Certain heterozygous variants in the kinase domain of the serine/threonine kinase NEK8 can cause an autosomal dominant form of polycystic kidney disease
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural
Grantová podpora
MC_EX_MR/M009203/1
Medical Research Council - United Kingdom
MR/M009203/1
Medical Research Council - United Kingdom
R01 DK059597
NIDDK NIH HHS - United States
MR/Y007808/1
Medical Research Council - United Kingdom
R35 GM142512
NIGMS NIH HHS - United States
MR/V028723/1
Medical Research Council - United Kingdom
MC_PC_14089
Medical Research Council - United Kingdom
R01 DK058816
NIDDK NIH HHS - United States
U54 DK126126
NIDDK NIH HHS - United States
Medical Research Council - United Kingdom
PubMed
37598857
PubMed Central
PMC10592035
DOI
10.1016/j.kint.2023.07.021
PII: S0085-2538(23)00559-8
Knihovny.cz E-zdroje
- Klíčová slova
- NEK8, ciliopathy, kinase, polycystic kidney disease,
- MeSH
- cilie patologie MeSH
- kationtové kanály TRPP genetika metabolismus MeSH
- kinasy NEK genetika metabolismus MeSH
- ledviny metabolismus MeSH
- lidé MeSH
- mutace MeSH
- myši MeSH
- novorozenec MeSH
- polycystická choroba ledvin * genetika MeSH
- polycystické ledviny autozomálně dominantní * patologie MeSH
- protein-serin-threoninkinasy genetika metabolismus MeSH
- serin genetika metabolismus MeSH
- transportní proteiny metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- novorozenec MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- ANKS6 protein, mouse MeSH Prohlížeč
- kationtové kanály TRPP MeSH
- kinasy NEK MeSH
- NEK8 protein, human MeSH Prohlížeč
- Nek8 protein, mouse MeSH Prohlížeč
- protein-serin-threoninkinasy MeSH
- serin MeSH
- transportní proteiny MeSH
Autosomal dominant polycystic kidney disease (ADPKD) resulting from pathogenic variants in PKD1 and PKD2 is the most common form of PKD, but other genetic causes tied to primary cilia function have been identified. Biallelic pathogenic variants in the serine/threonine kinase NEK8 cause a syndromic ciliopathy with extra-kidney manifestations. Here we identify NEK8 as a disease gene for ADPKD in 12 families. Clinical evaluation was combined with functional studies using fibroblasts and tubuloids from affected individuals. Nek8 knockout mouse kidney epithelial (IMCD3) cells transfected with wild type or variant NEK8 were further used to study ciliogenesis, ciliary trafficking, kinase function, and DNA damage responses. Twenty-one affected monoallelic individuals uniformly exhibited cystic kidney disease (mostly neonatal) without consistent extra-kidney manifestations. Recurrent de novo mutations of the NEK8 missense variant p.Arg45Trp, including mosaicism, were seen in ten families. Missense variants elsewhere within the kinase domain (p.Ile150Met and p.Lys157Gln) were also identified. Functional studies demonstrated normal localization of the NEK8 protein to the proximal cilium and no consistent cilia formation defects in patient-derived cells. NEK8-wild type protein and all variant forms of the protein expressed in Nek8 knockout IMCD3 cells were localized to cilia and supported ciliogenesis. However, Nek8 knockout IMCD3 cells expressing NEK8-p.Arg45Trp and NEK8-p.Lys157Gln showed significantly decreased polycystin-2 but normal ANKS6 localization in cilia. Moreover, p.Arg45Trp NEK8 exhibited reduced kinase activity in vitro. In patient derived tubuloids and IMCD3 cells expressing NEK8-p.Arg45Trp, DNA damage signaling was increased compared to healthy passage-matched controls. Thus, we propose a dominant-negative effect for specific heterozygous missense variants in the NEK8 kinase domain as a new cause of PKD.
