SLX4 interacts with RTEL1 to prevent transcription-mediated DNA replication perturbations
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32398829
DOI
10.1038/s41594-020-0419-3
PII: 10.1038/s41594-020-0419-3
Knihovny.cz E-zdroje
- MeSH
- DNA-helikasy genetika metabolismus MeSH
- dyskeratosis congenita genetika MeSH
- genetická transkripce * MeSH
- HeLa buňky MeSH
- lidé MeSH
- mentální retardace genetika MeSH
- mikrocefalie genetika MeSH
- protein FANCD2 genetika metabolismus MeSH
- rekombinasy genetika metabolismus MeSH
- replikace DNA * MeSH
- růstová retardace plodu genetika MeSH
- zárodečné mutace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA-helikasy MeSH
- FANCD2 protein, human MeSH Prohlížeč
- protein FANCD2 MeSH
- rekombinasy MeSH
- RTEL1 protein, human MeSH Prohlížeč
- SLX4 protein, human MeSH Prohlížeč
The SLX4 tumor suppressor is a scaffold that plays a pivotal role in several aspects of genome protection, including homologous recombination, interstrand DNA crosslink repair and the maintenance of common fragile sites and telomeres. Here, we unravel an unexpected direct interaction between SLX4 and the DNA helicase RTEL1, which, until now, were viewed as having independent and antagonistic functions. We identify cancer and Hoyeraal-Hreidarsson syndrome-associated mutations in SLX4 and RTEL1, respectively, that abolish SLX4-RTEL1 complex formation. We show that both proteins are recruited to nascent DNA, tightly co-localize with active RNA pol II, and that SLX4, in complex with RTEL1, promotes FANCD2/RNA pol II co-localization. Importantly, disrupting the SLX4-RTEL1 interaction leads to DNA replication defects in unstressed cells, which are rescued by inhibiting transcription. Our data demonstrate that SLX4 and RTEL1 interact to prevent replication-transcription conflicts and provide evidence that this is independent of the nuclease scaffold function of SLX4.
CNRS UMR9019 Université Paris Saclay Gustave Roussy Villejuif France
Department of Chemistry Faculty of Science Fukuoka University Fukuoka Japan
Institut Curie PSL Research University CNRS UMR3244 Paris France
Institute of Molecular Genetics Prague Czech Republic
Sorbonne Universités UPMC Univ Paris 06 CNRS UMR3244 Paris France
Zobrazit více v PubMed
Fekairi, S. et al. Human SLX4 is a Holliday junction resolvase subunit that binds multiple DNA repair/recombination endonucleases. Cell 138, 78–89 (2009). PubMed PMC
Guervilly, J.-H. et al. The SLX4 complex is a SUMO E3 ligase that impacts on replication stress outcome and genome stability. Mol. Cell 57, 123–137 (2015). PubMed
Munoz, I. M. et al. Coordination of structure-specific nucleases by human SLX4/BTBD12 is required for DNA repair. Mol. Cell 35, 116–127 (2009). PubMed
Svendsen, J. M. et al. Mammalian BTBD12/SLX4 assembles a Holliday junction resolvase and is required for DNA repair. Cell 138, 63–77 (2009). PubMed PMC
Andersen, S. L. et al. Drosophila MUS312 and the vertebrate ortholog BTBD12 interact with DNA structure-specific endonucleases in DNA repair and recombination. Mol. Cell 35, 128–135 (2009). PubMed PMC
Minocherhomji, S. et al. Replication stress activates DNA repair synthesis in mitosis. Nature 528, 286–290 (2015). PubMed
Ouyang, J. et al. Noncovalent interactions with SUMO and ubiquitin orchestrate distinct functions of the SLX4 complex in genome maintenance. Mol. Cell 57, 108–122 (2015). PubMed
Wilson, J. S. J. et al. Localization-dependent and -independent roles of SLX4 in regulating telomeres. Cell Rep. 4, 853–860 (2013). PubMed PMC
Wan, B. et al. SLX4 assembles a telomere maintenance toolkit by bridging multiple endonucleases with telomeres. Cell Rep. 4, 861–869 (2013). PubMed PMC
