Obesity, Cardiovascular and Neurodegenerative Diseases: Potential Common Mechanisms

. 2023 Jul 31 ; 72 (Suppl 2) : S73-S90.

Jazyk angličtina Země Česko Médium print

Typ dokumentu přehledy, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37565414

The worldwide increase in the incidence of obesity and cardiovascular and neurodegenerative diseases, e.g. Alzheimer's disease, is related to many factors, including an unhealthy lifestyle and aging populations. However, the interconnection between these diseases is not entirely clear, and it is unknown whether common mechanisms underlie these conditions. Moreover, there are currently no fully effective therapies for obesity and neurodegeneration. While there has been extensive research in preclinical models addressing these issues, the experimental findings have not been translated to the clinic. Another challenge relates to the time of onset of individual diseases, which may not be easily identified, since there are no specific indicators or biomarkers that define disease onset. Hence knowing when to commence preventive treatment is unclear. This is especially pertinent in neurodegenerative diseases, where the onset of the disease may be subtle and occur decades before the signs and symptoms manifest. In metabolic and cardiovascular disorders, the risk may occur in-utero, in line with the concept of fetal programming. This review provides a brief overview of the link between obesity, cardiovascular and neurodegenerative diseases and discusses potential common mechanisms including the role of the gut microbiome.

Zobrazit více v PubMed

Maletínská L, Popelová A, Železná B, Bencze M, Kuneš J. The impact of anorexigenic peptides in experimental models of Alzheimer’s disease pathology. J Endocrinol. 2019;240(2):R47–r72. doi: 10.1530/JOE-18-0532. PubMed DOI

Nakajima T, Fujioka S, Tokunaga K, Hirobe K, Matsuzawa Y, Tarui S. Noninvasive study of left ventricular performance in obese patients: influence of duration of obesity. Circulation. 1985;71:481–486. doi: 10.1161/01.CIR.71.3.481. PubMed DOI

Reis JP, Loria CM, Lewis CE, Powell-Wiley TM, Wei GS, Carr JJ, et al. Association between duration of overall and abdominal obesity beginning in young adulthood and coronary artery calcification in middle age. JAMA. 2013;310:280–288. doi: 10.1001/jama.2013.7833. PubMed DOI PMC

Tanamas SK, Wong E, Backholer K, Abdullah A, Wolfe R, Barendregt J, et al. Duration of obesity and incident hypertension in adults from the Framingham Heart Study. J Hypertens. 2015;33:542–545. doi: 10.1097/HJH.0000000000000441. discussion 5 . PubMed DOI

Mulvany MJ, Baumbach GL, Aalkjaer C, Heagerty AM, Korsgaard N, Schiffrin EL, et al. Vascular remodeling. Hypertension. 1996;28:505–506. PubMed

Hajdu MA, Heistad DD, Siems JE, Baumbach GL. Effects of aging on mechanics and composition of cerebral arterioles in rats. Circ Res. 1990;66(6):1747–1754. doi: 10.1161/01.RES.66.6.1747. PubMed DOI

Meissner A. Hypertension and the brain: a risk factor for more than heart disease. Cerebrovasc Dis. 2016;42(3–4):255–262. doi: 10.1159/000446082. PubMed DOI

Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12:822–838. doi: 10.1016/S1474-4422(13)70124-8. PubMed DOI PMC

Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications. Lancet Neurol. 2019;18:684–696. doi: 10.1016/S1474-4422(19)30079-1. PubMed DOI

Kim CK, Kwon HM, Lee SH, Kim BJ, Ryu WS, Kwon HT, et al. Association of obesity with cerebral microbleeds in neurologically asymptomatic elderly subjects. J Neurol. 2012;259:2599–2604. doi: 10.1007/s00415-012-6546-y. PubMed DOI

Pucci G, Alcidi R, Tap L, Battista F, Mattace Raso F, Schillaci G. Sex- and gender-related prevalence, cardiovascular risk and therapeutic approach in metabolic syndrome: A review of the literature. 2017:34–42. doi: 10.1016/j.phrs.2017.03.008. PubMed DOI

Whayne TF, Saha SP., Jr Genetic Risk, Adherence to a Healthy Lifestyle, and Ischemic Heart Disease. Curr Cardiol Rep. 2019;21:1. doi: 10.1007/s11886-019-1086-z. PubMed DOI

Yoshimura M, Yasue H, Nakayama M, Shimasaki Y, Ogawa H, Kugiyama K, et al. Genetic risk factors for coronary artery spasm: significance of endothelial nitric oxide synthase gene T-786-->C and missense Glu298Asp variants. J Investig Med. 2000;48:367–374. PubMed

Oike Y, Hata A, Ogata Y, Numata Y, Shido K, Kondo K. Angiotensin converting enzyme as a genetic risk factor for coronary artery spasm. Implication in the pathogenesis of myocardial infarction. J Clin Invest. 1995;96:2975–2579. doi: 10.1172/JCI118369. PubMed DOI PMC

Amant C, Hamon M, Bauters C, Richard F, Helbecque N, McFadden EP, et al. The angiotensin II type 1 receptor gene polymorphism is associated with coronary artery vasoconstriction. J Am Coll Cardiol. 1997;29:486–490. doi: 10.1016/S0735-1097(96)00535-9. PubMed DOI

