Parametric Production of Prostheses Using the Additive Polymer Manufacturing Technology Multi Jet Fusion

. 2024 May 15 ; 17 (10) : . [epub] 20240515

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38793414

This study aims to develop a procedure for the production of 3D-printed forearm prostheses (especially hard outer sockets). The production procedure is designed in the form of a parametric workflow (CAD model), which significantly speeds up the designing process of the prosthesis. This procedure is not fixedly dependent on the software (SW) equipment and is fully transferable into another SW environment. The use of these prostheses will significantly increase the comfort of their patients' lives. It is possible to produce prostheses faster and in larger amounts and variants by the usage of additive technology. The input for the own production of the prosthesis is a model of the internal soft socket of the patient. This soft socket (soft bed) is made by a qualified prosthetist. A 3D-scanned CAD model is obtained afterward using the scanning method by an automatic laser projector. An editable, parametric external socket (modifiable in any CAD format) is generated from the obtained 3D scan using a special algorithmic model. This socket, after the necessary individual modifications, is transferred to 3D printing technology and produced using powder technology Multi Jet Fusion (HP MJF). The result of the designed and tested procedure is a quickly editable 3D-printed outer socket (main part of prosthesis), which is able to fully replace the current long-fiber composite solution. Production of current solutions is relatively time-consuming, and only one piece is produced in a given time. The newly designed technology eliminates this. This study summarized the possibilities of speeding up the production of forearm prostheses (but not only these) by creating a parametric CAD model that is applicable to different patients.

Zobrazit více v PubMed

Chua C.K., Wong C.H., Yeong W.Y. Standards, Quality Control and Measurement Sciences in 3D Printing and Additive Manufacturing. 1st ed. Academic Press; Cambridge, MA, USA: 2017. Benchmarking for Additive Manufacturing; pp. 181–212.

Todaro C., Cerri M., Rodriguez y Baena R., Lupi S.M. Full-Arch Guided Restoration and Bone Regeneration: A Complete Digital Workflow Case Report. Healthcare. 2023;11:1301. doi: 10.3390/healthcare11091301. PubMed DOI PMC

Shahrubudin N., Lee T.C., Ramlan R. An Overview on 3D Printing Technology: Technological, Materials, and Applications. Procedia Manuf. 2019;35:1286–1296. doi: 10.1016/j.promfg.2019.06.089. DOI

Nazari V., Zheng Y.-P. Controlling Upper Limb Prostheses Using Sonomyography (SMG): A Review. Sensors. 2023;23:1885. doi: 10.3390/s23041885. PubMed DOI PMC

Farkas A.Z., Galatanu S.-V., Nagib R. The Influence of Printing Layer Thickness and Orientation on the Mechanical Properties of DLP 3D-Printed Dental Resin. Polymers. 2023;15:1113. doi: 10.3390/polym15051113. PubMed DOI PMC

Liu X., Tey W.S., Choo J.Y.C., Chen J., Tan P., Cai C., Ong A., Zhao L., Zhou K. Enhancing the mechanical strength of multi jet fusion–printed polyamide 12 and its glass fiber-reinforced composite via high-temperature annealing. Addit. Manuf. 2021;46:102205. doi: 10.1016/j.addma.2021.102205. DOI

Li Y., Long S., Liu Q., Lv H., Liu M. Resistive Switching Performance Improvement via Modulating Nanoscale Conductive Filament, Involving the Application of Two-Dimensional Layered Materials. Small. 2017;13:1604306. doi: 10.1002/smll.201604306. PubMed DOI

Cai C., Tey W.S., Chen J., Zhu W., Liu X., Liu T., Zhao L., Zhou K. Comparative study on 3d printing of polyamide 12 by selective laser sintering and multi jet fusion. J. Mater. Process. Technol. 2021;228:116882. doi: 10.1016/j.jmatprotec.2020.116882. DOI

Atakok G., Kam M., Koc H.B. Tensile, three-point bending and impact strength of 3d printed parts using pla and recycled pla filaments: A statistical investigation. J. Mater. Res. Technol. 2022;18:1542–1554. doi: 10.1016/j.jmrt.2022.03.013. DOI

Lee P.-H., Chung H., Lee S.W., Yoo J., Ko J. Review: Dimensional Accuracy in Additive Manufacturing Processes; In Proceeding of the ASME 2014 International Manufacturing Science and Engineering Conference; Detroit, MI, USA. 9–13 June 2014.

