Sensitivity Analysis and Influence Evaluation of Progressive Wall Thickness of Honeycomb Structures as Energy Absorber Produced by Additive Technology Multi-Jet Fusion

. 2024 Dec 24 ; 18 (1) : . [epub] 20241224

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39795646

Grantová podpora
SGS-2022-009 University of West Bohemia

The aim of this study was to investigate the potential of polymeric cell structures for the production of energy absorbers and to focus on the geometric optimization of polymeric cell structures producible by additive technologies to achieve the required deformation characteristics, high material efficiency and the low weight of the resulting absorber. A detailed analysis of different types of cell structures (different lattice structures and honeycombs) and their properties was performed. Honeycombs, which have been further examined in more detail, are best suited for absorbing large amounts of energy and high levels of material efficiency at known load directions. Honeycombs have the potential to absorb large amounts of energy relative to their low weight and their deformation characteristics have a relatively constant course. Honeycombs have the major disadvantage of an initial peak. However, this peak can be removed by appropriately adjusting the geometry of the honeycomb. Thanks to the possibilities that additive technology allows us, honeycombs with progressive wall thickness have been designed and researched. The output of this study is a detailed analysis of the properties and several design recommendations for the design of a honeycomb with a progressive wall thickness to achieve the required properties.

Zobrazit více v PubMed

Špirk S., Křížek M., Jeníček S. IOP Conference Series: Materials Science and Engineering, MATEC Web of Conferences. EDP Sciences; Les Ulis, France: 2018. Polyurethane foam behaviour during impact. DOI

Ashby M.F. The properties of foams and lattices. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006;364:15–30. doi: 10.1098/rsta.2005.1678. PubMed DOI

Srivastava V., Srivastava R. On the polymeric foams: Modeling and properties. J. Mater. Sci. 2014;49:2681–2692. doi: 10.1007/s10853-013-7974-5. DOI

Gorguluarslan R., Gandhi U., Mandapati R., Choi S. Design and fabrication of periodic lattice-based cellular structures. Comput. Aided Des. Appl. 2015;13:50–62. doi: 10.1080/16864360.2015.1059194. DOI

Sedlacek F., Lasova V. Optimization of Additive Manufactured Components Using Topology Optimization. Struct. Integr. 2019;5:106–107. doi: 10.1007/978-3-319-91989-8_22. DOI

Pflug J., Czarnecki T. Continuous honeycomb production technology. JEC Composites Magazine. Mar, 2014. pp. 111–113.

Ráž K., Chval Z., Kemka V. Parametric Production of Prostheses Using the Additive Polymer Manufacturing Technology Multi Jet Fusion. Materials. 2024;17:2347. doi: 10.3390/ma17102347. PubMed DOI PMC

Farkas A.Z., Galatanu S.-V., Nagib R. The Influence of Printing Layer Thickness and Orientation on the Mechanical Properties of DLP 3D-Printed Dental Resin. Polymers. 2023;15:1113. doi: 10.3390/polym15051113. PubMed DOI PMC

Ráž K., Chval Z., Thomann S. Minimizing Deformations during HP MJF 3D Printing. Materials. 2023;16:7389. doi: 10.3390/ma16237389. PubMed DOI PMC

Habib F., Iovenitti P., Masood S., Nikzad M., Ruan D. Design and evaluation of 3D printed polymeric cellular materials for dynamic energy absorption. Int. J. Adv. Manuf. Technol. 2019;103:2347–2391. doi: 10.1007/s00170-019-03541-4. DOI

Osswald P.V., Obst P., Capote G.A.M., Friedrich M., Rietzel D., Witt G. Failure criterion for PA 12 multi-jet fusion additive manufactured parts. Addit. Manuf. 2020;37:101668. doi: 10.1016/j.addma.2020.101668. DOI

Riedelbauch J., Rietzel D., Witt G. Analysis of material aging and the influence on the mechanical properties of polyamide 12 in the Multi Jet Fusion process. Addit. Manuf. 2019;27:259–266. doi: 10.1016/j.addma.2019.03.002. DOI

