Obesity, Cardiovascular and Neurodegenerative Diseases: Potential Common Mechanisms
Jazyk angličtina Země Česko Médium print
Typ dokumentu přehledy, časopisecké články
PubMed
37565414
PubMed Central
PMC10660578
DOI
10.33549/physiolres.935109
PII: 935109
Knihovny.cz E-zdroje
- MeSH
- Alzheimerova nemoc * metabolismus MeSH
- lidé MeSH
- neurodegenerativní nemoci * metabolismus MeSH
- obezita komplikace diagnóza epidemiologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The worldwide increase in the incidence of obesity and cardiovascular and neurodegenerative diseases, e.g. Alzheimer's disease, is related to many factors, including an unhealthy lifestyle and aging populations. However, the interconnection between these diseases is not entirely clear, and it is unknown whether common mechanisms underlie these conditions. Moreover, there are currently no fully effective therapies for obesity and neurodegeneration. While there has been extensive research in preclinical models addressing these issues, the experimental findings have not been translated to the clinic. Another challenge relates to the time of onset of individual diseases, which may not be easily identified, since there are no specific indicators or biomarkers that define disease onset. Hence knowing when to commence preventive treatment is unclear. This is especially pertinent in neurodegenerative diseases, where the onset of the disease may be subtle and occur decades before the signs and symptoms manifest. In metabolic and cardiovascular disorders, the risk may occur in-utero, in line with the concept of fetal programming. This review provides a brief overview of the link between obesity, cardiovascular and neurodegenerative diseases and discusses potential common mechanisms including the role of the gut microbiome.
Zobrazit více v PubMed
Maletínská L, Popelová A, Železná B, Bencze M, Kuneš J. The impact of anorexigenic peptides in experimental models of Alzheimer’s disease pathology. J Endocrinol. 2019;240(2):R47–r72. doi: 10.1530/JOE-18-0532. PubMed DOI
Nakajima T, Fujioka S, Tokunaga K, Hirobe K, Matsuzawa Y, Tarui S. Noninvasive study of left ventricular performance in obese patients: influence of duration of obesity. Circulation. 1985;71:481–486. doi: 10.1161/01.CIR.71.3.481. PubMed DOI
Reis JP, Loria CM, Lewis CE, Powell-Wiley TM, Wei GS, Carr JJ, et al. Association between duration of overall and abdominal obesity beginning in young adulthood and coronary artery calcification in middle age. JAMA. 2013;310:280–288. doi: 10.1001/jama.2013.7833. PubMed DOI PMC
Tanamas SK, Wong E, Backholer K, Abdullah A, Wolfe R, Barendregt J, et al. Duration of obesity and incident hypertension in adults from the Framingham Heart Study. J Hypertens. 2015;33:542–545. doi: 10.1097/HJH.0000000000000441. discussion 5 . PubMed DOI
Mulvany MJ, Baumbach GL, Aalkjaer C, Heagerty AM, Korsgaard N, Schiffrin EL, et al. Vascular remodeling. Hypertension. 1996;28:505–506. PubMed
Hajdu MA, Heistad DD, Siems JE, Baumbach GL. Effects of aging on mechanics and composition of cerebral arterioles in rats. Circ Res. 1990;66(6):1747–1754. doi: 10.1161/01.RES.66.6.1747. PubMed DOI
Meissner A. Hypertension and the brain: a risk factor for more than heart disease. Cerebrovasc Dis. 2016;42(3–4):255–262. doi: 10.1159/000446082. PubMed DOI
Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12:822–838. doi: 10.1016/S1474-4422(13)70124-8. PubMed DOI PMC
Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications. Lancet Neurol. 2019;18:684–696. doi: 10.1016/S1474-4422(19)30079-1. PubMed DOI
Kim CK, Kwon HM, Lee SH, Kim BJ, Ryu WS, Kwon HT, et al. Association of obesity with cerebral microbleeds in neurologically asymptomatic elderly subjects. J Neurol. 2012;259:2599–2604. doi: 10.1007/s00415-012-6546-y. PubMed DOI
Pucci G, Alcidi R, Tap L, Battista F, Mattace Raso F, Schillaci G. Sex- and gender-related prevalence, cardiovascular risk and therapeutic approach in metabolic syndrome: A review of the literature. 2017:34–42. doi: 10.1016/j.phrs.2017.03.008. PubMed DOI
Whayne TF, Saha SP., Jr Genetic Risk, Adherence to a Healthy Lifestyle, and Ischemic Heart Disease. Curr Cardiol Rep. 2019;21:1. doi: 10.1007/s11886-019-1086-z. PubMed DOI
