Double layer acceleration of ions with differently charged states in a laser induced plasma
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article
PubMed
37529696
PubMed Central
PMC10387455
DOI
10.1007/s00339-023-06840-6
PII: 6840
Knihovny.cz E-resources
- Keywords
- Kinetic energy distribution, Plasma spectroscopy, Pulsed laser deposition, Thin films,
- Publication type
- Journal Article MeSH
The electric field driven acceleration of plasma ions is an intrinsic effect in laser-induced plasma plumes and is responsible for the generation of high-energy ions. At high laser fluences (≥ 2 J/cm2), multiply charged ions are formed and affect the plume expansion dynamics. In this paper, we used kinetic energy-resolved mass spectrometry to investigate the relative abundance and kinetic energy distributions of singly- and doubly-charged ions produced by KrF-laser ablation of nine different oxide targets. The doubly charged metal ions with a lower mass-to-charge (m/z) ratio show narrow energy distributions at high average kinetic energies coinciding with the cutoff energies for the singly-charged ion distributions. The observation suggests that the recombination of higher charged ions plays a prominent role in the formation of the high-energy tail for singly-charged ions. The results are discussed in terms of component volatility and a dynamic double layer, where ions with different m/z values experience different accelerations.
HiLASE Centre Institute of Physics ASCR Za Radnicí 828 25241 Dolní Břežany Czech Republic
Research With Neutrons and Muons Division Paul Scherrer Institut 5232 Villigen PSI Switzerland
See more in PubMed
Plyutto AA. Sov. Phys. JETP. 1961;12:1106–1108.
Gurevich AV, Pariiskaya LV, Pitaevskii LP. Sov. Phys. JETP. 1973;36:274–281.
Denavit J. Phys. Fluids. 1979;22:1384–1392. doi: 10.1063/1.862751. DOI
Eliezer S, Kolka E, Szichman H, Hora H, Green F. Laser Part. Beams. 2009;13:441–447. doi: 10.1017/S0263034600009551. DOI
Gurevich AV, Pariiskaya LV, Pitaevskii LP. Sov. Phys. JETP. 1966;22:449–454.
Gurevich AV, Meshcherkin AP. Sov. Phys. JETP. 1981;53:937–945.
Bezzerides B, Forslund DW, Lindman EL. Phys. Fluids. 1978;21:2179–2185. doi: 10.1063/1.862176. DOI
Hershkowitz N. Space Sci. Rev. 1985;41:351–391. doi: 10.1007/BF00190655. DOI
Eliezer S, Hora H. Phys. Rep. 1989;172:339–407. doi: 10.1016/0370-1573(89)90118-X. DOI
Hairapetian G, Stenzel RL. Phys. Fluids B. 1991;3:899–914. doi: 10.1063/1.859847. DOI
Singh N. Phys. Plasmas. 2011;18:122105. doi: 10.1063/1.3664321. DOI
Crow JE, Auer PL, Allen JE. J. Plasma Phys. 2009;14:65–76. doi: 10.1017/S0022377800025538. DOI
Apiñaniz JI, Peralta Conde A, de Mendiola RMP. Eur. Phys. J. 2015;69:265.
Bulgakova NM, Bulgakov AV, Bobrenok OF. Phys. Rev. E. 2000;62:5624–5635. doi: 10.1103/PhysRevE.62.5624. PubMed DOI
Apinaniz JI, Martinez R. IEEE Trans. Plasma Sci. 2011;39:2928–2929. doi: 10.1109/TPS.2011.2158560. DOI
Ojeda-G-P A, Yao X, Bulgakova NM, Bulgakov AV, Lippert T. Appl. Phys. A. 2019;125:71. doi: 10.1007/s00339-018-2345-3. PubMed DOI
Yao X, Schneider CW, Bulgakova NM, Bulgakov AV, Lippert T. J. Phys. D Appl. Phys. 2023;56:345202. doi: 10.1088/1361-6463/acd3ff. PubMed DOI PMC
Bykovskii YA, Degtyarenko N, Elesin V, Kozyrev YP, Sil’nov S. Sov. Phys. JETP. 1971;33:706–712.