Ito T, Yasue H, Yoshimura M, Nakamura S, Nakayama M, Shimasaki Y, et al. Paraoxonase gene Gln192Arg (Q192R) polymorphism is associated with coronary artery spasm. Hum Genet. 2002;110:89–94. doi: 10.1007/s00439-001-0654-6. PubMed DOI

Shokri Y, Variji A, Nosrati M, Khonakdar-Tarsi A, Kianmehr A, Kashi Z, et al. Importance of paraoxonase 1 (PON1) as an antioxidant and antiatherogenic enzyme in the cardiovascular complications of type 2 diabetes: Genotypic and phenotypic evaluation. Diabetes Res Clin Pract. 2020;161:108067. doi: 10.1016/j.diabres.2020.108067. PubMed DOI

Sonel AF, Good CB, Mulgund J, Roe MT, Gibler WB, Smith SC, Jr, et al. Racial variations in treatment and outcomes of black and white patients with high-risk non-ST-elevation acute coronary syndromes: insights from CRUSADE (Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes With Early Implementation of the ACC/AHA Guidelines?) Circulation. 2005;111:1225–1232. doi: 10.1161/01.CIR.0000157732.03358.64. PubMed DOI

Nakamura M, Sadoshima J. Cardiomyopathy in obesity, insulin resistance and diabetes. J Physiol. 2020;598:2977–2993. doi: 10.1113/JP276747. PubMed DOI

Barua RS, Ambrose JA, Saha DC, Eales-Reynolds LJ. Smoking is associated with altered endothelial-derived fibrinolytic and antithrombotic factors: an in vitro demonstration. Circulation. 2002;106:905–908. doi: 10.1161/01.CIR.0000029091.61707.6B. PubMed DOI

Bergami M, Scarpone M, Bugiardini R, Cenko E, Manfrini O. Sex beyond cardiovascular risk factors and clinical biomarkers of cardiovascular disease. Rev Cardiovasc Med. 2022;23:19. doi: 10.31083/j.rcm2301019. PubMed DOI

Manfrini O, Yoon J, van der Schaar M, Kedev S, Vavlukis M, Stankovic G, et al. Sex differences in modifiable risk factors and severity of coronary artery disease. J Am Heart Assoc. 2020;9(19):e017235. doi: 10.1161/JAHA.120.017235. PubMed DOI PMC

Messner B, Bernhard D. Smoking and cardiovascular disease: mechanisms of endothelial dysfunction and early atherogenesis. Arterioscler Thromb Vasc Biol. 2014;34:509–515. doi: 10.1161/ATVBAHA.113.300156. PubMed DOI

O’Donnell MJ, Chin SL, Rangarajan S, Xavier D, Liu L, Zhang H, et al. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study. Lancet. 2016;388(10046):761–775. doi: 10.1016/S0140-6736(16)30506-2. PubMed DOI

Chareonrungrueangchai K, Wongkawinwoot K, Anothaisintawee T, Reutrakul S. Dietary factors and risks of cardiovascular diseases: an umbrella review. Nutrients. 2020:12. doi: 10.3390/nu12041088. PubMed DOI PMC

Allman BR, Andres A, Børsheim E. The Association of Maternal Protein Intake during Pregnancy in Humans with Maternal and Offspring Insulin Sensitivity Measures. Curr Dev Nutr. 2019;3:nzz055. doi: 10.1093/cdn/nzz055. PubMed DOI PMC

Stanhope KL. Sugar consumption, metabolic disease and obesity: The state of the controversy. Crit Rev Clin Lab Sci. 2016;53:52–67. doi: 10.3109/10408363.2015.1084990. PubMed DOI PMC

Bray GA. Energy and fructose from beverages sweetened with sugar or high-fructose corn syrup pose a health risk for some people. Adv Nutr. 2013;4:220–225. doi: 10.3945/an.112.002816. PubMed DOI PMC

Dwivedi AK, Dubey P, Reddy SY, Clegg DJ. Associations of Glycemic Index and Glycemic Load with Cardiovascular Disease: Updated Evidence from Meta-analysis and Cohort Studies. Curr Cardiol Rep. 2022;24(3):141–161. doi: 10.1007/s11886-022-01635-2. PubMed DOI

Hu FB, Malik VS. Sugar-sweetened beverages and risk of obesity and type 2 diabetes: epidemiologic evidence. Physiol Behav. 2010;100:47–54. doi: 10.1016/j.physbeh.2010.01.036. PubMed DOI PMC

Li S, Cao M, Yang C, Zheng H, Zhu Y. Association of sugar-sweetened beverage intake with risk of metabolic syndrome among children and adolescents in urban China. Public Health Nutr. 2020;23:2770–2780. doi: 10.1017/S1368980019003653. PubMed DOI PMC

Mirrahimi A, de Souza RJ, Chiavaroli L, Sievenpiper JL, Beyene J, Hanley AJ, et al. Associations of glycemic index and load with coronary heart disease events: a systematic review and meta-analysis of prospective cohorts. J Am Heart Assoc. 2012;1:e000752. doi: 10.1161/JAHA.112.000752. PubMed DOI PMC