Yoshimura M, Yasue H, Nakayama M, Shimasaki Y, Ogawa H, Kugiyama K, et al. Genetic risk factors for coronary artery spasm: significance of endothelial nitric oxide synthase gene T-786-->C and missense Glu298Asp variants. J Investig Med. 2000;48:367–374. PubMed
Oike Y, Hata A, Ogata Y, Numata Y, Shido K, Kondo K. Angiotensin converting enzyme as a genetic risk factor for coronary artery spasm. Implication in the pathogenesis of myocardial infarction. J Clin Invest. 1995;96:2975–2579. doi: 10.1172/JCI118369. PubMed DOI PMC
Amant C, Hamon M, Bauters C, Richard F, Helbecque N, McFadden EP, et al. The angiotensin II type 1 receptor gene polymorphism is associated with coronary artery vasoconstriction. J Am Coll Cardiol. 1997;29:486–490. doi: 10.1016/S0735-1097(96)00535-9. PubMed DOI
Ito T, Yasue H, Yoshimura M, Nakamura S, Nakayama M, Shimasaki Y, et al. Paraoxonase gene Gln192Arg (Q192R) polymorphism is associated with coronary artery spasm. Hum Genet. 2002;110:89–94. doi: 10.1007/s00439-001-0654-6. PubMed DOI
Shokri Y, Variji A, Nosrati M, Khonakdar-Tarsi A, Kianmehr A, Kashi Z, et al. Importance of paraoxonase 1 (PON1) as an antioxidant and antiatherogenic enzyme in the cardiovascular complications of type 2 diabetes: Genotypic and phenotypic evaluation. Diabetes Res Clin Pract. 2020;161:108067. doi: 10.1016/j.diabres.2020.108067. PubMed DOI
Sonel AF, Good CB, Mulgund J, Roe MT, Gibler WB, Smith SC, Jr, et al. Racial variations in treatment and outcomes of black and white patients with high-risk non-ST-elevation acute coronary syndromes: insights from CRUSADE (Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes With Early Implementation of the ACC/AHA Guidelines?) Circulation. 2005;111:1225–1232. doi: 10.1161/01.CIR.0000157732.03358.64. PubMed DOI
Nakamura M, Sadoshima J. Cardiomyopathy in obesity, insulin resistance and diabetes. J Physiol. 2020;598:2977–2993. doi: 10.1113/JP276747. PubMed DOI
Barua RS, Ambrose JA, Saha DC, Eales-Reynolds LJ. Smoking is associated with altered endothelial-derived fibrinolytic and antithrombotic factors: an in vitro demonstration. Circulation. 2002;106:905–908. doi: 10.1161/01.CIR.0000029091.61707.6B. PubMed DOI
Bergami M, Scarpone M, Bugiardini R, Cenko E, Manfrini O. Sex beyond cardiovascular risk factors and clinical biomarkers of cardiovascular disease. Rev Cardiovasc Med. 2022;23:19. doi: 10.31083/j.rcm2301019. PubMed DOI
Manfrini O, Yoon J, van der Schaar M, Kedev S, Vavlukis M, Stankovic G, et al. Sex differences in modifiable risk factors and severity of coronary artery disease. J Am Heart Assoc. 2020;9(19):e017235. doi: 10.1161/JAHA.120.017235. PubMed DOI PMC
Messner B, Bernhard D. Smoking and cardiovascular disease: mechanisms of endothelial dysfunction and early atherogenesis. Arterioscler Thromb Vasc Biol. 2014;34:509–515. doi: 10.1161/ATVBAHA.113.300156. PubMed DOI
O’Donnell MJ, Chin SL, Rangarajan S, Xavier D, Liu L, Zhang H, et al. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study. Lancet. 2016;388(10046):761–775. doi: 10.1016/S0140-6736(16)30506-2. PubMed DOI
Chareonrungrueangchai K, Wongkawinwoot K, Anothaisintawee T, Reutrakul S. Dietary factors and risks of cardiovascular diseases: an umbrella review. Nutrients. 2020:12. doi: 10.3390/nu12041088. PubMed DOI PMC
Allman BR, Andres A, Børsheim E. The Association of Maternal Protein Intake during Pregnancy in Humans with Maternal and Offspring Insulin Sensitivity Measures. Curr Dev Nutr. 2019;3:nzz055. doi: 10.1093/cdn/nzz055. PubMed DOI PMC
Stanhope KL. Sugar consumption, metabolic disease and obesity: The state of the controversy. Crit Rev Clin Lab Sci. 2016;53:52–67. doi: 10.3109/10408363.2015.1084990. PubMed DOI PMC
Bray GA. Energy and fructose from beverages sweetened with sugar or high-fructose corn syrup pose a health risk for some people. Adv Nutr. 2013;4:220–225. doi: 10.3945/an.112.002816. PubMed DOI PMC
Dwivedi AK, Dubey P, Reddy SY, Clegg DJ. Associations of Glycemic Index and Glycemic Load with Cardiovascular Disease: Updated Evidence from Meta-analysis and Cohort Studies. Curr Cardiol Rep. 2022;24(3):141–161. doi: 10.1007/s11886-022-01635-2. PubMed DOI
Hu FB, Malik VS. Sugar-sweetened beverages and risk of obesity and type 2 diabetes: epidemiologic evidence. Physiol Behav. 2010;100:47–54. doi: 10.1016/j.physbeh.2010.01.036. PubMed DOI PMC