Baraldi G, Perea A, Afonso CN. J. Appl. Phys. 2011;109:043302. doi: 10.1063/1.3549159. DOI
Torrisi L, Caridi F, Margarone D, Borrielli A. Appl. Surf. Sci. 2008;254:2090–2095. doi: 10.1016/j.apsusc.2007.08.066. DOI
Torrisi L, Caridi F, Margarone D, Borrielli A. Nucl. Instrum. Methods Phys. Res. B. 2008;266:308–315. doi: 10.1016/j.nimb.2007.11.008. DOI
Claeyssens F, Ashfold MNR, Sofoulakis E, Ristoscu CG, Anglos D, Fotakis C. J. Appl. Phys. 2002;91:6162–6172. doi: 10.1063/1.1467955. DOI
Krása J, Lorusso A, Nassisi V, Velardi L, Velyhan A. Laser Part. Beams. 2011;29:113–119. doi: 10.1017/S0263034611000103. DOI
Écija P, Sánchez Rayo MN, Martínez R, Sierra B, Redondo C, Basterretxea FJ, Castaño F. Phys. Rev. A. 2008;77:032904. doi: 10.1103/PhysRevA.77.032904. DOI
Abe K, Eryu O, Nakashima S, Terai M, Kubo M, Niraula M, Yasuda K. J. Electron. Mater. 2005;34:1428–1431. doi: 10.1007/s11664-005-0201-7. DOI
Bulgakova OA, Bulgakova NM, Zhukov VP. Appl. Phys. A. 2010;101:53–59. doi: 10.1007/s00339-010-5757-2. DOI
Morozov AA, Starinskiy SV, Bulgakov AV. J. Phys. D Appl. Phys. 2021;54:175203. doi: 10.1088/1361-6463/abdb6c. DOI
Howard MA, Clemens O, Parvathy AS, Anderson PA, Slater PR. J. Alloys Compd. 2016;670:78–84. doi: 10.1016/j.jallcom.2016.02.012. DOI
Glasby GP, editor. Marine Manganese Deposits. Elsevier Oceanographic Series. Amsterdam: Elsevier; 1977.
Platzer R, Schwenker R, Fuessel A, Tom DW, Tate J, Gardner JA, Evenson WE, Sommers JA. Hyperfine Interact. 1997;110:271–286. doi: 10.1023/A:1012600221838. DOI
Saito Y, Okuda M, Yoshikawa T, Kasuya A, Nishina Y. J. Phys. Chem. 1994;98:6696–6698. doi: 10.1021/j100078a008. DOI
Wood BJ, Smythe DJ, Harrison T. Am. Mineral. 2019;104:844–856. doi: 10.2138/am-2019-6852CCBY. DOI
Bulgakov AV, Evtushenko AB, Shukhov YG, Ozerov I, Marine W. Quantum Electron. 2010;40:1021–1033. doi: 10.1070/QE2010v040n11ABEH014443. DOI
Zeldovich YB, Raizer YuP. Physics of Shock Waves and High Temperature Hydrodynamic Phenomena. New York: Academic Press; 1966.
Dreyfus RW. Surf. Sci. 1993;283:177–181. doi: 10.1016/0039-6028(93)90976-Q. DOI
Wang X, Zhang S, Cheng X, Zhu E, Hang W, Huang B. Spectrochim. Acta B Atom. Spectrosc. 2014;99:101–114. doi: 10.1016/j.sab.2014.06.018. DOI
Castaño F, Ecija P, Apiñániz JI, Martínez R, Basterretxea FJ, Longarte A, Redondo C, Sánchez Rayo MN. Chem. Phys. Lett. 2010;486:60–64. doi: 10.1016/j.cplett.2009.12.062. DOI
Bulgakova NM, Bulgakov AV. Proc. SPIE. 2007;6732:67320G. doi: 10.1117/12.751900. DOI
Time-resolved probing of laser-induced nanostructuring processes in liquids
Double layer acceleration of ions with differently charged states in a laser induced plasma