Kahn R, Sievenpiper JL. Dietary sugar and body weight: have we reached a crisis in the epidemic of obesity and diabetes?: we have, but the pox on sugar is overwrought and overworked. Diabetes Care. 2014;37:957–962. doi: 10.2337/dc13-2506. PubMed DOI

Benade J, Sher L, De Klerk S, Deshpande G, Bester D, Marnewick JL, et al. The Impact of Sugar-Sweetened Beverage Consumption on the Liver: A Proteomics-based Analysis. Antioxidants (Basel) 2020:9. doi: 10.3390/antiox9070569. PubMed DOI PMC

Souza Cruz EM, Bitencourt de Morais JM, Dalto da Rosa CV, da Silva Simões M, Comar JF, de Almeida Chuffa LG, et al. Long-term sucrose solution consumption causes metabolic alterations and affects hepatic oxidative stress in Wistar rats. Biol Open. 2020:9. doi: 10.1242/bio.047282. PubMed DOI PMC

Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353:2643–2653. doi: 10.1056/NEJMoa052187. PubMed DOI PMC

Giglio RV, Stoian AP, Haluzik M, Pafili K, Patti AM, Rizvi AA, et al. Novel molecular markers of cardiovascular disease risk in type 2 diabetes mellitus. Biochim Biophys Acta Mol Basis Dis. 2021;1867:166148. doi: 10.1016/j.bbadis.2021.166148. PubMed DOI

WHO Guidelines Guideline: Sodium Intake for Adults and Children. Geneva: World Health Organization; 2012. Guidelines. Copyright © 2012, World Health Organization. PubMed

Brown IJ, Tzoulaki I, Candeias V, Elliott P. Salt intakes around the world: implications for public health. Int J Epidemiol. 2009;38:791–813. doi: 10.1093/ije/dyp139. PubMed DOI

Abdulai T, Runqi T, Mao Z, Oppong TB, Amponsem-Boateng C, Wang Y, et al. Preference for High Dietary Salt Intake Is Associated With Undiagnosed Type 2 Diabetes: The Henan Rural Cohort. Front Nutr. 2020;7:537049. doi: 10.3389/fnut.2020.537049. PubMed DOI PMC

Horikawa C, Yoshimura Y, Kamada C, Tanaka S, Tanaka S, Hanyu O, et al. Dietary Sodium Intake and Incidence of Diabetes Complications in Japanese Patients with Type 2 Diabetes: Analysis of the Japan Diabetes Complications Study (JDCS) J Clin Endocrinol Metab. 2014;99:3635–3643. doi: 10.1210/jc.2013-4315. PubMed DOI

Lanaspa MA, Kuwabara M, Andres-Hernando A, Li N, Cicerchi C, Jensen T, et al. High salt intake causes leptin resistance and obesity in mice by stimulating endogenous fructose production and metabolism. Proc Natl Acad Sci U S A. 2018;115:3138–3143. doi: 10.1073/pnas.1713837115. PubMed DOI PMC

Ogihara T, Asano T, Ando K, Chiba Y, Sekine N, Sakoda H, et al. Insulin resistance with enhanced insulin signaling in high-salt diet-fed rats. Diabetes. 2001;50:573–583. doi: 10.2337/diabetes.50.3.573. PubMed DOI

Ren J, Qin L, Li X, Zhao R, Wu Z, Ma Y. Effect of dietary sodium restriction on blood pressure in type 2 diabetes: A meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2021;31:1653–1661. doi: 10.1016/j.numecd.2021.02.019. PubMed DOI

Hariharan R, Odjidja EN, Scott D, Shivappa N, Hébert JR, Hodge A, et al. The dietary inflammatory index, obesity, type 2 diabetes, and cardiovascular risk factors and diseases. Obes Rev. 2022;23:e13349. doi: 10.1111/obr.13349. PubMed DOI

Todendi PF, Salla R, Shivappa N, Hebert JR, Ritter J, Cureau FV, Schaan BD. Association between dietary inflammatory index and cardiometabolic risk factors among Brazilian adolescents: results from a national cross-sectional study. Br J Nutr. 2022 Aug 28;128(4):744–752. doi: 10.1017/S0007114521003767. PubMed DOI

Daulatzai MA. Cerebral hypoperfusion and glucose hypometabolism: Key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer's disease. J Neurosci Res. 2017;95:943–972. doi: 10.1002/jnr.23777. PubMed DOI

Ighodaro ET, Abner EL, Fardo DW, Lin AL, Katsumata Y, Schmitt FA, et al. Risk factors and global cognitive status related to brain arteriolosclerosis in elderly individuals. J Cereb Blood Flow Metab. 2017;37:201–216. doi: 10.1177/0271678X15621574. PubMed DOI PMC

Gorelick PB, Counts SE, Nyenhuis D. Vascular cognitive impairment and dementia. Biochim Biophys Acta. 2016;1862:860–868. doi: 10.1016/j.bbadis.2015.12.015. PubMed DOI PMC

Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke. 2011;42:2672–2713. doi: 10.1161/STR.0b013e3182299496. PubMed DOI PMC

Kalaria RN, Sepulveda-Falla D. Cerebral small vessel disease in sporadic and familial Alzheimer disease. Am J Pathol. 2021;191:1888–1905. doi: 10.1016/j.ajpath.2021.07.004. PubMed DOI PMC