Li S, Cao M, Yang C, Zheng H, Zhu Y. Association of sugar-sweetened beverage intake with risk of metabolic syndrome among children and adolescents in urban China. Public Health Nutr. 2020;23:2770–2780. doi: 10.1017/S1368980019003653. PubMed DOI PMC
Mirrahimi A, de Souza RJ, Chiavaroli L, Sievenpiper JL, Beyene J, Hanley AJ, et al. Associations of glycemic index and load with coronary heart disease events: a systematic review and meta-analysis of prospective cohorts. J Am Heart Assoc. 2012;1:e000752. doi: 10.1161/JAHA.112.000752. PubMed DOI PMC
Kahn R, Sievenpiper JL. Dietary sugar and body weight: have we reached a crisis in the epidemic of obesity and diabetes?: we have, but the pox on sugar is overwrought and overworked. Diabetes Care. 2014;37:957–962. doi: 10.2337/dc13-2506. PubMed DOI
Benade J, Sher L, De Klerk S, Deshpande G, Bester D, Marnewick JL, et al. The Impact of Sugar-Sweetened Beverage Consumption on the Liver: A Proteomics-based Analysis. Antioxidants (Basel) 2020:9. doi: 10.3390/antiox9070569. PubMed DOI PMC
Souza Cruz EM, Bitencourt de Morais JM, Dalto da Rosa CV, da Silva Simões M, Comar JF, de Almeida Chuffa LG, et al. Long-term sucrose solution consumption causes metabolic alterations and affects hepatic oxidative stress in Wistar rats. Biol Open. 2020:9. doi: 10.1242/bio.047282. PubMed DOI PMC
Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353:2643–2653. doi: 10.1056/NEJMoa052187. PubMed DOI PMC
Giglio RV, Stoian AP, Haluzik M, Pafili K, Patti AM, Rizvi AA, et al. Novel molecular markers of cardiovascular disease risk in type 2 diabetes mellitus. Biochim Biophys Acta Mol Basis Dis. 2021;1867:166148. doi: 10.1016/j.bbadis.2021.166148. PubMed DOI
WHO Guidelines Guideline: Sodium Intake for Adults and Children. Geneva: World Health Organization; 2012. Guidelines. Copyright © 2012, World Health Organization. PubMed
Brown IJ, Tzoulaki I, Candeias V, Elliott P. Salt intakes around the world: implications for public health. Int J Epidemiol. 2009;38:791–813. doi: 10.1093/ije/dyp139. PubMed DOI
Abdulai T, Runqi T, Mao Z, Oppong TB, Amponsem-Boateng C, Wang Y, et al. Preference for High Dietary Salt Intake Is Associated With Undiagnosed Type 2 Diabetes: The Henan Rural Cohort. Front Nutr. 2020;7:537049. doi: 10.3389/fnut.2020.537049. PubMed DOI PMC
Horikawa C, Yoshimura Y, Kamada C, Tanaka S, Tanaka S, Hanyu O, et al. Dietary Sodium Intake and Incidence of Diabetes Complications in Japanese Patients with Type 2 Diabetes: Analysis of the Japan Diabetes Complications Study (JDCS) J Clin Endocrinol Metab. 2014;99:3635–3643. doi: 10.1210/jc.2013-4315. PubMed DOI
Lanaspa MA, Kuwabara M, Andres-Hernando A, Li N, Cicerchi C, Jensen T, et al. High salt intake causes leptin resistance and obesity in mice by stimulating endogenous fructose production and metabolism. Proc Natl Acad Sci U S A. 2018;115:3138–3143. doi: 10.1073/pnas.1713837115. PubMed DOI PMC
Ogihara T, Asano T, Ando K, Chiba Y, Sekine N, Sakoda H, et al. Insulin resistance with enhanced insulin signaling in high-salt diet-fed rats. Diabetes. 2001;50:573–583. doi: 10.2337/diabetes.50.3.573. PubMed DOI
Ren J, Qin L, Li X, Zhao R, Wu Z, Ma Y. Effect of dietary sodium restriction on blood pressure in type 2 diabetes: A meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2021;31:1653–1661. doi: 10.1016/j.numecd.2021.02.019. PubMed DOI
Hariharan R, Odjidja EN, Scott D, Shivappa N, Hébert JR, Hodge A, et al. The dietary inflammatory index, obesity, type 2 diabetes, and cardiovascular risk factors and diseases. Obes Rev. 2022;23:e13349. doi: 10.1111/obr.13349. PubMed DOI
Todendi PF, Salla R, Shivappa N, Hebert JR, Ritter J, Cureau FV, Schaan BD. Association between dietary inflammatory index and cardiometabolic risk factors among Brazilian adolescents: results from a national cross-sectional study. Br J Nutr. 2022 Aug 28;128(4):744–752. doi: 10.1017/S0007114521003767. PubMed DOI
Daulatzai MA. Cerebral hypoperfusion and glucose hypometabolism: Key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer's disease. J Neurosci Res. 2017;95:943–972. doi: 10.1002/jnr.23777. PubMed DOI
Ighodaro ET, Abner EL, Fardo DW, Lin AL, Katsumata Y, Schmitt FA, et al. Risk factors and global cognitive status related to brain arteriolosclerosis in elderly individuals. J Cereb Blood Flow Metab. 2017;37:201–216. doi: 10.1177/0271678X15621574. PubMed DOI PMC