Birmingham Women's and Children's National Health Services West Midlands Birmingham UK
Department of Biochemistry and Molecular Biology Mayo Clinic Rochester Minnesota USA
Department of Clinical Genetics Erasmus University Medical Center Rotterdam the Netherlands
Department of Genetics and Biochemistry Clemson University Clemson South Carolina USA
Department of Genetics University Medical Center Utrecht Utrecht the Netherlands
Department of Nephrology and Hypertension University Medical Centre Utrecht Utrecht the Netherlands
Department of Pediatric Nephrology Wilhelmina Children's Hospital Utrecht the Netherlands
Division of Nephrology and Hypertension Mayo Clinic Rochester Minnesota USA
Fundeni Clinical Institute Bucharest Romania
Institute Pathology and Genetic Center of Human Genetics Charleroi Belgium
Newcastle University Translational and Clinical Research Institute Newcastle upon Tyne UK
Research Division Greenwood Genetic Center Greenwood South Carolina USA
Zobrazit více v PubMed
Torres VE, Harris PC, Pirson Y. Autosomal dominant polycystic kidney disease. The Lancet. 2007;369(9569):1287–1301. doi:10.1016/S0140-6736(07)60601-1 PubMed DOI
Shaw C, Simms RJ, Pitcher D, Sandford R. Epidemiology of patients in England and Wales with autosomal dominant polycystic kidney disease and end-stage renal failure. Nephrol Dial Transplant. 2014;29(10):1910–1918. doi:10.1093/ndt/gfu087 PubMed DOI
Besse W, Dong K, Choi J, et al. Isolated polycystic liver disease genes define effectors of polycystin-1 function. J Clin Invest. 2017;127(5):1772–1785. doi:10.1172/JCI90129 PubMed DOI PMC
Besse W, Chang AR, Luo JZ, et al. ALG9 Mutation Carriers Develop Kidney and Liver Cysts. J Am Soc Nephrol. 2019;30(11):2091–2102. doi:10.1681/ASN.2019030298 PubMed DOI PMC
Senum SR, Li YSM, Benson KA, et al. Monoallelic IFT140 pathogenic variants are an important cause of the autosomal dominant polycystic kidney-spectrum phenotype. Am J Hum Genet. 2022;109(1):136–156. doi:10.1016/j.ajhg.2021.11.016 PubMed DOI PMC
Cornec-Le Gall E, Olson RJ, Besse W, et al. Monoallelic Mutations to DNAJB11 Cause Atypical Autosomal-Dominant Polycystic Kidney Disease. Am J Hum Genet. 2018;102(5):832–844. doi:10.1016/j.ajhg.2018.03.013 PubMed DOI PMC
Porath B, Gainullin VG, Cornec-Le Gall E, et al. Mutations in GANAB, Encoding the Glucosidase IIα Subunit, Cause Autosomal-Dominant Polycystic Kidney and Liver Disease. Am J Hum Genet. 2016;98(6):1193–1207. doi:10.1016/j.ajhg.2016.05.004 PubMed DOI PMC
Lemoine H, Raud L, Foulquier F, et al. Monoallelic pathogenic ALG5 variants cause atypical polycystic kidney disease and interstitial fibrosis. Am J Hum Genet. 2022;109(8):1484–1499. doi:10.1016/J.AJHG.2022.06.013 PubMed DOI PMC
Waters AM, Beales PL. Ciliopathies: An expanding disease spectrum. Pediatric Nephrology. 2011;26(7):1039–1056. doi:10.1007/s00467-010-1731-7 PubMed DOI PMC
Hildebrandt F, Benzing T, Katsanis N. Ciliopathies. New England Journal of Medicine. 2011;364(16):1533–1543. doi:10.1056/nejmra1010172 PubMed DOI PMC
Chaki M, Airik R, Ghosh AK, et al. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell. 2012;150(3):533–548. doi:10.1016/j.cell.2012.06.028 PubMed DOI PMC
Ateş EA, Turkyilmaz A, Delil K, et al. Biallelic Mutations in DNAJB11 Are Associated with Prenatal Polycystic Kidney Disease in a Turkish Family. Vol 12. Mol Syndromol; 2021:179–185. doi:10.1159/000513611 PubMed DOI PMC
