Rhizospheric bacteria: the key to sustainable heavy metal detoxification strategies
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Review
PubMed
37555069
PubMed Central
PMC10405491
DOI
10.3389/fmicb.2023.1229828
Knihovny.cz E-resources
- Keywords
- bioremediation, detoxification, heavy metals, rhizospheric, toxicity,
- Publication type
- Journal Article MeSH
- Review MeSH
The increasing rate of industrialization, anthropogenic, and geological activities have expedited the release of heavy metals (HMs) at higher concentration in environment. HM contamination resulting due to its persistent nature, injudicious use poses a potential threat by causing metal toxicities in humans and animals as well as severe damage to aquatic organisms. Bioremediation is an emerging and reliable solution for mitigation of these contaminants using rhizospheric microorganisms in an environmentally safe manner. The strategies are based on exploiting microbial metabolism and various approaches developed by plant growth promoting bacteria (PGPB) to minimize the toxicity concentration of HM at optimum levels for the environmental clean-up. Rhizospheric bacteria are employed for significant growth of plants in soil contaminated with HM. Exploitation of bacteria possessing plant-beneficial traits as well as metal detoxifying property is an economical and promising approach for bioremediation of HM. Microbial cells exhibit different mechanisms of HM resistance such as active transport, extra cellular barrier, extracellular and intracellular sequestration, and reduction of HM. Tolerance of HM in microorganisms may be chromosomal or plasmid originated. Proteins such as MerT and MerA of mer operon and czcCBA, ArsR, ArsA, ArsD, ArsB, and ArsC genes are responsible for metal detoxification in bacterial cell. This review gives insights about the potential of rhizospheric bacteria in HM removal from various polluted areas. In addition, it also gives deep insights about different mechanism of action expressed by microorganisms for HM detoxification. The dual-purpose use of biological agent as plant growth enhancement and remediation of HM contaminated site is the most significant future prospect of this article.
Amity Institute of Biotechnology Amity University Jharkhand Ranchi India
Department of Applied Sciences Uttaranchal University Dehradun Uttarakhand India
Department of Life Sciences Graphic Era University Dehradun Uttarakhand India
Guru Nanak College of Pharmaceutical Sciences Dehradun Uttarakhand India
School of Agriculture Graphic Era Hill University Bhimtal India
See more in PubMed
Abioye O. P., Oyewole O. A., Oyeleke S. B., Adeyemi M. O., Orukotan A. A. (2018). Biosorption of lead, chromium and cadmium in tannery effluent using indigenous microorganisms. DOI
Abou-Shanab R. A., Angle J. S., Delorme T. A., Chaney R. L., Van Berkum P., Moawad H., et al. (2003). Rhizobacterial effects on nickel extraction from soil and uptake by DOI
Abrar M., Hussain Z., Akif M., Sok K., Muhammad A., Khan A., et al. (2011). Textile effluents and their contribution towards aquatic pollution in the Kabul River (Pakistan).
Adrees M., Ali S., Rizwan M., Ibrahim M., Abbas F., Farid M., et al. (2015). The effect of excess copper on growth and physiology of important food crops: A review. PubMed DOI
Agency for Toxic Substances and Disease Registry [ATSDR] (2015).
Ahemad M. (2012). Implication of bacterial resistance against heavy metals in bioremediation: A review.
Ahemad M. (2015). Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria. PubMed DOI PMC
Ahmed M. K., Parvin E., Islam M. M., Akter M. S., Khan S., Al-Mamun M. H. (2014). Lead-and cadmium-induced histopathological changes in gill, kidney and liver tissue of freshwater climbing perch Anabas testudineus (Bloch, 1792). DOI
Ahuekwe E. F., Okoli B. E., Stanley H. O., Kinigoma B. (2016). “Evaluation of hydrocarbon emulsification and heavy metal detoxification potentials of sophorolipid biosurfactants produced from waste substrates using yeast and mushroom,” in DOI
Amorim S. S., Ruas F. A. D., Barboza N. R., de Oliveira Neves V. G., Leao V. A., Guerra-Sa R. (2018). Manganese (Mn DOI
Anjum S. A., Tanveer M., Hussain S., Shahzad B., Ashraf U., Fahad S., et al. (2016). Osmoregulation and antioxidant production in maize under combined cadmium and arsenic stress. PubMed DOI
Ansari F., Ahmad A., Rafatullah M. (2023). Review on bioremediation technologies of polycyclic aromatic hydrocarbons (PAHs) from soil: Mechanisms and future perspective. DOI
Arab F., Mulligan C. N. (2018). An eco-friendly method for heavy metal removal from mine tailings. PubMed DOI
Asati A., Pichhode M., Nikhil K. (2016). Effect of heavy metals on plants: An overview.