Gorelick PB, Counts SE, Nyenhuis D. Vascular cognitive impairment and dementia. Biochim Biophys Acta. 2016;1862:860–868. doi: 10.1016/j.bbadis.2015.12.015. PubMed DOI PMC
Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke. 2011;42:2672–2713. doi: 10.1161/STR.0b013e3182299496. PubMed DOI PMC
Kalaria RN, Sepulveda-Falla D. Cerebral small vessel disease in sporadic and familial Alzheimer disease. Am J Pathol. 2021;191:1888–1905. doi: 10.1016/j.ajpath.2021.07.004. PubMed DOI PMC
Iadecola C, Gottesman RF. Neurovascular and cognitive dysfunction in hypertension. Circ Res. 2019;124:1025–1044. doi: 10.1161/CIRCRESAHA.118.313260. PubMed DOI PMC
Barker DJ. The fetal and infant origins of adult disease. Bmj. 1990;301:1111. doi: 10.1136/bmj.301.6761.1111. PubMed DOI PMC
Ong KK, Ahmed ML, Emmett PM, Preece MA, Dunger DB. Association between postnatal catch-up growth and obesity in childhood: prospective cohort study. Bmj. 2000;320:967–971. doi: 10.1136/bmj.320.7240.967. PubMed DOI PMC
Monteiro PO, Victora CG. Rapid growth in infancy and childhood and obesity in later life--a systematic review. Obes Rev. 2005;6:143–154. doi: 10.1111/j.1467-789X.2005.00183.x. PubMed DOI
Barbosa P, Melnyk S, Bennuri SC, Delhey L, Reis A, Moura GR, et al. Redox imbalance and methylation disturbances in early childhood obesity. Oxid Med Cell Longev. 2021;2021:2207125. doi: 10.1155/2021/2207125. PubMed DOI PMC
Martyn JA, Kaneki M, Yasuhara S. Obesity-induced insulin resistance and hyperglycemia: etiologic factors and molecular mechanisms. Anesthesiology. 2008;109:137–148. doi: 10.1097/ALN.0b013e3181799d45. PubMed DOI PMC
Adeva-Andany MM, Funcasta-Calderón R, Fernández-Fernández C, Ameneiros-Rodríguez E, Domínguez-Montero A. Subclinical vascular disease in patients with diabetes is associated with insulin resistance. Diabetes Metab Syndr. 2019;13:2198–2206. doi: 10.1016/j.dsx.2019.05.025. PubMed DOI
Zicha J, Kunes J. Ontogenetic aspects of hypertension development: analysis in the rat. Physiol Rev. 1999;79:1227–1282. doi: 10.1152/physrev.1999.79.4.1227. PubMed DOI
Maslova E, Hansen S, Grunnet LG, Strøm M, Bjerregaard AA, Hjort L, et al. Maternal protein intake in pregnancy and offspring metabolic health at age 9–16 y: results from a Danish cohort of gestational diabetes mellitus pregnancies and controls. Am J Clin Nutr. 2017;106:623–636. doi: 10.3945/ajcn.115.128637. PubMed DOI PMC
Moreno-Fernandez J, Ochoa JJ, Lopez-Frias M, Diaz-Castro J. Impact of early nutrition, physical activity and sleep on the fetal programming of disease in the pregnancy: a narrative review. Nutrients. 2020:12. doi: 10.3390/nu12123900. PubMed DOI PMC
Zheng J, Xiao X, Zhang Q, Yu M. DNA methylation: the pivotal interaction between early-life nutrition and glucose metabolism in later life. Br J Nutr. 2014;112:1850–1857. doi: 10.1017/S0007114514002827. PubMed DOI
Nicolucci A, Maffeis C. The adolescent with obesity: what perspectives for treatment? Ital J Pediatr. 2022;48:9. doi: 10.1186/s13052-022-01205-w. PubMed DOI PMC
Friedemann C, Heneghan C, Mahtani K, Thompson M, Perera R, Ward AM. Cardiovascular disease risk in healthy children and its association with body mass index: systematic review and meta-analysis. Bmj. 2012;345:e4759. doi: 10.1136/bmj.e4759. PubMed DOI PMC
Kelly AS, Auerbach P, Barrientos-Perez M, Gies I, Hale PM, Marcus C, et al. A Randomized, Controlled Trial of Liraglutide for Adolescents with Obesity. N Engl J Med. 2020;382:2117–2128. doi: 10.1056/NEJMoa1916038. PubMed DOI
Perdoncin M, Konrad A, Wyner JR, Lohana S, Pillai SS, Pereira DG, et al. A review of miRNAs as biomarkers and effect of dietary modulation in obesity associated cognitive decline and neurodegenerative disorders. Front Mol Neurosci. 2021;14:756499. doi: 10.3389/fnmol.2021.756499. PubMed DOI PMC
Terzo S, Amato A, Mulè F. From obesity to Alzheimer's disease through insulin resistance. J Diabetes Complications. 2021;35:108026. doi: 10.1016/j.jdiacomp.2021.108026. PubMed DOI
Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease--is this type 3 diabetes? J Alzheimers Dis. 2005;7:63–80. doi: 10.3233/JAD-2005-7107. PubMed DOI