Jordan P, Arrondel C, Bessières B, et al. Bi-allelic pathogenic variations in DNAJB11 cause Ivemark II syndrome, a renal-hepatic-pancreatic dysplasia. Kidney Int. 2021;99(2):405–409. doi:10.1016/J.KINT.2020.09.029 PubMed DOI
Grampa V, Delous M, Zaidan M, et al. Novel NEK8 Mutations Cause Severe Syndromic Renal Cystic Dysplasia through YAP Dysregulation. PLoS Genet. 2016;12(3):e1005894. doi:10.1371/journal.pgen.1005894 PubMed DOI PMC
Frank V, Habbig S, Bartram MP, et al. Mutations in NEK8 link multiple organ dysplasia with altered Hippo signalling and increased c-MYC expression. Hum Mol Genet. 2013;22(11):2177–2185. doi:10.1093/hmg/ddt070 PubMed DOI
Hoff S, Halbritter J, Epting D, et al. ANKS6 is a central component of a nephronophthisis module linking NEK8 to INVS and NPHP3. Nat Genet. 2013;45(8):951–956. doi:10.1038/ng.2681 PubMed DOI PMC
Sohara E, Luo Y, Zhang J, Manning DK, Beier DR, Zhou J. Nek8 regulates the expression and localization of polycystin-1 and polycystin-2. Journal of the American Society of Nephrology. 2008;19(3):469–476. doi:10.1681/ASN.2006090985 PubMed DOI PMC
Sobreira N, Schiettecatte F, Valle D, Hamosh A. GeneMatcher: A Matching Tool for Connecting Investigators with an Interest in the Same Gene. Hum Mutat. 2015;36(10):928–930. doi:10.1002/humu.22844 PubMed DOI PMC
Smedley D, Smith KR, Martin A, et al. 100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care - Preliminary Report. N Engl J Med. 2021;385(20):1868–1880. doi:10.1056/NEJMOA2035790 PubMed DOI PMC
Varadi M, Anyango S, Deshpande M, et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022;50(D1):D439–D444. doi:10.1093/NAR/GKAB1061 PubMed DOI PMC
Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021 596:7873. 2021;596(7873):583–589. doi:10.1038/s41586-021-03819-2 PubMed DOI PMC
Mariani V, Biasini M, Barbato A, Schwede T. lDDT: a local superposition-free score for comparing protein structures and models using distance difference tests. Bioinformatics. 2013;29(21):2722. doi:10.1093/BIOINFORMATICS/BTT473 PubMed DOI PMC
Rentzsch P, Schubach M, Shendure J, Kircher M. CADD-Splice—improving genome-wide variant effect prediction using deep learning-derived splice scores. Genome Med. 2021;13(1). doi:10.1186/s13073-021-00835-9 PubMed DOI PMC
Wiel L, Baakman C, Gilissen D, Veltman JA, Vriend G, Gilissen C. MetaDome: Pathogenicity analysis of genetic variants through aggregation of homologous human protein domains. Hum Mutat. 2019;40(8):1030–1038. doi:10.1002/humu.23798 PubMed DOI PMC
Manning DK, Sergeev M, van Heesbeen RG, et al. Loss of the ciliary kinase Nek8 causes left-right asymmetry defects. J Am Soc Nephrol. 2013;24(1):100–112. doi:10.1681/ASN.2012050490 PubMed DOI PMC
Johannessen CM, Boehm JS, Kim SY, et al. COT/MAP3K8 drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature. 2010;468(7326):968. doi:10.1038/NATURE09627 PubMed DOI PMC
Chen C, Xu Q, Zhang Y, et al. Ciliopathy protein HYLS1 coordinates the biogenesis and signaling of primary cilia by activating the ciliary lipid kinase PIPKIγ. Sci Adv. 2021;7(26). doi:10.1126/SCIADV.ABE3401 PubMed DOI PMC
Obeidova L, Seeman T, Fencl F, et al. Results of targeted next-generation sequencing in children with cystic kidney diseases often change the clinical diagnosis. PLoS One. 2020;15(6):e0235071. PubMed PMC
Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434–443. doi:10.1038/s41586-020-2308-7 PubMed DOI PMC