Alomarah A., Ruan D., Masood S., Gao Z. Compressive properties of a novel additively manufactured 3d auxetic structure. Smart Mater. Struct. 2019;28:085019. doi: 10.1088/1361-665X/ab0dd6. DOI

Sasaki K., Guerra G., Lei Phyu W., Chaisumritchoke S., Sutdet P., Kaewtip S. Assessment of Socket Pressure during Walking in Rapid Fit Prosthetic Sockets. Sensors. 2022;22:5224. doi: 10.3390/s22145224. PubMed DOI PMC

3DPrint.com company HP Reveals More Info About Their Multi Jet Fusion 3D Printing Technology, Plans for Second 3D Printer. 2016. [(accessed on 15 February 2024)]. Available online: https://3dprint.com/113630/hp-multi-jet-fusion-plans-info/

Shim J.S., Kim J.-E., Jeong S.H., Choi Y.J., Ryu J.J. Printing accuracy, mechanical properties, surface characteristics, and microbial adhesion of 3D-printed resins with various printing orientations. J. Prosthet. Dent. 2020;124:468–475. doi: 10.1016/j.prosdent.2019.05.034. PubMed DOI

Calado A., Soares F.O., Matos D. A Review on Commercially Available Anthropomorphic Myoelectric Prosthetic Hands, Pattern-Recognition-Based Microcontrollers and sEMG Sensors used for Prosthetic Control; Proceedings of the 2019 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC); Porto, Portugal. 24–26 April 2019; pp. 1–6.

Nowacki J., Sieczkiewicz N. Problems of determination of MultiJet 3D printing distortions using a 3D scanner. Arch. Mater. Sci. Eng. 2020;103:30–41. doi: 10.5604/01.3001.0014.1771. DOI

Fradl D., Panditaratne J., Bi J., Fu R., Oancea V. Finite element simulation of the multi jet fusion (mjf™) process using abaqus; Proceedings of the Science of the Age of Experience Conference; Boston, MA, USA. 17 May 2017.

HP Development Company L.P. HP 3D High Reusability PA 12 Glass Beads. 2019. [(accessed on 15 February 2024)]. Available online: https://static1.sw-cdn.net/files/cms/materials/data-sheets/HP-MJF-PA12GB-datasheet.pdf.

Mazzanti V., Malagutti L., Mollica F. FDM 3D Printing of Polymers Containing Natural Fillers: A Review of Their Mechanical Properties. Polymers. 2019;11:1094. doi: 10.3390/polym11071094. PubMed DOI PMC

Chan H.K., Griffin J., Lim J.J., Zeng F., Chiu A.S.F. The Impact of 3D Printing Technology on the Supply Chain: Manufacturing and Legal Perspectives. Int. J. Prod. Econ. 2018;205:156–162. doi: 10.1016/j.ijpe.2018.09.009. DOI

Das A.K., Agar D.A., Rudolfsson M., Larsson S.H. A Review on Wood Powders in 3D Printing: Processes, Properties and Potential Applications. J. Mater. Res. Technol. 2021;15:241–255. doi: 10.1016/j.jmrt.2021.07.110. DOI

Archenti A., Maffei A. Proceedings of the International Conference on Advanced Manufacturing Engineering and Technologies NEWTECH. 2013. [(accessed on 15 September 2023)]. Available online: https://www.diva-portal.org/smash/get/diva2:660817/FULLTEXT09.pdf#page=163.