Iadecola C, Gottesman RF. Neurovascular and cognitive dysfunction in hypertension. Circ Res. 2019;124:1025–1044. doi: 10.1161/CIRCRESAHA.118.313260. PubMed DOI PMC

Barker DJ. The fetal and infant origins of adult disease. Bmj. 1990;301:1111. doi: 10.1136/bmj.301.6761.1111. PubMed DOI PMC

Ong KK, Ahmed ML, Emmett PM, Preece MA, Dunger DB. Association between postnatal catch-up growth and obesity in childhood: prospective cohort study. Bmj. 2000;320:967–971. doi: 10.1136/bmj.320.7240.967. PubMed DOI PMC

Monteiro PO, Victora CG. Rapid growth in infancy and childhood and obesity in later life--a systematic review. Obes Rev. 2005;6:143–154. doi: 10.1111/j.1467-789X.2005.00183.x. PubMed DOI

Barbosa P, Melnyk S, Bennuri SC, Delhey L, Reis A, Moura GR, et al. Redox imbalance and methylation disturbances in early childhood obesity. Oxid Med Cell Longev. 2021;2021:2207125. doi: 10.1155/2021/2207125. PubMed DOI PMC

Martyn JA, Kaneki M, Yasuhara S. Obesity-induced insulin resistance and hyperglycemia: etiologic factors and molecular mechanisms. Anesthesiology. 2008;109:137–148. doi: 10.1097/ALN.0b013e3181799d45. PubMed DOI PMC

Adeva-Andany MM, Funcasta-Calderón R, Fernández-Fernández C, Ameneiros-Rodríguez E, Domínguez-Montero A. Subclinical vascular disease in patients with diabetes is associated with insulin resistance. Diabetes Metab Syndr. 2019;13:2198–2206. doi: 10.1016/j.dsx.2019.05.025. PubMed DOI

Zicha J, Kunes J. Ontogenetic aspects of hypertension development: analysis in the rat. Physiol Rev. 1999;79:1227–1282. doi: 10.1152/physrev.1999.79.4.1227. PubMed DOI

Maslova E, Hansen S, Grunnet LG, Strøm M, Bjerregaard AA, Hjort L, et al. Maternal protein intake in pregnancy and offspring metabolic health at age 9–16 y: results from a Danish cohort of gestational diabetes mellitus pregnancies and controls. Am J Clin Nutr. 2017;106:623–636. doi: 10.3945/ajcn.115.128637. PubMed DOI PMC

Moreno-Fernandez J, Ochoa JJ, Lopez-Frias M, Diaz-Castro J. Impact of early nutrition, physical activity and sleep on the fetal programming of disease in the pregnancy: a narrative review. Nutrients. 2020:12. doi: 10.3390/nu12123900. PubMed DOI PMC

Zheng J, Xiao X, Zhang Q, Yu M. DNA methylation: the pivotal interaction between early-life nutrition and glucose metabolism in later life. Br J Nutr. 2014;112:1850–1857. doi: 10.1017/S0007114514002827. PubMed DOI

Nicolucci A, Maffeis C. The adolescent with obesity: what perspectives for treatment? Ital J Pediatr. 2022;48:9. doi: 10.1186/s13052-022-01205-w. PubMed DOI PMC

Friedemann C, Heneghan C, Mahtani K, Thompson M, Perera R, Ward AM. Cardiovascular disease risk in healthy children and its association with body mass index: systematic review and meta-analysis. Bmj. 2012;345:e4759. doi: 10.1136/bmj.e4759. PubMed DOI PMC

Kelly AS, Auerbach P, Barrientos-Perez M, Gies I, Hale PM, Marcus C, et al. A Randomized, Controlled Trial of Liraglutide for Adolescents with Obesity. N Engl J Med. 2020;382:2117–2128. doi: 10.1056/NEJMoa1916038. PubMed DOI

Perdoncin M, Konrad A, Wyner JR, Lohana S, Pillai SS, Pereira DG, et al. A review of miRNAs as biomarkers and effect of dietary modulation in obesity associated cognitive decline and neurodegenerative disorders. Front Mol Neurosci. 2021;14:756499. doi: 10.3389/fnmol.2021.756499. PubMed DOI PMC

Terzo S, Amato A, Mulè F. From obesity to Alzheimer's disease through insulin resistance. J Diabetes Complications. 2021;35:108026. doi: 10.1016/j.jdiacomp.2021.108026. PubMed DOI

Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease--is this type 3 diabetes? J Alzheimers Dis. 2005;7:63–80. doi: 10.3233/JAD-2005-7107. PubMed DOI

Ho L, Qin W, Pompl PN, Xiang Z, Wang J, Zhao Z, et al. Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer's disease. Faseb j. 2004;18:902–904. doi: 10.1096/fj.03-0978fje. PubMed DOI

Julien C, Tremblay C, Phivilay A, Berthiaume L, Emond V, Julien P, et al. High-fat diet aggravates amyloid-beta and tau pathologies in the 3xTg-AD mouse model. Neurobiol Aging. 2010;31:1516–1531. doi: 10.1016/j.neurobiolaging.2008.08.022. PubMed DOI