Holland PM, Milne A, Garka K, et al. Purification, cloning, and characterization of Nek8, a novel nima-related kinase, and its candidate substrate Bicd2. Journal of Biological Chemistry. 2002;277(18):16229–16240. doi:10.1074/jbc.M108662200 PubMed DOI
Tsai J, Gerstein M. Calculations of protein volumes: Sensitivity analysis and parameters database. Bioinformatics. 2002;18(7):985–995. doi:10.1093/bioinformatics/18.7.985 PubMed DOI
Czarnecki PG, Gabriel GC, Manning DK, et al. ANKS6 is the critical activator of NEK8 kinase in embryonic situs determination and organ patterning. Nat Commun. 2015;6. doi:10.1038/ncomms7023 PubMed DOI PMC
Kinoshita E, Kinoshita-Kikuta E, Koike T. Separation and detection of large phosphoproteins using Phos-tag SDS-PAGE. Nat Protoc. 2009;4(10):1513–1521. doi:10.1038/NPROT.2009.154 PubMed DOI
Helt CE, Cliby WA, Keng PC, Bambara RA, O’Reilly MA. Ataxia telangiectasia mutated (ATM) and ATM and Rad3-related protein exhibit selective target specificities in response to different forms of DNA damage. J Biol Chem. 2005;280(2):1186–1192. doi:10.1074/JBC.M410873200 PubMed DOI
Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998;273(10):5858–5868. doi:10.1074/JBC.273.10.5858 PubMed DOI
Ward IM, Chen J. Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem. 2001;276(51):47759–47762. doi:10.1074/JBC.C100569200 PubMed DOI
Choi HJC, Lin JR, Vannier JB, et al. NEK8 Links the ATR-Regulated Replication Stress Response and S Phase CDK Activity to Renal Ciliopathies. Mol Cell. 2013;51(4):423–439. doi:10.1016/j.molcel.2013.08.006 PubMed DOI PMC
Ali H, Al-Mulla F, Hussain N, et al. PKD1 Duplicated regions limit clinical Utility of Whole Exome Sequencing for Genetic Diagnosis of Autosomal Dominant Polycystic Kidney Disease. Sci Rep. 2019;9(1):4141. doi:10.1038/s41598-019-40761-w PubMed DOI PMC
Rajagopalan R, Grochowski CM, Gilbert MA, et al. Compound heterozygous mutations in NEK8 in siblings with end-stage renal disease with hepatic and cardiac anomalies. Am J Med Genet A. 2016;170(3):750–753. doi:10.1002/AJMG.A.37512 PubMed DOI
Otto EA, Trapp ML, Schultheiss UT, Helou J, Quarmby LM, Hildebrandt F. NEK8 mutations affect ciliary and centrosomal localization and may cause nephronophthisis. J Am Soc Nephrol. 2008;19(3):587–592. doi:10.1681/ASN.2007040490 PubMed DOI PMC
Domingo-Gallego A, Pybus M, Bullich G, et al. Clinical utility of genetic testing in early-onset kidney disease: seven genes are the main players. Nephrology, dialysis, transplantation. 2022;37(4):687–696. doi:10.1093/NDT/GFAB019 PubMed DOI
Bergmann C. ARPKD and early manifestations of ADPKD: the original polycystic kidney disease and phenocopies. Pediatr Nephrol. 2015;30(1):15–30. doi:10.1007/s00467-013-2706-2 PubMed DOI PMC
Mehawej C, Chouery E, Ghabril R, Tokajian S, Megarbane A. NEK8-Associated Nephropathies: Do Autosomal Dominant Forms Exist? Nephron. Published online 2022. doi:10.1159/000526841 PubMed DOI
Kent WJ, Sugnet CW, Furey TS, et al. The human genome browser at UCSC. Genome Res. 2002;12(6):996–1006. doi:10.1101/GR.229102 PubMed DOI PMC
Cooper DN, Mort M, Stenson PD, Ball EV., Chuzhanova NA. Methylation-mediated deamination of 5-methylcytosine appears to give rise to mutations causing human inherited disease in CpNpG trinucleotides, as well as in CpG dinucleotides. Hum Genomics. 2010;4(6):406–410. doi:10.1186/1479-7364-4-6-406 PubMed DOI PMC