• This record comes from PubMed

Double layer acceleration of ions with differently charged states in a laser induced plasma

. 2023 ; 129 (8) : 590. [epub] 20230730

Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic

Document type Journal Article

The electric field driven acceleration of plasma ions is an intrinsic effect in laser-induced plasma plumes and is responsible for the generation of high-energy ions. At high laser fluences (≥ 2 J/cm2), multiply charged ions are formed and affect the plume expansion dynamics. In this paper, we used kinetic energy-resolved mass spectrometry to investigate the relative abundance and kinetic energy distributions of singly- and doubly-charged ions produced by KrF-laser ablation of nine different oxide targets. The doubly charged metal ions with a lower mass-to-charge (m/z) ratio show narrow energy distributions at high average kinetic energies coinciding with the cutoff energies for the singly-charged ion distributions. The observation suggests that the recombination of higher charged ions plays a prominent role in the formation of the high-energy tail for singly-charged ions. The results are discussed in terms of component volatility and a dynamic double layer, where ions with different m/z values experience different accelerations.

See more in PubMed

Plyutto AA. Sov. Phys. JETP. 1961;12:1106–1108.

Gurevich AV, Pariiskaya LV, Pitaevskii LP. Sov. Phys. JETP. 1973;36:274–281.

Denavit J. Phys. Fluids. 1979;22:1384–1392. doi: 10.1063/1.862751. DOI

Eliezer S, Kolka E, Szichman H, Hora H, Green F. Laser Part. Beams. 2009;13:441–447. doi: 10.1017/S0263034600009551. DOI

Gurevich AV, Pariiskaya LV, Pitaevskii LP. Sov. Phys. JETP. 1966;22:449–454.

Gurevich AV, Meshcherkin AP. Sov. Phys. JETP. 1981;53:937–945.

Bezzerides B, Forslund DW, Lindman EL. Phys. Fluids. 1978;21:2179–2185. doi: 10.1063/1.862176. DOI

Hershkowitz N. Space Sci. Rev. 1985;41:351–391. doi: 10.1007/BF00190655. DOI

Eliezer S, Hora H. Phys. Rep. 1989;172:339–407. doi: 10.1016/0370-1573(89)90118-X. DOI

Hairapetian G, Stenzel RL. Phys. Fluids B. 1991;3:899–914. doi: 10.1063/1.859847. DOI

Singh N. Phys. Plasmas. 2011;18:122105. doi: 10.1063/1.3664321. DOI

Crow JE, Auer PL, Allen JE. J. Plasma Phys. 2009;14:65–76. doi: 10.1017/S0022377800025538. DOI

Apiñaniz JI, Peralta Conde A, de Mendiola RMP. Eur. Phys. J. 2015;69:265.

Bulgakova NM, Bulgakov AV, Bobrenok OF. Phys. Rev. E. 2000;62:5624–5635. doi: 10.1103/PhysRevE.62.5624. PubMed DOI

Apinaniz JI, Martinez R. IEEE Trans. Plasma Sci. 2011;39:2928–2929. doi: 10.1109/TPS.2011.2158560. DOI

Ojeda-G-P A, Yao X, Bulgakova NM, Bulgakov AV, Lippert T. Appl. Phys. A. 2019;125:71. doi: 10.1007/s00339-018-2345-3. PubMed DOI

Yao X, Schneider CW, Bulgakova NM, Bulgakov AV, Lippert T. J. Phys. D Appl. Phys. 2023;56:345202. doi: 10.1088/1361-6463/acd3ff. PubMed DOI PMC

Bykovskii YA, Degtyarenko N, Elesin V, Kozyrev YP, Sil’nov S. Sov. Phys. JETP. 1971;33:706–712.

Baraldi G, Perea A, Afonso CN. J. Appl. Phys. 2011;109:043302. doi: 10.1063/1.3549159. DOI

Torrisi L, Caridi F, Margarone D, Borrielli A. Appl. Surf. Sci. 2008;254:2090–2095. doi: 10.1016/j.apsusc.2007.08.066. DOI

Torrisi L, Caridi F, Margarone D, Borrielli A. Nucl. Instrum. Methods Phys. Res. B. 2008;266:308–315. doi: 10.1016/j.nimb.2007.11.008. DOI

Claeyssens F, Ashfold MNR, Sofoulakis E, Ristoscu CG, Anglos D, Fotakis C. J. Appl. Phys. 2002;91:6162–6172. doi: 10.1063/1.1467955. DOI

Krása J, Lorusso A, Nassisi V, Velardi L, Velyhan A. Laser Part. Beams. 2011;29:113–119. doi: 10.1017/S0263034611000103. DOI

Écija P, Sánchez Rayo MN, Martínez R, Sierra B, Redondo C, Basterretxea FJ, Castaño F. Phys. Rev. A. 2008;77:032904. doi: 10.1103/PhysRevA.77.032904. DOI

Abe K, Eryu O, Nakashima S, Terai M, Kubo M, Niraula M, Yasuda K. J. Electron. Mater. 2005;34:1428–1431. doi: 10.1007/s11664-005-0201-7. DOI

Bulgakova OA, Bulgakova NM, Zhukov VP. Appl. Phys. A. 2010;101:53–59. doi: 10.1007/s00339-010-5757-2. DOI

Morozov AA, Starinskiy SV, Bulgakov AV. J. Phys. D Appl. Phys. 2021;54:175203. doi: 10.1088/1361-6463/abdb6c. DOI

Howard MA, Clemens O, Parvathy AS, Anderson PA, Slater PR. J. Alloys Compd. 2016;670:78–84. doi: 10.1016/j.jallcom.2016.02.012. DOI

Glasby GP, editor. Marine Manganese Deposits. Elsevier Oceanographic Series. Amsterdam: Elsevier; 1977.

Platzer R, Schwenker R, Fuessel A, Tom DW, Tate J, Gardner JA, Evenson WE, Sommers JA. Hyperfine Interact. 1997;110:271–286. doi: 10.1023/A:1012600221838. DOI

Saito Y, Okuda M, Yoshikawa T, Kasuya A, Nishina Y. J. Phys. Chem. 1994;98:6696–6698. doi: 10.1021/j100078a008. DOI

Wood BJ, Smythe DJ, Harrison T. Am. Mineral. 2019;104:844–856. doi: 10.2138/am-2019-6852CCBY. DOI

Bulgakov AV, Evtushenko AB, Shukhov YG, Ozerov I, Marine W. Quantum Electron. 2010;40:1021–1033. doi: 10.1070/QE2010v040n11ABEH014443. DOI

Zeldovich YB, Raizer YuP. Physics of Shock Waves and High Temperature Hydrodynamic Phenomena. New York: Academic Press; 1966.

Dreyfus RW. Surf. Sci. 1993;283:177–181. doi: 10.1016/0039-6028(93)90976-Q. DOI

Wang X, Zhang S, Cheng X, Zhu E, Hang W, Huang B. Spectrochim. Acta B Atom. Spectrosc. 2014;99:101–114. doi: 10.1016/j.sab.2014.06.018. DOI

Castaño F, Ecija P, Apiñániz JI, Martínez R, Basterretxea FJ, Longarte A, Redondo C, Sánchez Rayo MN. Chem. Phys. Lett. 2010;486:60–64. doi: 10.1016/j.cplett.2009.12.062. DOI

Bulgakova NM, Bulgakov AV. Proc. SPIE. 2007;6732:67320G. doi: 10.1117/12.751900. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...