Asgher M., Khan M. I. R., Anjum N. A., Khan N. A. (2015). Minimising toxicity of cadmium in plants—role of plant growth regulators. PubMed DOI
Ayangbenro A. S., Babalola O. O. (2017). A new strategy for heavy metal polluted environments: A review of microbial biosorbents. PubMed DOI PMC
Ayangbenro A. S., Babalola O. O. (2020). Genomic analysis of PubMed DOI PMC
Bachman G. R., Miller W. B. (1995). Iron chelate inducible iron/manganese toxicity in zonal geranium. DOI
Balestrasse K. B., Benavides M. P., Gallego S. M., Tomaro M. L. (2003). Effect of cadmium stress on nitrogen metabolism in nodules and roots of soybean plants. PubMed DOI
Barkay T., Miller S. M., Summers A. O. (2003). Bacterial mercury resistance from atoms to ecosystems. PubMed DOI
Barzanti R., Ozino F., Bazzicalupo M., Gabbrielli R., Galardi F., Gonnelli C., et al. (2007). Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. PubMed DOI
Basak G., Das N. (2014). Characterization of sophorolipid biosurfactant produced by Cryptococcus sp. VITGBN2 and its application on Zn(II) removal from electroplating wastewater. PubMed
Bhaskar P. V., Bhosle N. B. (2006). Bacterial extracellular polymeric substance (EPS): A carrier of heavy metals in the marine food-chain. PubMed DOI
Błaszczyk M. K. (2007).
Brown N. L., Shih Y. C., Leang C., Glendinning K. J., Hobman J. L., Wilson J. R. (2002). Mercury transport and resistance. PubMed DOI
Bruins M. R., Kapil S., Oehme F. W. (2000). Microbial resistance to metals in the environment. PubMed DOI
Cakmak I. (2000). Tansley Review No. 111 Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. PubMed DOI
Cargnelutti D., Tabaldi L. A., Spanevello R. M., de Oliveira Jucoski G., Battisti V., Redin M., et al. (2006). Mercury toxicity induces oxidative stress in growing cucumber seedlings. PubMed DOI
Carrillo-Castañeda G., Muñoz J. J., Peralta-Videa J. R. (2005). A spectrophotometric method to determine the siderophore production by strains of fluorescent DOI
Cervantes C., Campos-García J., Devars S., Gutiérrez-Corona F., Loza-Tavera H., Torres-Guzmán J. C., et al. (2001). Interactions of chromium with microorganisms and plants. PubMed DOI
Cha J. S., Cooksey D. A. (1991). Copper resistance in PubMed DOI PMC
Chatterjee C., Gopal R., Dube B. K. (2006). Physiological and biochemical responses of French bean to excess cobalt. DOI
Checcucci A., Bazzicalupo M., Mengoni A. (2017). “Exploiting nitrogen-fixing rhizobial symbionts genetic resources for improving phytoremediation of contaminated soils,” in DOI
Chen M., Xu P., Zeng G., Yang C., Huang D., Zhang J. (2015). Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs. PubMed DOI
Cheung K. H., Gu J. D. (2007). Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: A review. DOI
Chojnacka K. (2010). Biosorption and bioaccumulation–the prospects for practical applications. PubMed DOI
Coombs J. M., Barkay T. (2005). New findings on evolution of metal homeostasis genes: Evidence from comparative genome analysis of bacteria and archaea. PubMed DOI PMC
da Rocha Junior R. B., Meira H. M., Almeida D. G., Rufino R. D., Luna J. M., et al. (2019). Application of a low-cost biosurfactant in heavy metal remediation processes. PubMed DOI
D’amore J. J., Al-Abed S. R., Scheckel K. G., Ryan J. A. (2005). Methods for speciation of metals in soils: A review. PubMed DOI
Das P., Mukherjee S., Sen R. (2009). Biosurfactant of marine origin exhibiting heavy metal remediation properties. PubMed DOI
De J., Ramaiah N., Vardanyan L. (2008). Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. PubMed DOI
DeForest D. K., Brix K. V., Adams W. J. (2007). Assessing metal bioaccumulation in aquatic environments: The inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. PubMed DOI
Dhami N. K., Reddy M. S., Mukherjee A. (2013). Biomineralization of calcium carbonates and their engineered applications: A review. PubMed DOI PMC
Dhankhar R., Sainger P. A., Sainger M. (2012). Phytoextraction of zinc: Physiological and molecular mechanism. DOI
Dimkpa C. O., Merten D., Svatoš A., Büchel G., Kothe E. (2009). Siderophores mediate reduced and increased uptake of cadmium by PubMed DOI
Dixit R., Malaviya D., Pandiyan K., Singh U. B., Sahu A., Shukla R., et al. (2015). Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. DOI
El-Helow E. R., Sabry S. A., Amer R. M. (2000). Cadmium biosorption by a cadmium resistant strain of PubMed DOI
El-Masry M. H., El-Bestawy E., El-Adl N. I. (2004). Bioremediation of vegetable oil and grease from polluted wastewater using a sand biofilm system. DOI
El-Meihy R. M., Abou-Aly H. E., Youssef A. M., Tewfike T. A., El-Alkshar E. A. (2019). Efficiency of heavy metals-tolerant plant growth promoting bacteria for alleviating heavy metals toxicity on sorghum. DOI
Elouzi A. A., Akasha A. A., Elgerbi A. M., El-Baseir M., El Gammudi B. A. (2012). Removal of heavy metals contamination by bio-surfactants (Rhamnolipids).
