Sensitivity Analysis and Influence Evaluation of Progressive Wall Thickness of Honeycomb Structures as Energy Absorber Produced by Additive Technology Multi-Jet Fusion
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS-2022-009
University of West Bohemia
PubMed
39795646
PubMed Central
PMC11722139
DOI
10.3390/ma18010001
PII: ma18010001
Knihovny.cz E-zdroje
- Klíčová slova
- cellular structures, energy absorber, explicit solver, honeycombs, lattice structures,
- Publikační typ
- časopisecké články MeSH
The aim of this study was to investigate the potential of polymeric cell structures for the production of energy absorbers and to focus on the geometric optimization of polymeric cell structures producible by additive technologies to achieve the required deformation characteristics, high material efficiency and the low weight of the resulting absorber. A detailed analysis of different types of cell structures (different lattice structures and honeycombs) and their properties was performed. Honeycombs, which have been further examined in more detail, are best suited for absorbing large amounts of energy and high levels of material efficiency at known load directions. Honeycombs have the potential to absorb large amounts of energy relative to their low weight and their deformation characteristics have a relatively constant course. Honeycombs have the major disadvantage of an initial peak. However, this peak can be removed by appropriately adjusting the geometry of the honeycomb. Thanks to the possibilities that additive technology allows us, honeycombs with progressive wall thickness have been designed and researched. The output of this study is a detailed analysis of the properties and several design recommendations for the design of a honeycomb with a progressive wall thickness to achieve the required properties.
Zobrazit více v PubMed
Špirk S., Křížek M., Jeníček S. IOP Conference Series: Materials Science and Engineering, MATEC Web of Conferences. EDP Sciences; Les Ulis, France: 2018. Polyurethane foam behaviour during impact. DOI
Ashby M.F. The properties of foams and lattices. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006;364:15–30. doi: 10.1098/rsta.2005.1678. PubMed DOI
Srivastava V., Srivastava R. On the polymeric foams: Modeling and properties. J. Mater. Sci. 2014;49:2681–2692. doi: 10.1007/s10853-013-7974-5. DOI
Gorguluarslan R., Gandhi U., Mandapati R., Choi S. Design and fabrication of periodic lattice-based cellular structures. Comput. Aided Des. Appl. 2015;13:50–62. doi: 10.1080/16864360.2015.1059194. DOI
Sedlacek F., Lasova V. Optimization of Additive Manufactured Components Using Topology Optimization. Struct. Integr. 2019;5:106–107. doi: 10.1007/978-3-319-91989-8_22. DOI
Pflug J., Czarnecki T. Continuous honeycomb production technology. JEC Composites Magazine. Mar, 2014. pp. 111–113.
Ráž K., Chval Z., Kemka V. Parametric Production of Prostheses Using the Additive Polymer Manufacturing Technology Multi Jet Fusion. Materials. 2024;17:2347. doi: 10.3390/ma17102347. PubMed DOI PMC
Farkas A.Z., Galatanu S.-V., Nagib R. The Influence of Printing Layer Thickness and Orientation on the Mechanical Properties of DLP 3D-Printed Dental Resin. Polymers. 2023;15:1113. doi: 10.3390/polym15051113. PubMed DOI PMC
Ráž K., Chval Z., Thomann S. Minimizing Deformations during HP MJF 3D Printing. Materials. 2023;16:7389. doi: 10.3390/ma16237389. PubMed DOI PMC
Habib F., Iovenitti P., Masood S., Nikzad M., Ruan D. Design and evaluation of 3D printed polymeric cellular materials for dynamic energy absorption. Int. J. Adv. Manuf. Technol. 2019;103:2347–2391. doi: 10.1007/s00170-019-03541-4. DOI