Ho L, Qin W, Pompl PN, Xiang Z, Wang J, Zhao Z, et al. Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer's disease. Faseb j. 2004;18:902–904. doi: 10.1096/fj.03-0978fje. PubMed DOI
Julien C, Tremblay C, Phivilay A, Berthiaume L, Emond V, Julien P, et al. High-fat diet aggravates amyloid-beta and tau pathologies in the 3xTg-AD mouse model. Neurobiol Aging. 2010;31:1516–1531. doi: 10.1016/j.neurobiolaging.2008.08.022. PubMed DOI
Verdile G, Keane KN, Cruzat VF, Medic S, Sabale M, Rowles J, et al. Inflammation and Oxidative Stress: The molecular connectivity between insulin resistance, obesity, and Alzheimer's disease. Mediators Inflamm. 2015;2015:105828. doi: 10.1155/2015/105828. PubMed DOI PMC
Kacířová M, Zmeškalová A, Kořínková L, Železná B, Kuneš J, Maletínská L. Inflammation: major denominator of obesity, Type 2 diabetes and Alzheimer's disease-like pathology? Clin Sci (Lond) 2020;134:547–570. doi: 10.1042/CS20191313. PubMed DOI
Lucero J, Suwannasual U, Herbert LM, McDonald JD, Lund AK. The role of the lectin-like oxLDL receptor (LOX-1) in traffic-generated air pollution exposure-mediated alteration of the brain microvasculature in Apolipoprotein (Apo) E knockout mice. Inhal Toxicol. 2017;29:266–281. doi: 10.1080/08958378.2017.1357774. PubMed DOI PMC
Naik P, Fofaria N, Prasad S, Sajja RK, Weksler B, Couraud PO, et al. Oxidative and pro-inflammatory impact of regular and denicotinized cigarettes on blood brain barrier endothelial cells: is smoking reduced or nicotine-free products really safe? BMC Neurosci. 2014;15:51. doi: 10.1186/1471-2202-15-51. PubMed DOI PMC
Khan MSH, Hegde V. Obesity and Diabetes Mediated Chronic Inflammation: A Potential Biomarker in Alzheimer's Disease. J Pers Med. 2020:10. doi: 10.3390/jpm10020042. PubMed DOI PMC
Anthony SR, Guarnieri AR, Gozdiff A, Helsley RN, Phillip Owens A, Tranter M. Mechanisms linking adipose tissue inflammation to cardiac hypertrophy and fibrosis. Clin Sci (Lond) 2019;133:2329–2344. doi: 10.1042/CS20190578. PubMed DOI PMC
Xia N, Li H. The role of perivascular adipose tissue in obesity-induced vascular dysfunction. Br J Pharmacol. 2017;174(20):3425–3442. https://doi.org/10.1111/bph.13650, https://doi.org/10.1111/bph.13703. PubMed DOI PMC
Saxton SN, Clark BJ, Withers SB, Eringa EC, Heagerty AM. Mechanistic Links Between Obesity, Diabetes, and Blood Pressure: Role of Perivascular Adipose Tissue. Physiol Rev. 2019;99:1701–1763. doi: 10.1152/physrev.00034.2018. PubMed DOI
Hu H, Garcia-Barrio M, Jiang ZS, Chen YE, Chang L. Roles of Perivascular Adipose Tissue in Hypertension and Atherosclerosis. Antioxid Redox Signal. 2021;34:736–749. doi: 10.1089/ars.2020.8103. PubMed DOI PMC
Padilla J, Jenkins NT, Vieira-Potter VJ, Laughlin MH. Divergent phenotype of rat thoracic and abdominal perivascular adipose tissues. Am J Physiol Regul Integr Comp Physiol. 2013;304:R543–R552. doi: 10.1152/ajpregu.00567.2012. PubMed DOI PMC
Bussey CE, Withers SB, Aldous RG, Edwards G, Heagerty AM. Obesity-Related Perivascular Adipose Tissue Damage Is Reversed by Sustained Weight Loss in the Rat. Arterioscler Thromb Vasc Biol. 2016;36:1377–1385. doi: 10.1161/ATVBAHA.116.307210. PubMed DOI
Gao YJ, Lu C, Su LY, Sharma AM, Lee RM. Modulation of vascular function by perivascular adipose tissue: the role of endothelium and hydrogen peroxide. Br J Pharmacol. 2007;151:323–331. doi: 10.1038/sj.bjp.0707228. PubMed DOI PMC
Restini CBA, Ismail A, Kumar RK, Burnett R, Garver H, Fink GD, et al. Renal perivascular adipose tissue: Form and function. Vascul Pharmacol. 2018;106:37–45. doi: 10.1016/j.vph.2018.02.004. PubMed DOI PMC
Ayala-Lopez N, Martini M, Jackson WF, Darios E, Burnett R, Seitz B, et al. Perivascular adipose tissue contains functional catecholamines. Pharmacol Res Perspect. 2014;2(3):e00041. doi: 10.1002/prp2.41. PubMed DOI PMC
Aghamohammadzadeh R, Unwin RD, Greenstein AS, Heagerty AM. Effects of Obesity on Perivascular Adipose Tissue Vasorelaxant Function: Nitric Oxide, Inflammation and Elevated Systemic Blood Pressure. J Vasc Res. 2015;52:299–305. doi: 10.1159/000443885. PubMed DOI PMC
Aghamohammadzadeh R, Greenstein AS, Yadav R, Jeziorska M, Hama S, Soltani F, et al. Effects of bariatric surgery on human small artery function: evidence for reduction in perivascular adipocyte inflammation, and the restoration of normal anticontractile activity despite persistent obesity. J Am Coll Cardiol. 2013;62:128–135. doi: 10.1016/j.jacc.2013.04.027. PubMed DOI PMC