Geng Z., Bidanda B. Geometric precision analysis for Additive Manufacturing processes: A comparative study. Precis. Eng. 2021;69:68–76. doi: 10.1016/j.precisioneng.2020.12.022. DOI

Olmos D., González-Benito J. Polymeric Materials with Antibacterial Activity: A Review. Polymers. 2021;13:613. doi: 10.3390/polym13040613. PubMed DOI PMC

Kechagias J., Chaidas D., Vidakis N., Salonitis K., Vaxevanidis N.M. Key Parameters Controlling Surface Quality and Dimensional Accuracy: A Critical Review of FFF Process. Mater. Manuf. Process. 2022;37:963–984. doi: 10.1080/10426914.2022.2032144. DOI

Yelamanchi B., Mummareddy B., Santiago C.C., Ojoawo B., Metsger K., Helfferich B., Zapka J., Silani F., MacDonald E., Cortes P. Mechanical and fatigue performance of pressurized vessels fabricated with multi jet fusion™ for automotive applications. Addit. Manuf. 2021;44:102048. doi: 10.1016/j.addma.2021.102048. DOI

Briouza S., Gritli H., Khraief N., Belghith S., Singh D. A Brief Overview on Machine Learning in Rehabilitation of the Human Arm via an Exoskeleton Robot; Proceedings of the 2021 International Conference on Data Analytics for Business and Industry (ICDABI); Sakheer, Bahrain. 25–26 October 2021; pp. 129–134.

Alghamdi S., John S., Choudhury N., Dutta N. Additive Manufacturing of Polymer Materials: Progress, Promise and Challenges. Polymers. 2021;13:753. doi: 10.3390/polym13050753. PubMed DOI PMC

Avanzini A., Battini D., Pandini S. Static and fatigue behavior in presence of notches for polyamide 12 (pa12) additively manufactured via multi jet fusion™ process. Int. J. Fatigue. 2022;161:106912. doi: 10.1016/j.ijfatigue.2022.106912. DOI

Osswald P.V., Obst P., Mazzei Capote G.A., Friedrich M., Rietzel D., Witt G. Failure criterion for pa 12 multi-jet fusion additive manufactured parts. Addit. Manuf. 2021;37:101668. doi: 10.1016/j.addma.2020.101668. DOI

Raz K., Chval Z., Milsimerova A. Thermal specification of 3d printed injection moulds made from pa12gb. IOP Conf. Ser. Mater. Sci. Eng. 2021;1199:012009. doi: 10.1088/1757-899X/1199/1/012009. DOI

Rosso S., Meneghello R., Biasetto L., Grigolato L., Concheri G., Savio G. In-depth comparison of polyamide 12 parts manufactured by multi jet fusion and selective laser sintering. Addit. Manuf. 2020;36:101713. doi: 10.1016/j.addma.2020.101713. DOI

O’Connor H.J., Dowling D.P. Comparison between the properties of polyamide 12 and glass bead filled polyamide 12 using the multi jet fusion printing process. Addit. Manuf. 2020;31:100961.

Yang F., Zobeiry N., Mamidala R., Chen X. A review of aging, degradation, and reusability of pa12 powders in selective laser sintering additive manufacturing. Mater. Today Commun. 2023;34:105279. doi: 10.1016/j.mtcomm.2022.105279. DOI

Suder J., Bobovsky Z., Mlotek J., Vocetka M., Zeman Z., Safar M. Experimental analysis of temperature resistance of 3D printed pla components. MM Sci. J. 2021;1:4322–4327. doi: 10.17973/MMSJ.2021_03_2021004. DOI

Mehrpouya M., Tuma D., Vaneker T., Afrasiabi M., Bambach M., Gibson I. Multimaterial powder bed fusion techniques. Rapid Prototyp. J. 2022;28:1–19. doi: 10.1108/RPJ-01-2022-0014. DOI