Wyatt, H. D. M., Sarbajna, S., Matos, J. & West, S. C. Coordinated actions of SLX1-SLX4 and MUS81-EME1 for Holliday junction resolution in human cells. Mol. Cell 52, 234–247 (2013). PubMed
Duda, H. et al. A mechanism for controlled breakage of under-replicated chromosomes during mitosis. Dev. Cell 39, 740–755 (2016). PubMed
Gritenaite, D. et al. A cell cycle-regulated SLX4–DPB11 complex promotes the resolution of DNA repair intermediates linked to stalled replication. Genes Dev. 28, 1604–1619 (2014). PubMed PMC
Kim, Y. et al. Regulation of multiple DNA repair pathways by the Fanconi anemia protein SLX4. Blood 121, 54–63 (2013). PubMed PMC
Guervilly, J.-H. & Gaillard, P.-H. SLX4: multitasking to maintain genome stability. Crit. Rev. Biochem. Mol. Biol. 53, 475–514 (2018). PubMed
Stoepker, C. et al. SLX4, a coordinator of structure-specific endonucleases, is mutated in a new Fanconi anemia subtype. Nat. Genet. 43, 138–141 (2011). PubMed
Kim, Y. et al. Mutations of the SLX4 gene in Fanconi anemia. Nat. Genet. 43, 142–146 (2011). PubMed PMC
Douwel, D. K. et al. XPF-ERCC1 acts in unhooking DNA interstrand crosslinks in cooperation with FANCD2 and FANCP/SLX4. Mol. Cell 54, 460–471 (2014). PMC
Hodskinson, M. R. G. et al. Mouse SLX4 is a tumor suppressor that stimulates the activity of the nuclease XPF-ERCC1 in DNA crosslink repair. Mol. Cell 54, 472–484 (2014). PubMed PMC
Lachaud, C. et al. Distinct functional roles for the two SLX4 ubiquitin-binding UBZ domains mutated in Fanconi anemia. J. Cell Sci. 127, 2811–2817 (2014). PubMed PMC
Vannier, J.-B., Pavicic-Kaltenbrunner, V., Petalcorin, M. I. R., Ding, H. & Boulton, S. J. RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity. Cell 149, 795–806 (2012). PubMed
Ding, H. et al. Regulation of murine telomere length by Rtel: an essential gene encoding a helicase-like protein. Cell 117, 873–886 (2004). PubMed
Vannier, J.-B. et al. RTEL1 is a replisome-associated helicase that promotes telomere and genome-wide replication. Science 342, 239–242 (2013). PubMed
Uringa, E.-J. et al. RTEL1 contributes to DNA replication and repair and telomere maintenance. Mol. Biol. Cell 23, 2782–2792 (2012). PubMed PMC
Sfeir, A. et al. Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138, 90–103 (2009). PubMed PMC
Sarek, G., Vannier, J.-B., Panier, S., Petrini, J. H. J. & Boulton, S. J. TRF2 recruits RTEL1 to telomeres in S phase to promote T-loop unwinding. Mol. Cell 61, 788–789 (2016). PubMed PMC
Porreca, R. M. et al. Human RTEL1 stabilizes long G-overhangs allowing telomerase-dependent over-extension. Nucleic Acids Res. 46, 4533–4545 (2018). PubMed PMC
Youds, J. L. et al. RTEL-1 enforces meiotic crossover interference and homeostasis. Science 327, 1254–1258 (2010). PubMed PMC
Mendez-Bermudez, A. et al. Genome-wide control of heterochromatin replication by the telomere capping protein TRF2. Mol. Cell 70, 449–461.e5 (2018). PubMed
Schertzer, M. et al. Human regulator of telomere elongation helicase 1 (RTEL1) is required for the nuclear and cytoplasmic trafficking of pre-U2 RNA. Nucleic Acids Res. 43, 1834–1847 (2015). PubMed PMC
Ballew, B. J. et al. A recessive founder mutation in regulator of telomere elongation helicase 1, RTEL1, underlies severe immunodeficiency and features of Hoyeraal Hreidarsson syndrome. PLoS Genet. 9, e1003695 (2013). PubMed PMC
Touzot, F. et al. Extended clinical and genetic spectrum associated with biallelic RTEL1 mutations. Blood Adv. 1, 36–46 (2016). PubMed PMC
Cogan, J. D. et al. Rare variants in RTEL1 are associated with familial interstitial pneumonia. Am. J. Respir. Crit. Care Med. 191, 646–655 (2015). PubMed PMC