Torok J, Zemancikova A, Valaskova Z, Balis P. The role of perivascular adipose tissue in early changes in arterial function during high-fat diet and its combination with high-fructose intake in rats. Biomedicines. 2021:9. doi: 10.3390/biomedicines9111552. PubMed DOI PMC
Watts SW, Flood ED, Garver H, Fink GD, Roccabianca S. A New Function for Perivascular Adipose Tissue (PVAT): Assistance of Arterial Stress Relaxation. Sci Rep. 2020;10:1807. doi: 10.1038/s41598-020-58368-x. PubMed DOI PMC
Saxton SN, Toms LK, Aldous RG, Withers SB, Ohanian J, Heagerty AM. Restoring perivascular adipose tissue function in obesity using exercise. Cardiovasc Drugs Ther. 2021;35:1291–304. doi: 10.1007/s10557-020-07136-0. PubMed DOI PMC
Azul L, Leandro A, Boroumand P, Klip A, Seiça R, Sena CM. Increased inflammation, oxidative stress and a reduction in antioxidant defense enzymes in perivascular adipose tissue contribute to vascular dysfunction in type 2 diabetes. Free Radic Biol Med. 2020;146:264–274. doi: 10.1016/j.freeradbiomed.2019.11.002. PubMed DOI
Li XY, Zhang M, Xu W, Li JQ, Cao XP, Yu JT, et al. Midlife Modifiable Risk Factors for Dementia: A Systematic Review and Meta-analysis of 34 Prospective Cohort Studies. Curr Alzheimer Res. 2019;16:1254–1268. doi: 10.2174/1567205017666200103111253. PubMed DOI
Leigh SJ, Morris MJ. Diet, inflammation and the gut microbiome: Mechanisms for obesity-associated cognitive impairment. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165767. doi: 10.1016/j.bbadis.2020.165767. PubMed DOI
Fjell AM, McEvoy L, Holland D, Dale AM, Walhovd KB. What is normal in normal aging? Effects of aging, amyloid and Alzheimer's disease on the cerebral cortex and the hippocampus. Prog Neurobiol. 2014;117:20–40. doi: 10.1016/j.pneurobio.2014.02.004. PubMed DOI PMC
Liu H, Yang Y, Xia Y, Zhu W, Leak RK, Wei Z, et al. Aging of cerebral white matter. Ageing Res Rev. 2017;34:64–76. doi: 10.1016/j.arr.2016.11.006. PubMed DOI PMC
García-García I, Michaud A, Jurado M, Dagher A, Morys F. Mechanisms linking obesity and its metabolic comorbidities with cerebral grey and white matter changes. Rev Endocr Metab Disord. 2022;23:833–843. doi: 10.1007/s11154-021-09706-5. PubMed DOI
Buie JJ, Watson LS, Smith CJ, Sims-Robinson C. Obesity-related cognitive impairment: The role of endothelial dysfunction. Neurobiol Dis. 2019;132:104580. doi: 10.1016/j.nbd.2019.104580. PubMed DOI PMC
Zhao X, Gang X, Liu Y, Sun C, Han Q, Wang G. Using metabolomic profiles as biomarkers for insulin resistance in childhood obesity: a systematic review. J Diabetes Res. 2016;2016:8160545. doi: 10.1155/2016/8160545. PubMed DOI PMC
Iacomino G, Siani A. Role of microRNAs in obesity and obesity-related diseases. Genes Nutr. 2017;12:23. doi: 10.1186/s12263-017-0577-z. PubMed DOI PMC
Salama, Salama SI, Elmosalami DM, Saleh RM, Rasmy H, Ibrahim MH, et al. Risk factors associated with mild cognitive impairment among apparently healthy people and the role of microRNAs. Open Access Maced J Med Sci. 2019;7:3253–61. doi: 10.3889/oamjms.2019.834. PubMed DOI PMC
Yuen SC, Liang X, Zhu H, Jia Y, Leung SW. Prediction of differentially expressed microRNAs in blood as potential biomarkers for Alzheimer's disease by meta-analysis and adaptive boosting ensemble learning. Alzheimers Res Ther. 2021;13:126. doi: 10.1186/s13195-021-00862-z. PubMed DOI PMC
Bazrgar M, Khodabakhsh P, Prudencio M, Mohagheghi F, Ahmadiani A. The role of microRNA-34 family in Alzheimer's disease: A potential molecular link between neurodegeneration and metabolic disorders. Pharmacol Res. 2021;172:105805. doi: 10.1016/j.phrs.2021.105805. PubMed DOI
Ineichen BV, Sati P, Granberg T, Absinta M, Lee NJ, Lefeuvre JA, et al. Magnetic resonance imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white paper. Neuroimage Clin. 2020;28:102371. doi: 10.1016/j.nicl.2020.102371. PubMed DOI PMC
Su YY, Yang GF, Lu GM, Wu S, Zhang LJ. PET and MR imaging of neuroinflammation in hepatic encephalopathy. Metab Brain Dis. 2015;30:31–45. doi: 10.1007/s11011-014-9633-1. PubMed DOI
Kroll DS, Feldman DE, Biesecker CL, McPherson KL, Manza P, Joseph PV, et al. Neuroimaging of sex/gender differences in obesity: a review of structure, function, and neurotransmission. Nutrients. 2020:12. doi: 10.3390/nu12071942. PubMed DOI PMC