Engwa G. A., Ferdinand P. U., Nwalo F. N., Unachukwu M. N. (2019). “Mechanism and health effects of heavy metal toxicity in humans,” in
Fashola M. O., Ngole-Jeme V. M., Babalola O. O. (2016). Heavy metal pollution from gold mines: Environmental effects and bacterial strategies for resistance. PubMed DOI PMC
Fischerová Z., Tlustoš P., Száková J., Šichorová K. (2006). A comparison of phytoremediation capability of selected plant species for given trace elements. PubMed DOI
Fontes R. L. F., Cox F. R. (1998). Zinc toxicity in soybean grown at high iron concentration in nutrient solution. DOI
Foy C. D., Chaney R. T., White M. C. (1978). The physiology of metal toxicity in plants. DOI
Foy C. D., Weil R. R., Coradetti C. A. (1995). Differential manganese tolerances of cotton genotypes in nutrient solution. DOI
Franke S., Grass G., Nies D. H. (2001). The product of the ybdE gene of the PubMed DOI
Fulekar M. H., Singh A., Bhaduri A. M. (2009). Genetic engineering strategies for enhancing phytoremediation of heavy metals.
Gadd G. M. (2010). Metals, minerals and microbes: Geomicrobiology and bioremediation. PubMed DOI
Gangola S., Bhatt P., Joshi S., Bhandari N. S., Kumar S., Prakash O., et al. (2022a). “Isolation, Enrichment, and characterization of Fungi for the degradation of Organic Contaminants,” in DOI
Gangola S., Bhatt P., Kumar A. J., Bhandari G., Joshi S., Punetha A., et al. (2022b). Biotechnological tools to elucidate the mechanism of pesticide degradation in the environment. PubMed DOI
Gangola S., Sharma A., Joshi S., Bhandari G., Prakash O., Govarthanan M., et al. (2022c). Novel mechanism and degradation kinetics of pesticides mixture using PubMed DOI
Gangola S., Bhandari G., Joshi S., Sharma A., Simsek H., Bhatt P. (2023a). Esterase and ALDH dehydrogenase-based pesticide degradation by PubMed DOI
Gangola S., Joshi S., Bhandari G., Bhatt P., Kumar S., Bhandari N. S., et al. (2023b). “Remediation of heavy metals by rhizospheric bacteria and their mechanism of detoxification,” in DOI
Gangola S., Joshi S., Kumar S., Sharma B., Sharma A. (2021). Differential proteomic analysis under pesticides stress and normal conditions in PubMed DOI PMC
Gangola S., Sharma A., Bhatt P., Khati P., Chaudhary P. (2018). Presence of esterase and laccase in PubMed DOI PMC
Gao L., Gu J. D. (2021). A new unified conceptual framework involving maintenance energy, metabolism and toxicity for research on degradation of organic pollutants. DOI
Garbisu C., Alkorta I. (2003). Basic concepts on heavy metal soil bioremediation.
Gautam R. K., Sharma S. K., Mahiya S., Chattopadhyaya M. C. (2014). “Contamination of heavy metals in aquatic media: Transport, toxicity and technologies for remediation,” in DOI
Gavrilescu M. (2004). Removal of heavy metals from the environment by biosorption. DOI
Giller K. E., Witter E., McGrath S. P. (2009). Heavy metals and soil microbes. DOI
Gilotra U., Srivastava S. (1997). Plasmid-encoded sequestration of copper by PubMed DOI
Glick B. R. (2012). Plant growth-promoting bacteria: Mechanisms and applications. PubMed DOI PMC
Gnanamani A., Kavitha V., Radhakrishnan N., Rajakumar G. S., Sekaran G., Mandal A. B. (2010). Microbial products (biosurfactant and extracellular chromate reductase) of marine microorganism are the potential agents reduce the oxidative stress induced by toxic heavy metals. PubMed DOI
Göhre V., Paszkowski U. (2006). Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. PubMed
Gomaa E. Z., El-Meihy R. M. (2019). Bacterial biosurfactant from DOI
Gonzalez Henao S., Ghneim-Herrera T. (2021). Heavy metals in soils and the remediation potential of bacteria associated with the plant microbiome. DOI
Goswami D., Thakker J. N., Dhandhukia P. C. (2016). Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. DOI
Govarthanan M., Mythili R., Selvankumar T., Kamala-Kannan S., Choi D., Chang Y. C. (2017). Isolation and characterization of a biosurfactant-producing heavy metal resistant DOI
Green-Ruiz C. (2006). Mercury (II) removal from aqueous solutions by nonviable PubMed DOI
Große C., Anton A., Hoffmann T., Franke S., Schleuder G., Nies D. H. (2004). Identification of a regulatory pathway that controls the heavy-metal resistance system Czc via promoter czcNp in PubMed DOI
Gu J. D. (2003). Microbiological deterioration and degradation of synthetic polymeric materials: Recent research advances. DOI
Gu J. D. (2014). Assessment of ecosystem health and ecotoxicology through chemical analysis and modeling. PubMed DOI
Gu J. D. (2016). Biodegradation testing: So many tests but very little new innovation. DOI
Gu J. D. (2018). Bioremediation of toxic metals and metalloids for cleaning up from soils and sediments. DOI
Gu J. D. (2019). Microbial ecotoxicology as an emerging research subject.