Kannengiesser, C. et al. Heterozygous RTEL1 mutations are associated with familial pulmonary fibrosis. Eur. Respir. J. 46, 474–485 (2015). PubMed
Schwab, R. A. et al. The Fanconi anemia pathway maintains genome stability by coordinating replication and transcription. Mol. Cell 60, 351–361 (2015). PubMed PMC
García-Rubio, M. L. et al. The Fanconi anemia pathway protects genome integrity from R-loops. PLoS Genet. 11, e1005674 (2015). PubMed PMC
Yin, J. et al. Dimerization of SLX4 contributes to functioning of the SLX4–nuclease complex. Nucleic Acids Res. 44, 4871–4880 (2016). PubMed PMC
Sarek, G., Vannier, J.-B., Panier, S., Petrini, J. H. J. & Boulton, S. J. TRF2 recruits RTEL1 to telomeres in S phase to promote T-loop unwinding. Mol. Cell 57, 622–635 (2015). PubMed PMC
Faure, G., Revy, P., Schertzer, M., Londoño-Vallejo, A. & Callebaut, I. The C-terminal extension of human RTEL1, mutated in Hoyeraal–Hreidarsson syndrome, contains harmonin-N-like domains. Proteins 82, 897–903 (2014). PubMed
Dungrawala, H. et al. The replication checkpoint prevents two types of fork collapse without regulating replisome stability. Mol. Cell 59, 998–1010 (2015). PubMed PMC
Fu, H. et al. The DNA repair endonuclease Mus81 facilitates fast DNA replication in the absence of exogenous damage. Nat. Commun. 6, 6746 (2015). PubMed
Castor, D. et al. Cooperative control of Holliday junction resolution and DNA repair by the SLX1 and MUS81-EME1 nucleases. Mol. Cell 52, 221–233 (2013). PubMed PMC
Federico, M. B., Campodónico, P., Paviolo, N. S. & Gottifredi, V. Beyond interstrand crosslinks repair: contribution of FANCD2 and other Fanconi anemia proteins to the replication of DNA. Mutat. Res. 808, 83–92 (2018). PubMed
Taniguchi, T. et al. S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood 100, 2414–2420 (2002). PubMed
Okamoto, Y. et al. FANCD2 protects genome stability by recruiting RNA processing enzymes to resolve R-loops during mild replication stress. FEBS J. 286, 139–150 (2018). PubMed
Brubaker, K. et al. Solution structure of the interacting domains of the Mad–Sin3 complex: implications for recruitment of a chromatin-modifying complex. Cell 103, 655–665 (2000). PubMed
Spronk, C. A. et al. The Mad1–Sin3B interaction involves a novel helical fold. Nat. Struct. Biol. 7, 1100–1104 (2000). PubMed
Fisher, O. S. et al. Structure and vascular function of MEKK3-cerebral cavernous malformations 2 complex. Nat. Commun. 6, 7937 (2015). PubMed
Sparks, J. L. et al. The CMG helicase bypasses DNA–protein cross-links to facilitate their repair. Cell 176, 167–181.e21 (2019). PubMed
De Magis, A. et al. DNA damage and genome instability by G-quadruplex ligands are mediated by R loops in human cancer cells. Proc. Natl Acad. Sci. USA 116, 816–825 (2019). PubMed
Crossley, M. P., Bocek, M. & Cimprich, K. A. R-loops as cellular regulators and genomic threats. Mol. Cell 73, 398–411 (2019). PubMed PMC
Okamoto, Y. et al. Replication stress induces accumulation of FANCD2 at central region of large fragile genes. Nucleic Acids Res. 46, 2932–2944 (2018). PubMed PMC
Chan, K. L., Palmai-Pallag, T., Ying, S. & Hickson, I. D. Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat. Cell Biol. 11, 753–760 (2009). PubMed
Naim, V. & Rosselli, F. The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities. Nat. Cell Biol. 11, 761–768 (2009). PubMed
Madireddy, A. et al. FANCD2 facilitates replication through common fragile sites. Mol. Cell 64, 388–404 (2016). PubMed PMC
Wu, W. RTEL1 suppresses G-quadruplex-associated R-loops at difficult-to-replicate loci in the human genome. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-020-0408-6 (2020).