Letra L, Pereira D, Castelo-Branco M. Functional neuroimaging in obesity research. Adv Neurobiol. 2017;19:239–48. doi: 10.1007/978-3-319-63260-5_10. PubMed DOI
Schlögl H, Horstmann A, Villringer A, Stumvoll M. Functional neuroimaging in obesity and the potential for development of novel treatments. Lancet Diabetes Endocrinol. 2016;4:695–705. doi: 10.1016/S2213-8587(15)00475-1. PubMed DOI
Cui Y, Tang TY, Lu CQ, Ju S. Insulin resistance and cognitive impairment: evidence from neuroimaging. J Magn Reson Imaging. 2022 doi: 10.1002/jmri.28358. PubMed DOI
Drelich-Zbroja A, Matuszek M, Kaczor M, Kuczyńska M. Functional magnetic resonance imaging and obesity-novel ways to seen the unseen. J Clin Med. 2022:11. doi: 10.3390/jcm11123561. PubMed DOI PMC
Consortium HMP. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–214. doi: 10.1038/nature11234. PubMed DOI PMC
Aagaard K, Petrosino J, Keitel W, Watson M, Katancik J, Garcia N, et al. The Human Microbiome Project strategy for comprehensive sampling of the human microbiome and why it matters. Faseb j. 2013;27:1012–1022. doi: 10.1096/fj.12-220806. PubMed DOI PMC
Gevers D, Knight R, Petrosino JF, Huang K, McGuire AL, Birren BW, et al. The Human Microbiome Project: a community resource for the healthy human microbiome. PLoS Biol. 2012;10:e1001377. doi: 10.1371/journal.pbio.1001377. PubMed DOI PMC
Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2021;19:55–71. doi: 10.1038/s41579-020-0433-9. PubMed DOI
Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C, et al. Microbiota in health and diseases. Signal Transduct Target Ther. 2022;7:135. doi: 10.1038/s41392-022-00974-4. PubMed DOI PMC
Nagpal R, Yadav H, Marotta F. Gut microbiota: the next-gen frontier in preventive and therapeutic medicine? Front Med (Lausanne) 2014;1:15. doi: 10.3389/fmed.2014.00015. PubMed DOI PMC
Iatcu CO, Steen A, Covasa M. Gut microbiota and complications of Type-2 Diabetes. Nutrients. 2021:14. doi: 10.3390/nu14010166. PubMed DOI PMC
Liu BN, Liu XT, Liang ZH, Wang JH. Gut microbiota in obesity. World J Gastroenterol. 2021;27:3837–3850. doi: 10.3748/wjg.v27.i25.3837. PubMed DOI PMC
Portincasa P, Bonfrate L, Vacca M, De Angelis M, Farella I, Lanza E, et al. Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. Int J Mol Sci. 2022:23. doi: 10.3390/ijms23031105. PubMed DOI PMC
Cox AJ, West NP, Cripps AW. Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol. 2015;3:207–215. doi: 10.1016/S2213-8587(14)70134-2. PubMed DOI
Scheithauer TPM, Rampanelli E, Nieuwdorp M, Vallance BA, Verchere CB, van Raalte DH, et al. Gut microbiota as a trigger for metabolic inflammation in obesity and Type 2 Diabetes. Front Immunol. 2020;11:571731. doi: 10.3389/fimmu.2020.571731. PubMed DOI PMC
Maruvada P, Leone V, Kaplan LM, Chang EB. The Human Microbiome and Obesity: Moving beyond Associations. Cell Host Microbe. 2017;22:589–599. doi: 10.1016/j.chom.2017.10.005. PubMed DOI
Patterson E, Ryan PM, Cryan JF, Dinan TG, Ross RP, Fitzgerald GF, et al. Gut microbiota, obesity and diabetes. Postgrad Med J. 2016;92:286–300. doi: 10.1136/postgradmedj-2015-133285. PubMed DOI
Torres-Fuentes C, Schellekens H, Dinan TG, Cryan JF. The microbiota-gut-brain axis in obesity. Lancet Gastroenterol Hepatol. 2017;2:747–756. doi: 10.1016/S2468-1253(17)30147-4. PubMed DOI
Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101:15718–15723. doi: 10.1073/pnas.0407076101. PubMed DOI PMC
Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341:1241214. doi: 10.1126/science.1241214. PubMed DOI PMC
Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan TG, Cryan JF. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Transl Res. 2017;179:223–244. doi: 10.1016/j.trsl.2016.10.002. PubMed DOI
Everard A, Cani PD. Gut microbiota and GLP-1. Rev Endocr Metab Disord. 2014;15:189–196. doi: 10.1007/s11154-014-9288-6. PubMed DOI
Hibberd AA, Yde CC, Ziegler ML, Honoré AH, Saarinen MT, Lahtinen S, et al. Probiotic or synbiotic alters the gut microbiota and metabolism in a randomised controlled trial of weight management in overweight adults. Benef Microbes. 2019;10:121–135. doi: 10.3920/BM2018.0028. PubMed DOI