Guessasma S., Belhabib S. The Influence of Microstructural Arrangement on the Failure Characteristics of 3D-Printed Polymers: Exploring Damage Behaviour in Acrylonitrile Butadiene Styrene. Materials. 2024;17:2699. doi: 10.3390/ma17112699. PubMed DOI PMC

Habib F.N., Iovenitti P., Masood S.H., Nikzad M. Fabrication of polymeric lattice structures for optimum energy absorption using Multi Jet Fusion technology. Mater. Des. 2018;155:86–98. doi: 10.1016/j.matdes.2018.05.059. DOI

Ozdemir Z., Hernandez-Nava E., Tyas A., Warren J.A., Fay S.D., Goodall R., Todd I., Askes H. Energy absorption in lattice structures in dynamics: Experiments. Int. J. Impact Eng. 2016;89:49–61. doi: 10.1016/j.ijimpeng.2015.10.007. DOI

Linul E., Şerban D.A., Voiconi T., Marşavina L., Sadowski T. Energy—Absorption and efficiency diagrams of rigid PUR foams. Key Eng. Mater. 2013;601:246–249. doi: 10.4028/www.scientific.net/KEM.601.246. DOI

Gautam R., Idapalapati S., Feih S. Printing and characterisation of Kagome lattice structures by fused deposition modelling. Mater. Des. 2018;137:266–275. doi: 10.1016/j.matdes.2017.10.022. DOI

Kaur M., Yun T.G., Han S.M., Thomas E.L., Kim W.S. 3D printed stretching-dominated micro-trusses. Mater. Des. 2017;134:272–280. doi: 10.1016/j.matdes.2017.08.061. DOI

Mohsenizadeh M., Gasbarri F., Munther M., Beheshti A., Davami K. Additively-manufactured lightweight Metamaterials for energy absorption. Mater. Des. 2018;139:521–530. doi: 10.1016/j.matdes.2017.11.037. DOI

Atalay Kalsen T.S., Karadağ H.B., Eker Y.R. The Out-Of-Plane Compression Behavior of In Situ Ethylene Vinyl Acetate (EVA)-Foam-Filled Aluminum Honeycomb Sandwich Structures. Materials. 2023;16:5350. doi: 10.3390/ma16155350. PubMed DOI PMC

Zhao G., Fu T., Li J. Study on Concave Direction Impact Performance of Similar Concave Hexagon Honeycomb Structure. Materials. 2023;16:3262. doi: 10.3390/ma16083262. PubMed DOI PMC

Raz K., Chval Z., Sedlacek F. Compressive strength prediction of quad-diametral lattice structures. Key Eng. Mater. 2020;847:69–74. doi: 10.4028/www.scientific.net/KEM.847.69. DOI

Raz K., Chval Z. IOP Conference Series: Materials Science and Engineering, MATEC Web of Conferences. EDP Sciences; Les Ulis, France: 2022. Development of a computational model of lattice structure.

Spirk S., Kepka M. Tests and Simulations for Assessment of Electric Buses Passive Safety. Procedia Eng. 2015;114:338–345. doi: 10.1016/j.proeng.2015.08.077. DOI

Belytschko T., Lin J.I., Chen-Shyh T. Explicit algorithms for the nonlinear dynamics of shells. Comput. Methods Appl. Mech. Eng. 1984;42:225–251. doi: 10.1016/0045-7825(84)90026-4. DOI

Kühne R. Electric buses—An energy efficient urban transportation means. Energy. 2010;35:4510–4513. doi: 10.1016/j.energy.2010.09.055. DOI

Virtual Performance Solution—Solver Reference Manual. ESI Group; Bagneux, France: 2017.

Xu Q., An H. A class of domain decomposition based nonlinear explicit–implicit iteration algorithms for solving diffusion equations with discontinuous coefficient. J. Comput. Appl. Math. 2021;386:113232. doi: 10.1016/j.cam.2020.113232. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...