Gu J. D. (2021). On environmental biotechnology of bioremediation. DOI
Gu J. D., Berry D. F. (1991). Degradation of substituted indoles by an indole-degrading methanogenic consortium. PubMed DOI PMC
Gu J. D., Pan L. (2006). Comparing the growth characteristics of three bacteria involved in degrading rubbers. DOI
Gu J. D., Wang Y. (2013). A new era for geomicrobial ecotoxicology in environmental science research. DOI
Gube M. (2016). “Fungal molecular response to heavy metal stress,” in DOI
Gunes A., Pilbeam D. J., Inal A. (2009). Effect of arsenic–phosphorus interaction on arsenic-induced oxidative stress in chickpea plants. DOI
Guo J., Dai X., Xu W., Ma M. (2008). Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. PubMed DOI
Gupta A., Joia J., Sood A., Sood R., Sidhu C., Kaur G. (2016). Microbes as potential tool for remediation of heavy metals: A review. DOI
Habiba U., Ali S., Farid M., Shakoor M. B., Rizwan M., Ibrahim M., et al. (2015). EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by PubMed DOI
Haefeli C., Franklin C., Hardy K. (1984). Plasmid-determined silver resistance in PubMed DOI PMC
Han F. X., Su Y., Monts D. L., Waggoner C. A., Plodinec M. J. (2006). Binding, distribution, and plant uptake of mercury in a soil from Oak Ridge, Tennessee, USA. PubMed DOI
Han S. H., Lee J. C., Oh C. Y., Kim P. G. (2006). Alleviation of Cd toxicity by composted sewage sludge in Cd-treated Schmidt birch ( PubMed DOI
He L. M., Tebo B. M. (1998). Surface charge properties of and Cu (II) adsorption by spores of the marine PubMed DOI PMC
Hemambika B., Rani M. J., Kannan V. R. (2011). Biosorption of heavy metals by immobilized and dead fungal cells: A comparative assessment.
Henriques B., Rocha L. S., Lopes C. B., Figueira P., Monteiro R. J., Duarte A. D. C., et al. (2015). Study on bioaccumulation and biosorption of mercury by living marine macroalgae: Prospecting for a new remediation biotechnology applied to saline waters. DOI
Huang W., Liu Z. M. (2013). Biosorption of Cd (II)/Pb (II) from aqueous solution by biosurfactant-producing bacteria: Isotherm kinetic characteristic and mechanism studies. PubMed DOI
Hussain S., Khan M., Sheikh T. M. M., Mumtaz M. Z., Chohan T. A., Shamim S., et al. (2022). Zinc essentiality, toxicity, and its bacterial bioremediation: A comprehensive insight. PubMed DOI PMC
Igiri B. E., Okoduwa S. I., Idoko G. O., Akabuogu E. P., Adeyi A. O., Ejiogu I. K. (2018). Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A review. PubMed DOI PMC
Irawati W., Parhusip A. J., Sopiah N. (2015). Heavy metals biosorption by copper resistant bacteria of Acinetobacter Sp. IrC2. DOI
Islam M. S., Hossain M. B., Matin A., Sarker M. S. I. (2018). Assessment of heavy metal pollution, distribution and source apportionment in the sediment from Feni River estuary, Bangladesh. PubMed DOI
Ivanova E. P., Kurilenko V. V., Kurilenko A. V., Gorshkova N. M., Shubin F. N., Nicolau D. V., et al. (2002). Tolerance to cadmium of free-living and associated with marine animals and eelgrass marine gamma- PubMed DOI
Iyer A., Mody K., Jha B. (2005). Biosorption of heavy metals by a marine bacterium. PubMed DOI
Jiang Y., Yang K., Wang H., Shang Y., Yang X. (2015). Characteristics of phenol degradation in saline conditions of a halophilic strain JS3 isolated from industrial activated sludge. PubMed DOI
Jin Y., Luan Y., Ning Y., Wang L. (2018). Effects and mechanisms of microbial remediation of heavy metals in soil: A critical review. DOI
Jing Y. D., He Z. L., Yang X. E. (2007). Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. PubMed DOI PMC
Joshi S., Gangola S., Jaggi V., Sahgal M. (2023a). Functional characterization and molecular fingerprinting of potential phosphate solubilizing bacterial candidates from Shisham rhizosphere. PubMed DOI PMC
Joshi S., Gangola S., Rani A., Sahgal M., Tewari S., Bhandari N. S., et al. (2023b). “Recent molecular and omics approaches to study rhizosphere functioning,” in DOI
Juwarkar A. A., Nair A., Dubey K. V., Singh S. K., Devotta S. (2007). Biosurfactant technology for remediation of cadmium and lead contaminated soils. PubMed DOI
Kader J., Sannasi P., Othman O., Ismail B. S., Salmijah S. (2007). Removal of Cr (VI) from aqueous solutions by growing and non-growing populations of environmental bacterial consortia.