Kim J, Yun JM, Kim MK, Kwon O, Cho B. Lactobacillus gasseri BNR17 Supplementation Reduces the Visceral Fat Accumulation and Waist Circumference in Obese Adults: A Randomized, Double-Blind, Placebo-Controlled Trial. J Med Food. 2018;21:454–461. doi: 10.1089/jmf.2017.3937. PubMed DOI
Thuny F, Richet H, Casalta JP, Angelakis E, Habib G, Raoult D. Vancomycin treatment of infective endocarditis is linked with recently acquired obesity. PLoS One. 2010;5:e9074. doi: 10.1371/journal.pone.0009074. PubMed DOI PMC
Million M, Thuny F, Angelakis E, Casalta JP, Giorgi R, Habib G, et al. Lactobacillus reuteri and Escherichia coli in the human gut microbiota may predict weight gain associated with vancomycin treatment. Nutr Diabetes. 2013;3(9):e87. doi: 10.1038/nutd.2013.28. PubMed DOI PMC
Rahman MM, Islam F, Or-Rashid MH, Mamun AA, Rahaman MS, Islam MM, et al. The gut microbiota (microbiome) in cardiovascular disease and its therapeutic regulation. Front Cell Infect Microbiol. 2022;12:903570. doi: 10.3389/fcimb.2022.903570. PubMed DOI PMC
Witkowski M, Weeks TL, Hazen SL. Gut microbiota and cardiovascular disease. Circ Res. 2020;127:553–570. doi: 10.1161/CIRCRESAHA.120.316242. PubMed DOI PMC
Bauer KC, Huus KE, Finlay BB. Microbes and the mind: emerging hallmarks of the gut microbiota-brain axis. Cell Microbiol. 2016;18:632–644. doi: 10.1111/cmi.12585. PubMed DOI
Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63. doi: 10.1038/nature09922. PubMed DOI PMC
Tang WH, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res. 2017;120:1183–1196. doi: 10.1161/CIRCRESAHA.117.309715. PubMed DOI PMC
Lam V, Su J, Hsu A, Gross GJ, Salzman NH, Baker JE. Intestinal microbial metabolites are linked to severity of myocardial infarction in rats. PLoS One. 2016;11:e0160840. doi: 10.1371/journal.pone.0160840. PubMed DOI PMC
Lam V, Su J, Koprowski S, Hsu A, Tweddell JS, Rafiee P, et al. Intestinal microbiota determine severity of myocardial infarction in rats. Faseb j. 2012;26:1727–1735. doi: 10.1096/fj.11-197921. PubMed DOI PMC
Gan XT, Ettinger G, Huang CX, Burton JP, Haist JV, Rajapurohitam V, et al. Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat. Circ Heart Fail. 2014;7:491–499. doi: 10.1161/CIRCHEARTFAILURE.113.000978. PubMed DOI
Akkasheh G, Kashani-Poor Z, Tajabadi-Ebrahimi M, Jafari P, Akbari H, Taghizadeh M, et al. Clinical and metabolic response to probiotic administration in patients with major depressive disorder: A randomized, double-blind, placebo-controlled trial. Nutrition. 2016;32:315–320. doi: 10.1016/j.nut.2015.09.003. PubMed DOI
Vaghef-Mehrabany E, Alipour B, Homayouni-Rad A, Sharif SK, Asghari-Jafarabadi M, Zavvari S. Probiotic supplementation improves inflammatory status in patients with rheumatoid arthritis. Nutrition. 2014;30:430–435. doi: 10.1016/j.nut.2013.09.007. PubMed DOI
Varesi A, Pierella E, Romeo M, Piccini GB, Alfano C, Bjørklund G, et al. The potential role of gut microbiota in Alzheimer's disease: From Diagnosis to Treatment. Nutrients. 2022:14. doi: 10.3390/nu14030668. PubMed DOI PMC
Goyal D, Ali SA, Singh RK. Emerging role of gut microbiota in modulation of neuroinflammation and neurodegeneration with emphasis on Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry. 2021;106:110112. doi: 10.1016/j.pnpbp.2020.110112. PubMed DOI
Angoorani P, Ejtahed HS, Hasani-Ranjbar S, Siadat SD, Soroush AR, Larijani B. Gut microbiota modulation as a possible mediating mechanism for fasting-induced alleviation of metabolic complications: a systematic review. Nutr Metab (Lond) 2021;18:105. doi: 10.1186/s12986-021-00635-3. PubMed DOI PMC
Deledda A, Annunziata G, Tenore GC, Palmas V, Manzin A, Velluzzi F. Diet-Derived Antioxidants and Their Role in Inflammation, Obesity and Gut Microbiota Modulation. Antioxidants (Basel) 2021:10. doi: 10.3390/antiox10050708. PubMed DOI PMC
Forslund SK. Fasting intervention and its clinical effects on the human host and microbiome. J Intern Med. 2023;293:166–183. doi: 10.1111/joim.13574. PubMed DOI
Hainsworth AH, Oommen AT, Bridges LR. Endothelial cells and human cerebral small vessel disease. Brain Pathol. 2015;25:44–50. doi: 10.1111/bpa.12224. PubMed DOI PMC
McGonigle P, Ruggeri B. Animal models of human disease: challenges in enabling translation. Biochem Pharmacol. 2014;87:162–171. doi: 10.1016/j.bcp.2013.08.006. PubMed DOI