of children with upper limb body differences. J. Enabling Technol. 2022;16:204–218. doi: 10.1108/JET-02-2022-0017. DOI

Xu G., Gao L., Tao K., Wan S., Lin Y., Xiong A., Kang B., Zeng H. Three-dimensional-printed upper limb prosthesis for a child with traumatic amputation of right wrist: A case report. Medicine. 2017;96:e9426. doi: 10.1097/MD.0000000000009426. PubMed DOI PMC

Morimoto S.Y.U., Cabral A.K.P.d.S., Sanguinetti D.C.d.M., Freitas E.d.S.R.d., Merino G.S.A.D., Costa J.A.P.d., Coelho W.K., Amaral D.S. Upper limbs orthesis and prostheses printed in 3D: An integrative review. Cad. de Ter. Ocup. da UFSCar. 2021;29:e2078. doi: 10.1590/2526-8910.ctoAO2078. DOI

3D Printed Upper Limb Prosthetics-Web of Science Core Collection. [(accessed on 4 July 2024)]. Available online: https://www.webofscience.com/wos/woscc/full-record/WOS:000445305800005.

Gibson I., Shi D. Material properties and fabrication parameters in selective laser sintering process. Rapid Prototyp. J. 1997;3:129–136. doi: 10.1108/13552549710191836. DOI

Mendes R., Fanzio P., Campo-Deaño L., Galindo-Rosales F.J. Microfluidics as a Platform for the Analysis of 3D Printing Problems. Materials. 2019;12:2839. doi: 10.3390/ma12172839. PubMed DOI PMC

Kantaros A., Piromalis D., Tsaramirsis G., Papageorgas P., Tamimi H. 3D Printing and Implementation of Digital Twins: Current Trends and Limitations. Appl. Syst. Innov. 2022;5:7. doi: 10.3390/asi5010007. DOI

Hsiang Loh G., Pei E., Gonzalez-Gutierrez J., Monzón M. An Overview of Material Extrusion Troubleshooting. Appl. Sci. 2020;10:4776. doi: 10.3390/app10144776. DOI

Gong H., Huang J., Wang J., Zhao P., Liang C., Guo W., Cao R., Bai D. Research on the printing mechanism of electrohydrodynamic satellite-free droplets in pulsed voltage. J. Manuf. Process. 2023;101:300–310. doi: 10.1016/j.jmapro.2023.05.062. DOI

Zhang Y., Hu G., Liu Y., Wang J., Yang G., Li D. Suppression and Utilization of Satellite Droplets for Inkjet Printing: A Review. Processes. 2022;10:932. doi: 10.3390/pr10050932. DOI

Ccorimanya L., Hassan M., Watanabe R., Ueno T., Hada Y., Suzuki K. A Personalized 3D-Printed Hand Prosthesis for Early Intervention in Children with Congenital Below-Elbow Deficiency: User-Centered Design Case Study. IEEE J. Mag. IEEE Xplore. 2023;11:50235–50251. doi: 10.1109/ACCESS.2023.3277494. DOI

da Silva L.A., Medola F.O., Rodrigues O.V., Rodrigues A.C.T., Sandnes F.E. Interdisciplinary-Based Development of User-Friendly Customized 3D Printed Upper Limb Prosthesis. In: Ahram T.Z., Falcão C., editors. Proceedings of the Advances in Usability, User Experience and Assistive Technology; Orlando, FL, USA. 21–25 July 2018; Cham, Germany: Springer International Publishing; 2019. pp. 899–908.

Zuniga J.M., Young K.J., Peck J.L., Srivastava R., Pierce J.E., Dudley D.R., Salazar D.A., Bergmann J. Remote fitting procedures for upper limb 3d printed prostheses. Expert Rev. Med. Devices. 2019;16:257–266. doi: 10.1080/17434440.2019.1572506. PubMed DOI

Lunguţ E.F., Matei L., Roşu M.M., Iliescu M., Radu (Frenţ) C. Biomechanical Hand Prosthesis Design. Machines. 2023;11:964. doi: 10.3390/machines11100964. DOI

Baker S.A., Calhoun V.D. A custom bicycle handlebar adaptation for children with below elbow amputations. J. Hand Ther. 2014;27:258–260. doi: 10.1016/j.jht.2014.02.001. PubMed DOI

THINGIVERSE.COM Limb Difference Bike Adaptation—LimbBo Foundation Bike Cup V2 by LimbBoFoundation. Thingivers. [(accessed on 8 July 2024)]. Available online: https://www.thingiverse.com/thing:3710893.

Strider Launches Customized Adaptive Bikes for Young Kids. Bicycling. 31. Srpen 2022. [(accessed on 8 July 2024)]. Available online: https://www.bicycling.com/news/a41032234/strider-adaptive-kids-bikes/

Mission Boy Riding Bike for First Time Thanks to Special-Prosthetic Device from War Amps. Mission City Record. 23. červenec 2020. [(accessed on 8 July 2024)]. Available online: https://www.missioncityrecord.com/news/mission-boy-riding-bike-for-first-time-thanks-to-special-prosthetic-device-from-war-amps-2148030.

DESIGN+ [(accessed on 2 July 2024)]. Available online: https://www.kks.zcu.cz/cs/Education/Desing_plus.html.

About Us. [(accessed on 2 July 2024)]. Available online: https://www.ottobock.com/en-au/about-us.