Belter J.T., Dollar A.M. Strengthening of 3d printed fused deposition manufactured parts using the fill compositing technique. PLoS ONE. 2015;10:e0122915. doi: 10.1371/journal.pone.0122915. PubMed DOI PMC

Heitkamp T., Girnth S., Kuschmitz S., Waldt N., Klawitter G., Vietor T. Experimental and Numerical Investigation of the Mechanical Properties of 3D-Printed Hybrid and Non-Hybrid Composites. Polymers. 2023;15:1164. doi: 10.3390/polym15051164. PubMed DOI PMC

Gadelmoula A., Aldahash S.A. Tribological Properties of Glass Bead-Filled Polyamide 12 Composite Manufactured by Selective Laser Sintering. Polymers. 2023;15:1268. doi: 10.3390/polym15051268. PubMed DOI PMC

Tiwari A.S., Yang S. Energy Consumption Modeling of 3D-Printed Carbon-Fiber-Reinforced Polymer Parts. Polymers. 2023;15:1290. doi: 10.3390/polym15051290. PubMed DOI PMC

Issabayeva Z., Shishkovsky I. Prediction of The Mechanical Behavior of Polylactic Acid Parts with Shape Memory Effect Fabricated by FDM. Polymers. 2023;15:1162. doi: 10.3390/polym15051162. PubMed DOI PMC

Duvoisin C., Horst D. Additive Manufacturing at Industry 4.0: A Review. Int. J. Eng. Tech. Res. 2018;8:3–8.

Bandyopadhyay A., Gualtieri T., Heer B., Bose S. Introduction to Additive Manufacturing. In: Bandyopadhyay A., Bose S., editors. Additive Manufacturing. 2nd ed. CRC Press; Boca Raton, FL, USA: 2019. pp. 1–23.

Tawlik M., Nemat-Alla M., Dewidar M. Enhancing the properties of aluminum alloys fabricated using wire þ arc additive manufacturing technique—A review. J. Mater. Res. Technol. 2021;13:754–768.

HandySCAN3D Proven and Trusted Professional 3D Scanners at an Accessible Price. 2022. [(accessed on 15 February 2024)]. Available online: https://www.creaform3d.com/sites/default/files/assets/brochures/files/handyscan3d_silver_series_brochure_en_hq_20220323.pdf.

Li J., Zhu K., Pan L. Wrist and finger motion recognition via M-mode ultrasound signal: A feasibility study. Biomed. Signal Process. Control. 2022;71:103112. doi: 10.1016/j.bspc.2021.103112. DOI

Mendricky R., Fris D. Analysis of the Accuracy and the Surface Roughness of FDM/FFF Technology and Optimisation of Process Parameters. Tech. Gaz. 2020;4:1166–1173.

Zhang G., Li J., Zhang C., Wang A. Design and Molding of Thyroid Cartilage Prosthesis Based on 3D Printing Technology. Coatings. 2022;12:336. doi: 10.3390/coatings12030336. DOI

HP Guide. HP; Barcelona, Spain: 2018. Multi Jet Fusion printing tips and tricks; pp. 1–21.

Delfs P., Töws M., Schmid H.-J. Optimized build orientation of additive manufactured parts for improved surface quality and build time. Addit. Manuf. 2016;12:314–320. doi: 10.1016/j.addma.2016.06.003. DOI

Choren J.A., Heinrich S.M., Silver-Thorn M.B. Young’s modulus and porosity relationships for additive manufacturing applications. J. Mater. Sci. 2013;48:5103–5112. doi: 10.1007/s10853-013-7237-5. DOI

Lee K.P.M., Pandelidi C., Kajtaz M. Build orientation effects on mechanical properties and porosity of polyamide-11 fabricated via multi jet fusion. Addit. Manuf. 2020;36:101533. doi: 10.1016/j.addma.2020.101533. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...