Kamaludeen S. P. B., Ramasamy K. (2008). Rhizoremediation of metals: Harnessing microbial communities. PubMed DOI PMC
Kazy S. K., Sar P., Singh S. P., Sen A. K., D’souza S. (2002). Extracellular polysaccharides of a copper-sensitive and a copper-resistant DOI
Khan A. G. (2005). Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. PubMed DOI
Khan M. I. R., Iqbal N., Masood A., Mobin M., Anjum N. A., Khan N. A. (2016). Modulation and significance of nitrogen and sulfur metabolism in cadmium challenged plants. DOI
Kim I. H., Choi J. H., Joo J. O., Kim Y. K., Choi J. W., Oh B. K. (2015). Development of a microbe-zeolite carrier for the effective elimination of heavy metals from seawater. PubMed DOI
Kim Y., Kwon S., Roh Y. (2021). Effect of divalent cations (Cu, Zn, Pb, Cd, and Sr) on microbially induced calcium carbonate precipitation and mineralogical properties. PubMed DOI PMC
Kisielowska E., Hołda A., Niedoba T. (2010). Removal of heavy metals from coal medium with application of biotechnological methods.
Kitao M., Lei T. T., Koike T. (1997). Effects of manganese toxicity on photosynthesis of white birch ( DOI
Klaus T., Joerger R., Olsson E., Granqvist C. G. (1999). Silver-based crystalline nanoparticles, microbially fabricated. PubMed DOI PMC
Knotek-Smith H. M., Deobald L. A., Ederer M., Crawford D. L. (2003). Cadmium stress studies: Media development, enrichment, consortia analysis, and environmental relevance. PubMed DOI
Kong Z., Glick B. R. (2017). The role of plant growth-promoting bacteria in metal phytoremediation. PubMed DOI
Kuiper I., Lagendijk E. L., Bloemberg G. V., Lugtenberg B. J. (2004). Rhizoremediation: A beneficial plant-microbe interaction. PubMed DOI
Kumar Mishra G. (2017). Microbes in heavy metal remediation: A review on current trends and patents. PubMed DOI
Kumar S., Dubey R. S., Tripathi R. D., Chakrabarty D., Trivedi P. K. (2015). Omics and biotechnology of arsenic stress and detoxification in plants: Current updates and prospective. PubMed DOI
Lasat M. M. (2002). Phytoextraction of toxic metals, a review of biological mechanisms. PubMed DOI
Lauchnor E. G., Schultz L. N., Bugni S., Mitchell A. C., Cunningham A. B., Gerlach R. (2013). Bacterially induced calcium carbonate precipitation and strontium coprecipitation in a porous media flow system. PubMed DOI
Le T. T., Son M. H., Nam I. H., Yoon H., Kang Y. G., Chang Y. S. (2017). Transformation of hexabromocyclododecane in contaminated soil in association with microbial diversity. PubMed DOI
Lee S., Kim Y. Y., Lee Y., An G. (2007). Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. PubMed DOI PMC
Li C., Zhou K., Qin W., Tian C., Qi M., Yan X., et al. (2019). A review on heavy metals contamination in soil: Effects, sources, and remediation techniques. DOI
Lima A. I. G., Corticeiro S. C., de Almeida Paula Figueira E. M. (2006). Glutathione-mediated cadmium sequestration in DOI
Lombi E., Gerzabek M. H. (1998). Determination of mobile heavy metal fraction in soil: Results of a pot experiment with sewage sludge. DOI
Lopes C. S. C., Teixeira D. B., Braz B. F., Santelli R. E., de Castilho L. V. A., Gomez J. G. C., et al. (2021). Application of rhamnolipid surfactant for remediation of toxic metals of long-and short-term contamination sites. DOI
Luna J. M., Rufino R. D., Sarubbo L. A. (2016). Biosurfactant from DOI
Ma Y., Rajkumar M., Zhang C., Freitas H. (2016). Beneficial role of bacterial endophytes in heavy metal phytoremediation. PubMed DOI
Mackay A. K., Taylor M. P., Munksgaard N. C., Hudson-Edwards K. A., Burn-Nunes L. (2013). Identification of environmental lead sources and pathways in a mining and smelting town: Mount Isa, Australia. PubMed DOI
MacNaughton S. J., Stephen J. R., Venosa A. D., Davis G. A., Chang Y. J., White D. C. (1999). Microbial population changes during bioremediation of an experimental oil spill. PubMed DOI PMC
Mahboob S., Al-Balwai H. F. A., Al-Misned F., Ahmad Z. (2014). Investigation on the genotoxicity of mercuric chloride to freshwater
Malik A. (2004). Metal bioremediation through growing cells. PubMed DOI
Mandal S. M., Gouri S. S., De D., Das B. K., Mondal K. C., Pati B. R. (2011). Effect of arsenic on nodulation and nitrogen fixation of blackgram ( PubMed DOI PMC
Marchenko A. M., Pshinko G. N., Demchenko V. Y., Goncharuk V. V. (2015). Leaching heavy metal from deposits of heavy metals with bacteria oxidizing elemental sulphur. DOI