Mallikarjuna B., Bhargav P., Hiremath S., Jayachristiyan K.G., Jayanth N. A review on the melt extrusion-based fused deposition modeling (FDM): Background, materials, process parameters and military applications. Int. J. Interact. Des. Manuf. (IJIDeM) 2023 doi: 10.1007/s12008-023-01354-0. DOI

Tosto C., Saitta L., Pergolizzi E., Patti A., Celano G., Cicala G. Fused Deposition Modelling (FDM): New Standards for Mechanical Characterization. Macromol. Symp. 2021;395:2000253. doi: 10.1002/masy.202000253. DOI

Acierno D., Patti A. Fused Deposition Modelling (FDM) of Thermoplastic-Based Filaments: Process and Rheological Properties—An Overview. Materials. 2023;16:7664. doi: 10.3390/ma16247664. PubMed DOI PMC

Aida H.J., Nadlene R., Mastura M.T., Yusriah L., Sivakumar D., Ilyas R.A. Natural fibre filament for Fused Deposition Modelling (FDM): A review. Int. J. Sustain. Eng. 2021;14:1988–2008. doi: 10.1080/19397038.2021.1962426. DOI

Andronov V., Beránek L., Krůta V., Hlavůňková L., Jeníková Z. Overview and Comparison of PLA Filaments Commercially Available in Europe for FFF Technology. Polymers. 2023;15:3065. doi: 10.3390/polym15143065. PubMed DOI PMC

Hidalgo-Carvajal D., Muñoz Á.H., Garrido-González J.J., Carrasco-Gallego R., Alcázar Montero V. Recycled PLA for 3D Printing: A Comparison of Recycled PLA Filaments from Waste of Different Origins after Repeated Cycles of Extrusion. Polymers. 2023;15:3651. doi: 10.3390/polym15173651. PubMed DOI PMC

Tammaro L., Martone A., Palmieri B., Borriello C., Portofino S., Iovane P., Cilento F., Giordano M., Galvagno S. Reinforcing Efficiency of Recycled Carbon Fiber PLA Filament Suitable for Additive Manufacturing. Polymers. 2024;16:2100. doi: 10.3390/polym16152100. PubMed DOI PMC

Hodžić D., Pandžić A., Hajro I., Tasić P. Strength Comparison of FDM 3D Printed PLA Made by Different Manufacturers. TEM J. 2020;9:966–970. doi: 10.18421/TEM93-18. DOI

Popa A., Faur N., Hluscu M., Belin C. Evaluation of the Mechanical Properties of the Samples Made by FDM 3D Printing. Mater. Plast. 2019;56:500–504. doi: 10.37358/MP.19.3.5217. DOI

Maurya S., Malik B., Sharma P., Singh A., Chalisgaonkar R. Investigation of different parameters of cube printed using PLA by FDM 3D printer. Mater. Today Proc. 2022;64:1217–1222. doi: 10.1016/j.matpr.2022.03.700. DOI

Tagliaferri V., Trovalusci F., Guarino S., Venettacci S. Environmental and Economic Analysis of FDM, SLS and MJF Additive Manufacturing Technologies. Materials. 2019;12:4161. doi: 10.3390/ma12244161. PubMed DOI PMC

Lee J., Huang A. Fatigue analysis of FDM materials. Rapid Prototyp. J. 2013;19:291–299. doi: 10.1108/13552541311323290. DOI

Ráž K., Chval Z., Kemka V. Parametric Production of Prostheses Using the Additive Polymer Manufacturing Technology Multi Jet Fusion. Materials. 2024;17:2347. doi: 10.3390/ma17102347. PubMed DOI PMC

Mazzanti V., Malagutti L., Mollica F. FDM 3D Printing of Polymers Containing Natural Fillers: A Review of their Mechanical Properties. Polymers. 2019;11:1094. doi: 10.3390/polym11071094. PubMed DOI PMC

Calignano F., Giuffrida F., Galati M. Effect of the build orientation on the mechanical performance of polymeric parts produced by multi jet fusion and selective laser sintering. J. Manuf. Process. 2021;65:271–282. doi: 10.1016/j.jmapro.2021.03.018. DOI

Geng Z., Bidanda B. Geometric precision analysis for Additive Manufacturing processes: A comparative study. Precis. Eng. 2021;69:68–76. doi: 10.1016/j.precisioneng.2020.12.022. DOI

Olmos D., González-Benito J. Polymeric Materials with Antibacterial Activity: A Review. Polymers. 2021;13:613. doi: 10.3390/polym13040613. PubMed DOI PMC

Ráž K., Chval Z., Thomann S. Minimizing Deformations during HP MJF 3D Printing. Materials. 2023;16:7389. doi: 10.3390/ma16237389. PubMed DOI PMC

Bazan A., Turek P., Zakręcki A. Influence of Antibacterial Coating and Mechanical and Chemical Treatment on the Surface Properties of PA12 Parts Manufactured with SLS and MJF Techniques in the Context of Medical Applications. Materials. 2023;16:2405. doi: 10.3390/ma16062405. PubMed DOI PMC

Osswald P.V., Obst P., Mazzei Capote G.A., Friedrich M., Rietzel D., Witt G. Failure criterion for PA 12 multi-jet fusion additive manufactured parts. Addit. Manuf. 2021;37:101668. doi: 10.1016/j.addma.2020.101668. DOI

Magazzù A., Marcuello C. Investigation of Soft Matter Nanomechanics by Atomic Force Microscopy and Optical Tweezers: A Comprehensive Review. Nanomaterials. 2023;13:963. doi: 10.3390/nano13060963. PubMed DOI PMC

Tan Q., Wu C., Li L., Shao W., Luo M. Nanomaterial-Based Prosthetic Limbs for Disability Mobility Assistance: A Review of Recent Advances. J. Nanomater. 2022;2022:3425297. doi: 10.1155/2022/3425297. DOI

Wang W., Liao S., Zhu Y., Liu M., Zhao Q., Fu Y. Recent Applications of Nanomaterials in Prosthodontics. J. Nanomater. 2015;2015:408643. doi: 10.1155/2015/408643. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...