Verdile G, Keane KN, Cruzat VF, Medic S, Sabale M, Rowles J, et al. Inflammation and Oxidative Stress: The molecular connectivity between insulin resistance, obesity, and Alzheimer's disease. Mediators Inflamm. 2015;2015:105828. doi: 10.1155/2015/105828. PubMed DOI PMC

Kacířová M, Zmeškalová A, Kořínková L, Železná B, Kuneš J, Maletínská L. Inflammation: major denominator of obesity, Type 2 diabetes and Alzheimer's disease-like pathology? Clin Sci (Lond) 2020;134:547–570. doi: 10.1042/CS20191313. PubMed DOI

Lucero J, Suwannasual U, Herbert LM, McDonald JD, Lund AK. The role of the lectin-like oxLDL receptor (LOX-1) in traffic-generated air pollution exposure-mediated alteration of the brain microvasculature in Apolipoprotein (Apo) E knockout mice. Inhal Toxicol. 2017;29:266–281. doi: 10.1080/08958378.2017.1357774. PubMed DOI PMC

Naik P, Fofaria N, Prasad S, Sajja RK, Weksler B, Couraud PO, et al. Oxidative and pro-inflammatory impact of regular and denicotinized cigarettes on blood brain barrier endothelial cells: is smoking reduced or nicotine-free products really safe? BMC Neurosci. 2014;15:51. doi: 10.1186/1471-2202-15-51. PubMed DOI PMC

Khan MSH, Hegde V. Obesity and Diabetes Mediated Chronic Inflammation: A Potential Biomarker in Alzheimer's Disease. J Pers Med. 2020:10. doi: 10.3390/jpm10020042. PubMed DOI PMC

Anthony SR, Guarnieri AR, Gozdiff A, Helsley RN, Phillip Owens A, Tranter M. Mechanisms linking adipose tissue inflammation to cardiac hypertrophy and fibrosis. Clin Sci (Lond) 2019;133:2329–2344. doi: 10.1042/CS20190578. PubMed DOI PMC

Xia N, Li H. The role of perivascular adipose tissue in obesity-induced vascular dysfunction. Br J Pharmacol. 2017;174(20):3425–3442. https://doi.org/10.1111/bph.13650, https://doi.org/10.1111/bph.13703. PubMed DOI PMC

Saxton SN, Clark BJ, Withers SB, Eringa EC, Heagerty AM. Mechanistic Links Between Obesity, Diabetes, and Blood Pressure: Role of Perivascular Adipose Tissue. Physiol Rev. 2019;99:1701–1763. doi: 10.1152/physrev.00034.2018. PubMed DOI

Hu H, Garcia-Barrio M, Jiang ZS, Chen YE, Chang L. Roles of Perivascular Adipose Tissue in Hypertension and Atherosclerosis. Antioxid Redox Signal. 2021;34:736–749. doi: 10.1089/ars.2020.8103. PubMed DOI PMC

Padilla J, Jenkins NT, Vieira-Potter VJ, Laughlin MH. Divergent phenotype of rat thoracic and abdominal perivascular adipose tissues. Am J Physiol Regul Integr Comp Physiol. 2013;304:R543–R552. doi: 10.1152/ajpregu.00567.2012. PubMed DOI PMC

Bussey CE, Withers SB, Aldous RG, Edwards G, Heagerty AM. Obesity-Related Perivascular Adipose Tissue Damage Is Reversed by Sustained Weight Loss in the Rat. Arterioscler Thromb Vasc Biol. 2016;36:1377–1385. doi: 10.1161/ATVBAHA.116.307210. PubMed DOI

Gao YJ, Lu C, Su LY, Sharma AM, Lee RM. Modulation of vascular function by perivascular adipose tissue: the role of endothelium and hydrogen peroxide. Br J Pharmacol. 2007;151:323–331. doi: 10.1038/sj.bjp.0707228. PubMed DOI PMC

Restini CBA, Ismail A, Kumar RK, Burnett R, Garver H, Fink GD, et al. Renal perivascular adipose tissue: Form and function. Vascul Pharmacol. 2018;106:37–45. doi: 10.1016/j.vph.2018.02.004. PubMed DOI PMC

Ayala-Lopez N, Martini M, Jackson WF, Darios E, Burnett R, Seitz B, et al. Perivascular adipose tissue contains functional catecholamines. Pharmacol Res Perspect. 2014;2(3):e00041. doi: 10.1002/prp2.41. PubMed DOI PMC

Aghamohammadzadeh R, Unwin RD, Greenstein AS, Heagerty AM. Effects of Obesity on Perivascular Adipose Tissue Vasorelaxant Function: Nitric Oxide, Inflammation and Elevated Systemic Blood Pressure. J Vasc Res. 2015;52:299–305. doi: 10.1159/000443885. PubMed DOI PMC

Aghamohammadzadeh R, Greenstein AS, Yadav R, Jeziorska M, Hama S, Soltani F, et al. Effects of bariatric surgery on human small artery function: evidence for reduction in perivascular adipocyte inflammation, and the restoration of normal anticontractile activity despite persistent obesity. J Am Coll Cardiol. 2013;62:128–135. doi: 10.1016/j.jacc.2013.04.027. PubMed DOI PMC