Osswald P.V., Obst P., Capote G.A.M., Friedrich M., Rietzel D., Witt G. Failure criterion for PA 12 multi-jet fusion additive manufactured parts. Addit. Manuf. 2020;37:101668. doi: 10.1016/j.addma.2020.101668. DOI
Riedelbauch J., Rietzel D., Witt G. Analysis of material aging and the influence on the mechanical properties of polyamide 12 in the Multi Jet Fusion process. Addit. Manuf. 2019;27:259–266. doi: 10.1016/j.addma.2019.03.002. DOI
Guessasma S., Belhabib S. The Influence of Microstructural Arrangement on the Failure Characteristics of 3D-Printed Polymers: Exploring Damage Behaviour in Acrylonitrile Butadiene Styrene. Materials. 2024;17:2699. doi: 10.3390/ma17112699. PubMed DOI PMC
Habib F.N., Iovenitti P., Masood S.H., Nikzad M. Fabrication of polymeric lattice structures for optimum energy absorption using Multi Jet Fusion technology. Mater. Des. 2018;155:86–98. doi: 10.1016/j.matdes.2018.05.059. DOI
Ozdemir Z., Hernandez-Nava E., Tyas A., Warren J.A., Fay S.D., Goodall R., Todd I., Askes H. Energy absorption in lattice structures in dynamics: Experiments. Int. J. Impact Eng. 2016;89:49–61. doi: 10.1016/j.ijimpeng.2015.10.007. DOI
Linul E., Şerban D.A., Voiconi T., Marşavina L., Sadowski T. Energy—Absorption and efficiency diagrams of rigid PUR foams. Key Eng. Mater. 2013;601:246–249. doi: 10.4028/www.scientific.net/KEM.601.246. DOI
Gautam R., Idapalapati S., Feih S. Printing and characterisation of Kagome lattice structures by fused deposition modelling. Mater. Des. 2018;137:266–275. doi: 10.1016/j.matdes.2017.10.022. DOI
Kaur M., Yun T.G., Han S.M., Thomas E.L., Kim W.S. 3D printed stretching-dominated micro-trusses. Mater. Des. 2017;134:272–280. doi: 10.1016/j.matdes.2017.08.061. DOI
Mohsenizadeh M., Gasbarri F., Munther M., Beheshti A., Davami K. Additively-manufactured lightweight Metamaterials for energy absorption. Mater. Des. 2018;139:521–530. doi: 10.1016/j.matdes.2017.11.037. DOI
Atalay Kalsen T.S., Karadağ H.B., Eker Y.R. The Out-Of-Plane Compression Behavior of In Situ Ethylene Vinyl Acetate (EVA)-Foam-Filled Aluminum Honeycomb Sandwich Structures. Materials. 2023;16:5350. doi: 10.3390/ma16155350. PubMed DOI PMC
Zhao G., Fu T., Li J. Study on Concave Direction Impact Performance of Similar Concave Hexagon Honeycomb Structure. Materials. 2023;16:3262. doi: 10.3390/ma16083262. PubMed DOI PMC
Raz K., Chval Z., Sedlacek F. Compressive strength prediction of quad-diametral lattice structures. Key Eng. Mater. 2020;847:69–74. doi: 10.4028/www.scientific.net/KEM.847.69. DOI
Raz K., Chval Z. IOP Conference Series: Materials Science and Engineering, MATEC Web of Conferences. EDP Sciences; Les Ulis, France: 2022. Development of a computational model of lattice structure.
Spirk S., Kepka M. Tests and Simulations for Assessment of Electric Buses Passive Safety. Procedia Eng. 2015;114:338–345. doi: 10.1016/j.proeng.2015.08.077. DOI
Belytschko T., Lin J.I., Chen-Shyh T. Explicit algorithms for the nonlinear dynamics of shells. Comput. Methods Appl. Mech. Eng. 1984;42:225–251. doi: 10.1016/0045-7825(84)90026-4. DOI
Kühne R. Electric buses—An energy efficient urban transportation means. Energy. 2010;35:4510–4513. doi: 10.1016/j.energy.2010.09.055. DOI
Virtual Performance Solution—Solver Reference Manual. ESI Group; Bagneux, France: 2017.
Xu Q., An H. A class of domain decomposition based nonlinear explicit–implicit iteration algorithms for solving diffusion equations with discontinuous coefficient. J. Comput. Appl. Math. 2021;386:113232. doi: 10.1016/j.cam.2020.113232. DOI