Mathivanan K., Chandirika J. U., Vinothkanna A., Yin H., Liu X., Meng D. (2021). Bacterial adaptive strategies to cope with metal toxicity in the contaminated environment–A review. PubMed DOI
McEldowney S. (2000). The impact of surface attachment on cadmium accumulation by PubMed DOI
Md Badrul Hisham N. H., Ibrahim M. F., Ramli N., Abd-Aziz S. (2019). Production of biosurfactant produced from used cooking oil by PubMed DOI PMC
Mergeay M., Monchy S., Vallaeys T., Auquier V., Benotmane A., Bertin P., et al. (2003). PubMed DOI
Mire C. E., Tourjee J. A., O’Brien W. F., Ramanujachary K. V., Hecht G. B. (2004). Lead precipitation by PubMed DOI PMC
Mishra A., Malik A. (2013). Recent advances in microbial metal bioaccumulation. DOI
Mithoefer A., Schulze B., Boland W. (2004). Biotic and heavy metal stress in plants: Evidence for common signals. PubMed DOI
Mohan A. K., Martis S., Chiplunkar S., Kamath S., Goveas L. C., Rao C. V. (2019). Heavy metal tolerance of
Mosa K. A., Saadoun I., Kumar K., Helmy M., Dhankher O. P. (2016). Potential biotechnological strategies for the cleanup of heavy metals and metalloids. PubMed DOI PMC
Mukhopadhyay R., Rosen B. P., Phung L. T., Silver S. (2002). Microbial arsenic: From geocycles to genes and enzymes. PubMed DOI
Mulligan C. N. (2009). Recent advances in the environmental applications of biosurfactants. DOI
Mulligan C. N., Yong R. N., Gibbs B. F. (2001). Heavy metal removal from sediments by biosurfactants. PubMed DOI
Muñoz R., Alvarez M. T., Muñoz A., Terrazas E., Guieysse B., Mattiasson B. (2006). Sequential removal of heavy metals ions and organic pollutants using an algal-bacterial consortium. PubMed DOI
Musa O. K., Shaibu M. M., Kudamnya E. A. (2013). Heavy metal concentration in groundwater around Obajana and its environs, Kogi State, North Central Nigeria.
Nakazawa R., Kameda Y., Ito T., Ogita Y., Michihata R., Takenaga H. (2004). Selection and characterization of nickel-tolerant tobacco cells. DOI
Narita M., Chiba K., Nishizawa H., Ishii H., Huang C. C., Kawabata Z. I., et al. (2003). Diversity of mercury resistance determinants among PubMed DOI
Naskar A., Majumder R., Goswami M. (2020). Bioaccumulation of Ni (II) on growing cells of DOI
Ngo T. L. P. (2007). The affect of water and soil environment to vegetable quality.
Nies D. H. (2000). Heavy metal-resistant bacteria as extremophiles: Molecular physiology and biotechnological use of PubMed DOI
Nies D. H. (2003). Efflux-mediated heavy metal resistance in prokaryotes. PubMed DOI
Oger C., Mahillon J., Petit F. (2003). Distribution and diversity of a cadmium resistance (cadA) determinant and occurrence of IS 257 insertion sequences in Staphylococcal bacteria isolated from a contaminated estuary (Seine, France). PubMed DOI
Pacle Decena S. C., Sanita Arguelles M., Liporada Robel L. (2018). Assessing heavy metal contamination in surface sediments in an urban river in the Philippines. DOI
Pande V., Pandey S. C., Sati D., Bhatt P., Samant M. (2022). Microbial interventions in bioremediation of heavy metal contaminants in agroecosystem. PubMed DOI PMC
Pandey G., Madhuri S. (2014). Heavy metals causing toxicity in animals and fishes.
Pardo R., Herguedas M., Barrado E., Vega M. (2003). Biosorption of cadmium, copper, lead and zinc by inactive biomass of PubMed DOI
Pastor J., Hernández A. J., Prieto N., Fernández-Pascual M. (2003). Accumulating behaviour of PubMed DOI
Peralta-Videa J. R., Lopez M. L., Narayan M., Saupe G., Gardea-Torresdey J. (2009). The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain. PubMed DOI
Pereira S. I. A., Lima A. I. G., Figueira E. M. D. A. P. (2006). Heavy metal toxicity in DOI
Peters R. W. (1999). Chelant extraction of heavy metals from contaminated soils. PubMed
Pinto E., Sigaud-kutner T. C., Leitao M. A., Okamoto O. K., Morse D., Colepicolo P. (2003). Heavy metal–induced oxidative stress in algae 1. DOI
Pires C., Franco A. R., Pereira S. I., Henriques I., Correia A., Magan N., et al. (2017). Metal (loid)-contaminated soils as a source of culturable heterotrophic aerobic bacteria for remediation applications. DOI
Poulsen T. G., Bester K. (2010). Organic micropollutant degradation in sewage sludge during composting under thermophilic conditions. PubMed DOI
Puyen Z. M., Villagrasa E., Maldonado J., Diestra E., Esteve I., Solé A. (2012). Biosorption of lead and copper by heavy-metal tolerant PubMed DOI
Qazilbash A. A. (2004).