Torok J, Zemancikova A, Valaskova Z, Balis P. The role of perivascular adipose tissue in early changes in arterial function during high-fat diet and its combination with high-fructose intake in rats. Biomedicines. 2021:9. doi: 10.3390/biomedicines9111552. PubMed DOI PMC

Watts SW, Flood ED, Garver H, Fink GD, Roccabianca S. A New Function for Perivascular Adipose Tissue (PVAT): Assistance of Arterial Stress Relaxation. Sci Rep. 2020;10:1807. doi: 10.1038/s41598-020-58368-x. PubMed DOI PMC

Saxton SN, Toms LK, Aldous RG, Withers SB, Ohanian J, Heagerty AM. Restoring perivascular adipose tissue function in obesity using exercise. Cardiovasc Drugs Ther. 2021;35:1291–304. doi: 10.1007/s10557-020-07136-0. PubMed DOI PMC

Azul L, Leandro A, Boroumand P, Klip A, Seiça R, Sena CM. Increased inflammation, oxidative stress and a reduction in antioxidant defense enzymes in perivascular adipose tissue contribute to vascular dysfunction in type 2 diabetes. Free Radic Biol Med. 2020;146:264–274. doi: 10.1016/j.freeradbiomed.2019.11.002. PubMed DOI

Li XY, Zhang M, Xu W, Li JQ, Cao XP, Yu JT, et al. Midlife Modifiable Risk Factors for Dementia: A Systematic Review and Meta-analysis of 34 Prospective Cohort Studies. Curr Alzheimer Res. 2019;16:1254–1268. doi: 10.2174/1567205017666200103111253. PubMed DOI

Leigh SJ, Morris MJ. Diet, inflammation and the gut microbiome: Mechanisms for obesity-associated cognitive impairment. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165767. doi: 10.1016/j.bbadis.2020.165767. PubMed DOI

Fjell AM, McEvoy L, Holland D, Dale AM, Walhovd KB. What is normal in normal aging? Effects of aging, amyloid and Alzheimer's disease on the cerebral cortex and the hippocampus. Prog Neurobiol. 2014;117:20–40. doi: 10.1016/j.pneurobio.2014.02.004. PubMed DOI PMC

Liu H, Yang Y, Xia Y, Zhu W, Leak RK, Wei Z, et al. Aging of cerebral white matter. Ageing Res Rev. 2017;34:64–76. doi: 10.1016/j.arr.2016.11.006. PubMed DOI PMC

García-García I, Michaud A, Jurado M, Dagher A, Morys F. Mechanisms linking obesity and its metabolic comorbidities with cerebral grey and white matter changes. Rev Endocr Metab Disord. 2022;23:833–843. doi: 10.1007/s11154-021-09706-5. PubMed DOI

Buie JJ, Watson LS, Smith CJ, Sims-Robinson C. Obesity-related cognitive impairment: The role of endothelial dysfunction. Neurobiol Dis. 2019;132:104580. doi: 10.1016/j.nbd.2019.104580. PubMed DOI PMC

Zhao X, Gang X, Liu Y, Sun C, Han Q, Wang G. Using metabolomic profiles as biomarkers for insulin resistance in childhood obesity: a systematic review. J Diabetes Res. 2016;2016:8160545. doi: 10.1155/2016/8160545. PubMed DOI PMC

Iacomino G, Siani A. Role of microRNAs in obesity and obesity-related diseases. Genes Nutr. 2017;12:23. doi: 10.1186/s12263-017-0577-z. PubMed DOI PMC

Salama, Salama SI, Elmosalami DM, Saleh RM, Rasmy H, Ibrahim MH, et al. Risk factors associated with mild cognitive impairment among apparently healthy people and the role of microRNAs. Open Access Maced J Med Sci. 2019;7:3253–61. doi: 10.3889/oamjms.2019.834. PubMed DOI PMC

Yuen SC, Liang X, Zhu H, Jia Y, Leung SW. Prediction of differentially expressed microRNAs in blood as potential biomarkers for Alzheimer's disease by meta-analysis and adaptive boosting ensemble learning. Alzheimers Res Ther. 2021;13:126. doi: 10.1186/s13195-021-00862-z. PubMed DOI PMC

Bazrgar M, Khodabakhsh P, Prudencio M, Mohagheghi F, Ahmadiani A. The role of microRNA-34 family in Alzheimer's disease: A potential molecular link between neurodegeneration and metabolic disorders. Pharmacol Res. 2021;172:105805. doi: 10.1016/j.phrs.2021.105805. PubMed DOI

Ineichen BV, Sati P, Granberg T, Absinta M, Lee NJ, Lefeuvre JA, et al. Magnetic resonance imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white paper. Neuroimage Clin. 2020;28:102371. doi: 10.1016/j.nicl.2020.102371. PubMed DOI PMC

Su YY, Yang GF, Lu GM, Wu S, Zhang LJ. PET and MR imaging of neuroinflammation in hepatic encephalopathy. Metab Brain Dis. 2015;30:31–45. doi: 10.1007/s11011-014-9633-1. PubMed DOI

Kroll DS, Feldman DE, Biesecker CL, McPherson KL, Manza P, Joseph PV, et al. Neuroimaging of sex/gender differences in obesity: a review of structure, function, and neurotransmission. Nutrients. 2020:12. doi: 10.3390/nu12071942. PubMed DOI PMC