Tate, J. G. et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 47, D941–D947 (2018). PMC
Macheret, M. & Halazonetis, T. D. DNA replication stress as a hallmark of cancer. Annu. Rev. Pathol. 10, 425–448 (2015). PubMed
Helmrich, A., Ballarino, M. & Tora, L. Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol. Cell 44, 966–977 (2011). PubMed
Blin, M. et al. Transcription-dependent regulation of replication dynamics modulates genome stability. Nat. Struct. Mol. Biol. 26, 58–66 (2019). PubMed
Barlow, J. H. et al. Identification of early replicating fragile sites that contribute to genome instability. Cell 152, 620–632 (2013). PubMed PMC
Hangauer, M. J., Vaughn, I. W. & McManus, M. T. Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet. 9, e1003569 (2013). PubMed PMC
Djebali, S. et al. Landscape of transcription in human cells. Nature 489, 101–108 (2012). PubMed PMC
Macheret, M. & Halazonetis, T. D. Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress. Nature 555, 112–116 (2018). PubMed PMC
Le Guen, T. et al. Human RTEL1 deficiency causes Hoyeraal–Hreidarsson syndrome with short telomeres and genome instability. Hum. Mol. Genet. 22, 3239–3249 (2013). PubMed
Buck, D. et al. Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell 124, 287–299 (2006). PubMed
Despras, E. et al. Rad18-dependent SUMOylation of human specialized DNA polymerase eta is required to prevent under-replicated DNA. Nat. Commun. 7, 13326 (2016). PubMed PMC
Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997). PubMed PMC
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013). PubMed PMC
Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009). PubMed PMC
Jones, D. T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999). PubMed
Hanson, J., Yang, Y., Paliwal, K. & Zhou, Y. Improving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks. Bioinformatics 33, 685–692 (2017). PubMed
Zimmermann, L. et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430, 2237–2243 (2018).
Song, Y. et al. High-resolution comparative modeling with RosettaCM. Structure 21, 1735–1742 (2013). PubMed
Wang, X. et al. Structural insights into the molecular recognition between cerebral cavernous malformation 2 and mitogen-activated protein kinase kinase kinase 3. Structure 23, 1087–1096 (2015). PubMed
Collette, Y. et al. Drug response profiling can predict response to ponatinib in a patient with t(1;9)(q24;q34)-associated B-cell acute lymphoblastic leukemia. Blood Cancer J. 5, e292 (2015). PubMed PMC
Chanez, B. et al. Poly (ADP-ribose) polymerase inhibitors for de novo BRCA2-null small-cell prostate cancer. JCO Precis. Oncol. https://doi.org/10.1200/PO.18.00083 (2018).
Human senataxin is a bona fide R-loop resolving enzyme and transcription termination factor