Qi X., Xu X., Zhong C., Jiang T., Wei W., Song X. (2018). Removal of cadmium and lead from contaminated soils using sophorolipids from fermentation culture of PubMed DOI PMC
Rahman Z., Singh V. P. (2019). The relative impact of toxic heavy metals (THMs)(arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. PubMed DOI
Rahman Z., Thomas L., Singh V. P. (2019). Biosorption of heavy metals by a lead (Pb) resistant bacterium, PubMed DOI
Rajaei G., Mansouri B., Jahantigh H., Hamidian A. H. (2012). Metal concentrations in the water of Chah nimeh reservoirs in Zabol, Iran. PubMed DOI
Rajkumar M., Freitas H. (2008). Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard. PubMed DOI
Ramasamy V., Murugesan S., Mullainathan S., Chaparro M. A. E. (2006). Magnetic characterization of recently excavated sediments of Cauvery river, Tamilnadu, India.
Rani A., Goel R. (2009). “Strategies for crop improvement in contaminated soils using metal-tolerant bioinoculants,” in DOI
Raskin I., Kumar P. N., Dushenkov S., Salt D. E. (1994). Bioconcentration of heavy metals by plants.
Ravindran A., Sajayan A., Priyadharshini G. B., Selvin J., Kiran G. S. (2020). Revealing the efficacy of thermostable biosurfactant in heavy metal bioremediation and surface treatment in vegetables. PubMed DOI PMC
Reniero D., Mozzon E., Galli E., Barbieri P. (1998). Two aberrant mercury resistance transposons in the PubMed DOI
Rensing C., Ghosh M., Rosen B. P. (1999). Families of soft-metal-ion-transporting ATPases. PubMed DOI PMC
Rezania S., Taib S. M., Din M. F. M., Dahalan F. A., Kamyab H. (2016). Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater. PubMed DOI
Richau J. A., Choquenet D., Fialho A. M., Sá-Correia I. (1997). Emergence of Cu PubMed DOI
Roane T. M., Pepper I. L. (2000). “Microorganisms and metal pollution,” in
Rufino R. D., Luna J. M., Campos-Takaki G. M., Ferreira S. R., Sarubbo L. A. (2012). Application of the biosurfactant produced by DOI
Sabiha-Javied, Mehmood T., Chaudhry M. M., Tufail M., Irfan N. (2009). Heavy metal pollution from phosphate rock used for the production of fertilizer in Pakistan.
Sahmoune M. N. (2019). Evaluation of thermodynamic parameters for adsorption of heavy metals by green adsorbents.
Sankarammal M., Thatheyus A., Ramya D. (2014). Bioremoval of cadmium using DOI
Saranya K., Sundaramanickam A., Shekhar S., Meena M., Sathishkumar R. S., Balasubramanian T. (2018). Biosorption of multi-heavy metals by coral associated phosphate solubilising bacteria PubMed DOI
Saxena D., Joshi N., Srivastava S. (2002). Mechanism of copper resistance in a copper mine isolate PubMed DOI
Sayqal A., Ahmed O. B. (2021). Advances in heavy metal bioremediation: An overview. PubMed PMC
Seneviratne M., Seneviratne G., Madawala H. M. S. P., Vithanage M. (2017). “Role of rhizospheric microbes in heavy metal uptake by plants,” in DOI
Seth C. S., Chaturvedi P. K., Misra V. (2008). The role of phytochelatins and antioxidants in tolerance to Cd accumulation in PubMed DOI
Sethy S. K., Ghosh S. (2013). Effect of heavy metals on germination of seeds. PubMed PMC
Sharma P. K., Balkwill D. L., Frenkel A., Vairavamurthy M. A. (2000). A new PubMed DOI PMC
Shaw B. P., Sahu S. K., Mishra R. K. (2004). “Heavy metal induced oxidative damage in terrestrial plants,” in DOI
Shukla S. K., Hariharan S., Rao T. S. (2020). Uranium bioremediation by acid phosphatase activity of PubMed DOI
Siddiquee S., Rovina K., Azad S. A., Naher L., Suryani S., Chaikaew P. (2015). Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: A review. DOI
Silver S. (2003). Bacterial silver resistance: Molecular biology and uses and misuses of silver compounds. PubMed DOI
Singh A. K., Cameotra S. S. (2013). Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil. PubMed DOI
Singh R., Singh D. P., Kumar N., Bhargava S. K., Barman S. C. (2010). Accumulation and translocation of heavy metals in soil and plants from fly ash contaminated area. PubMed
Sklodowska A. (2000). Biologiczne metody lugowania metali ciezkich-biohydrometalurgia.