Letra L, Pereira D, Castelo-Branco M. Functional neuroimaging in obesity research. Adv Neurobiol. 2017;19:239–48. doi: 10.1007/978-3-319-63260-5_10. PubMed DOI

Schlögl H, Horstmann A, Villringer A, Stumvoll M. Functional neuroimaging in obesity and the potential for development of novel treatments. Lancet Diabetes Endocrinol. 2016;4:695–705. doi: 10.1016/S2213-8587(15)00475-1. PubMed DOI

Cui Y, Tang TY, Lu CQ, Ju S. Insulin resistance and cognitive impairment: evidence from neuroimaging. J Magn Reson Imaging. 2022 doi: 10.1002/jmri.28358. PubMed DOI

Drelich-Zbroja A, Matuszek M, Kaczor M, Kuczyńska M. Functional magnetic resonance imaging and obesity-novel ways to seen the unseen. J Clin Med. 2022:11. doi: 10.3390/jcm11123561. PubMed DOI PMC

Consortium HMP. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–214. doi: 10.1038/nature11234. PubMed DOI PMC

Aagaard K, Petrosino J, Keitel W, Watson M, Katancik J, Garcia N, et al. The Human Microbiome Project strategy for comprehensive sampling of the human microbiome and why it matters. Faseb j. 2013;27:1012–1022. doi: 10.1096/fj.12-220806. PubMed DOI PMC

Gevers D, Knight R, Petrosino JF, Huang K, McGuire AL, Birren BW, et al. The Human Microbiome Project: a community resource for the healthy human microbiome. PLoS Biol. 2012;10:e1001377. doi: 10.1371/journal.pbio.1001377. PubMed DOI PMC

Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2021;19:55–71. doi: 10.1038/s41579-020-0433-9. PubMed DOI

Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C, et al. Microbiota in health and diseases. Signal Transduct Target Ther. 2022;7:135. doi: 10.1038/s41392-022-00974-4. PubMed DOI PMC

Nagpal R, Yadav H, Marotta F. Gut microbiota: the next-gen frontier in preventive and therapeutic medicine? Front Med (Lausanne) 2014;1:15. doi: 10.3389/fmed.2014.00015. PubMed DOI PMC

Iatcu CO, Steen A, Covasa M. Gut microbiota and complications of Type-2 Diabetes. Nutrients. 2021:14. doi: 10.3390/nu14010166. PubMed DOI PMC

Liu BN, Liu XT, Liang ZH, Wang JH. Gut microbiota in obesity. World J Gastroenterol. 2021;27:3837–3850. doi: 10.3748/wjg.v27.i25.3837. PubMed DOI PMC

Portincasa P, Bonfrate L, Vacca M, De Angelis M, Farella I, Lanza E, et al. Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. Int J Mol Sci. 2022:23. doi: 10.3390/ijms23031105. PubMed DOI PMC

Cox AJ, West NP, Cripps AW. Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol. 2015;3:207–215. doi: 10.1016/S2213-8587(14)70134-2. PubMed DOI

Scheithauer TPM, Rampanelli E, Nieuwdorp M, Vallance BA, Verchere CB, van Raalte DH, et al. Gut microbiota as a trigger for metabolic inflammation in obesity and Type 2 Diabetes. Front Immunol. 2020;11:571731. doi: 10.3389/fimmu.2020.571731. PubMed DOI PMC

Maruvada P, Leone V, Kaplan LM, Chang EB. The Human Microbiome and Obesity: Moving beyond Associations. Cell Host Microbe. 2017;22:589–599. doi: 10.1016/j.chom.2017.10.005. PubMed DOI

Patterson E, Ryan PM, Cryan JF, Dinan TG, Ross RP, Fitzgerald GF, et al. Gut microbiota, obesity and diabetes. Postgrad Med J. 2016;92:286–300. doi: 10.1136/postgradmedj-2015-133285. PubMed DOI

Torres-Fuentes C, Schellekens H, Dinan TG, Cryan JF. The microbiota-gut-brain axis in obesity. Lancet Gastroenterol Hepatol. 2017;2:747–756. doi: 10.1016/S2468-1253(17)30147-4. PubMed DOI

Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101:15718–15723. doi: 10.1073/pnas.0407076101. PubMed DOI PMC

Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341:1241214. doi: 10.1126/science.1241214. PubMed DOI PMC

Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan TG, Cryan JF. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Transl Res. 2017;179:223–244. doi: 10.1016/j.trsl.2016.10.002. PubMed DOI

Everard A, Cani PD. Gut microbiota and GLP-1. Rev Endocr Metab Disord. 2014;15:189–196. doi: 10.1007/s11154-014-9288-6. PubMed DOI

Hibberd AA, Yde CC, Ziegler ML, Honoré AH, Saarinen MT, Lahtinen S, et al. Probiotic or synbiotic alters the gut microbiota and metabolism in a randomised controlled trial of weight management in overweight adults. Benef Microbes. 2019;10:121–135. doi: 10.3920/BM2018.0028. PubMed DOI