Slawson R. M., Trevors J. T., Lee H. (1992). Silver accumulation and resistance in DOI
Smirnova G. F. (2005). Distribution of bacteria resistant to oxygen-containing anions-xenobiotics. PubMed
Sobariu D. L., Fertu D. I., Diaconu M., Pavel L. V., Hlihor R., Drãgoi E. N., et al. (2017). Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation. PubMed DOI
Spain O., Plöhn M., Funk C. (2021). The cell wall of green microalgae and its role in heavy metal removal. PubMed DOI
Sposito F. G. (2000). “The chemistry of soils,” in
Srichandan H., Pathak A., Singh S., Blight K., Kim D. J., Lee S. W. (2014). Sequential leaching of metals from spent refinery catalyst in bioleaching–bioleaching and bioleaching–chemical leaching reactor: Comparative study. DOI
Srinath T., Verma T., Ramteke P. W., Garg S. K. (2002). Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. PubMed DOI
Srivastava S., Agrawal S. B., Mondal M. K. (2015). A review on progress of heavy metal removal using adsorbents of microbial and plant origin. PubMed DOI
Su C. (2014). A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques.
Summers A. O., Silver S. (1972). Mercury resistance in a plasmid-bearing strain of PubMed DOI PMC
Tang J., Zhang J., Ren L., Zhou Y., Gao J., Luo L., et al. (2019). Diagnosis of soil contamination using microbiological indices: A review on heavy metal pollution. PubMed DOI
Tassi E., Pouget J., Petruzzelli G., Barbafieri M. (2008). The effects of exogenous plant growth regulators in the phytoextraction of heavy metals. PubMed DOI
Tayang A., Songachan L. S. (2021). Microbial bioremediation of heavy metals. DOI
Tripathi M., Munot H. P., Shouche Y., Meyer J. M., Goel R. (2005). Isolation and functional characterization of siderophore-producing lead-and cadmium-resistant PubMed DOI
Tripathi R. D., Srivastava S., Mishra S., Singh N., Tuli R., Gupta D. K., et al. (2007). Arsenic hazards: Strategies for tolerance and remediation by plants. PubMed DOI
Tseng C. H., Huang Y. K., Huang Y. L., Chung C. J., Yang M. H., Chen C. J., et al. (2005). Arsenic exposure, urinary arsenic speciation, and peripheral vascular disease in blackfoot disease-hyperendemic villages in Taiwan. PubMed DOI
Ullah A., Mushtaq H., Ali H., Munis M. F. H., Javed M. T., Chaudhary H. J. (2015). Diazotrophs-assisted phytoremediation of heavy metals: A novel approach. PubMed DOI
Vats N., Lee S. F. (2001). Characterization of a copper-transport operon, copYAZ, from PubMed DOI
Venkatesh N. M., Vedaraman N. (2012). Remediation of soil contaminated with copper using rhamnolipids produced from DOI
Vidali M. (2001). Bioremediation. an overview. DOI
Vikram A., Johri T., Tandon P. K. (2011). Effect of chromium (IV) on growth and metabolism of
Viti C., Pace A., Giovannetti L. (2003). Characterization of Cr (VI)-resistant bacteria isolated from chromium-contaminated soil by tannery activity. PubMed DOI
Wang C. L., Ozuna S. C., Clark D. S., Keasling J. D. (2002). A deep-sea hydrothermal vent isolate, PubMed DOI PMC
World Health Organization [WHO] (2010).
Yang T., Chen M. L., Wang J. H. (2015). Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance. DOI
Yang Z., Shi W., Yang W., Liang L., Yao W., Chai L., et al. (2018). Combination of bioleaching by gross bacterial biosurfactants and flocculation: A potential remediation for the heavy metal contaminated soils. PubMed DOI
Ybarra G. R., Webb R. (1999). Effects of divalent metal cations and resistance mechanisms of the cyanobacterium DOI
Yin T., Lin H., Dong Y., Li B., He Y., Liu C., et al. (2021). A novel constructed carbonate-mineralized functional bacterial consortium for high-efficiency cadmium biomineralization. PubMed DOI
Zhang W. M., Gu S. F. (2007). Catalytic effect of activated carbon on bioleaching of low-grade primary copper sulflde ores. DOI
Zhang W., Ju Y., Zong Y., Qi H., Zhao K. (2018). In situ real-time study on dynamics of microbially induced calcium carbonate precipitation at a single-cell level. PubMed DOI
Zhang X., Wang H., He L., Lu K., Sarmah A., Li J., et al. (2013). Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. PubMed DOI
Zhou Z. S., Huang S. Q., Guo K., Mehta S. K., Zhang P. C., Yang Z. M. (2007). Metabolic adaptations to mercury-induced oxidative stress in roots of PubMed DOI
Zhuang P., Zhi-An L. I., Bi Z. O. U., Han-Ping X. I. A., Gang W. A. N. G. (2013). Heavy metal contamination in soil and soybean near the Dabaoshan Mine, South China. DOI