Kim J, Yun JM, Kim MK, Kwon O, Cho B. Lactobacillus gasseri BNR17 Supplementation Reduces the Visceral Fat Accumulation and Waist Circumference in Obese Adults: A Randomized, Double-Blind, Placebo-Controlled Trial. J Med Food. 2018;21:454–461. doi: 10.1089/jmf.2017.3937. PubMed DOI

Thuny F, Richet H, Casalta JP, Angelakis E, Habib G, Raoult D. Vancomycin treatment of infective endocarditis is linked with recently acquired obesity. PLoS One. 2010;5:e9074. doi: 10.1371/journal.pone.0009074. PubMed DOI PMC

Million M, Thuny F, Angelakis E, Casalta JP, Giorgi R, Habib G, et al. Lactobacillus reuteri and Escherichia coli in the human gut microbiota may predict weight gain associated with vancomycin treatment. Nutr Diabetes. 2013;3(9):e87. doi: 10.1038/nutd.2013.28. PubMed DOI PMC

Rahman MM, Islam F, Or-Rashid MH, Mamun AA, Rahaman MS, Islam MM, et al. The gut microbiota (microbiome) in cardiovascular disease and its therapeutic regulation. Front Cell Infect Microbiol. 2022;12:903570. doi: 10.3389/fcimb.2022.903570. PubMed DOI PMC

Witkowski M, Weeks TL, Hazen SL. Gut microbiota and cardiovascular disease. Circ Res. 2020;127:553–570. doi: 10.1161/CIRCRESAHA.120.316242. PubMed DOI PMC

Bauer KC, Huus KE, Finlay BB. Microbes and the mind: emerging hallmarks of the gut microbiota-brain axis. Cell Microbiol. 2016;18:632–644. doi: 10.1111/cmi.12585. PubMed DOI

Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63. doi: 10.1038/nature09922. PubMed DOI PMC

Tang WH, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res. 2017;120:1183–1196. doi: 10.1161/CIRCRESAHA.117.309715. PubMed DOI PMC

Lam V, Su J, Hsu A, Gross GJ, Salzman NH, Baker JE. Intestinal microbial metabolites are linked to severity of myocardial infarction in rats. PLoS One. 2016;11:e0160840. doi: 10.1371/journal.pone.0160840. PubMed DOI PMC

Lam V, Su J, Koprowski S, Hsu A, Tweddell JS, Rafiee P, et al. Intestinal microbiota determine severity of myocardial infarction in rats. Faseb j. 2012;26:1727–1735. doi: 10.1096/fj.11-197921. PubMed DOI PMC

Gan XT, Ettinger G, Huang CX, Burton JP, Haist JV, Rajapurohitam V, et al. Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat. Circ Heart Fail. 2014;7:491–499. doi: 10.1161/CIRCHEARTFAILURE.113.000978. PubMed DOI

Akkasheh G, Kashani-Poor Z, Tajabadi-Ebrahimi M, Jafari P, Akbari H, Taghizadeh M, et al. Clinical and metabolic response to probiotic administration in patients with major depressive disorder: A randomized, double-blind, placebo-controlled trial. Nutrition. 2016;32:315–320. doi: 10.1016/j.nut.2015.09.003. PubMed DOI

Vaghef-Mehrabany E, Alipour B, Homayouni-Rad A, Sharif SK, Asghari-Jafarabadi M, Zavvari S. Probiotic supplementation improves inflammatory status in patients with rheumatoid arthritis. Nutrition. 2014;30:430–435. doi: 10.1016/j.nut.2013.09.007. PubMed DOI

Varesi A, Pierella E, Romeo M, Piccini GB, Alfano C, Bjørklund G, et al. The potential role of gut microbiota in Alzheimer's disease: From Diagnosis to Treatment. Nutrients. 2022:14. doi: 10.3390/nu14030668. PubMed DOI PMC

Goyal D, Ali SA, Singh RK. Emerging role of gut microbiota in modulation of neuroinflammation and neurodegeneration with emphasis on Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry. 2021;106:110112. doi: 10.1016/j.pnpbp.2020.110112. PubMed DOI

Angoorani P, Ejtahed HS, Hasani-Ranjbar S, Siadat SD, Soroush AR, Larijani B. Gut microbiota modulation as a possible mediating mechanism for fasting-induced alleviation of metabolic complications: a systematic review. Nutr Metab (Lond) 2021;18:105. doi: 10.1186/s12986-021-00635-3. PubMed DOI PMC

Deledda A, Annunziata G, Tenore GC, Palmas V, Manzin A, Velluzzi F. Diet-Derived Antioxidants and Their Role in Inflammation, Obesity and Gut Microbiota Modulation. Antioxidants (Basel) 2021:10. doi: 10.3390/antiox10050708. PubMed DOI PMC

Forslund SK. Fasting intervention and its clinical effects on the human host and microbiome. J Intern Med. 2023;293:166–183. doi: 10.1111/joim.13574. PubMed DOI

Hainsworth AH, Oommen AT, Bridges LR. Endothelial cells and human cerebral small vessel disease. Brain Pathol. 2015;25:44–50. doi: 10.1111/bpa.12224. PubMed DOI PMC

McGonigle P, Ruggeri B. Animal models of human disease: challenges in enabling translation. Biochem Pharmacol. 2014;87:162–171. doi: 10.1016/j.bcp.2013.08.006. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...