Results of targeted next-generation sequencing in children with cystic kidney diseases often change the clinical diagnosis
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32574212
PubMed Central
PMC7310724
DOI
10.1371/journal.pone.0235071
PII: PONE-D-20-00639
Knihovny.cz E-zdroje
- MeSH
- adaptorové proteiny signální transdukční genetika MeSH
- cystická onemocnění ledvin diagnóza genetika MeSH
- cytoskeletální proteiny genetika MeSH
- dítě MeSH
- genetická predispozice k nemoci genetika MeSH
- hepatocytární jaderný faktor 1-beta genetika MeSH
- kationtové kanály TRPP genetika MeSH
- kojenec MeSH
- lidé MeSH
- mutace * MeSH
- novorozenec MeSH
- polycystické ledviny autozomálně recesivní diagnóza genetika MeSH
- předškolní dítě MeSH
- proteiny asociované s mikrotubuly genetika MeSH
- receptory buněčného povrchu genetika MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- adaptorové proteiny signální transdukční MeSH
- Bbs1 protein, human MeSH Prohlížeč
- cytoskeletální proteiny MeSH
- hepatocytární jaderný faktor 1-beta MeSH
- HNF1B protein, human MeSH Prohlížeč
- kationtové kanály TRPP MeSH
- NPHP1 protein, human MeSH Prohlížeč
- PKHD1 protein, human MeSH Prohlížeč
- polycystic kidney disease 1 protein MeSH Prohlížeč
- proteiny asociované s mikrotubuly MeSH
- receptory buněčného povrchu MeSH
Cystic kidney diseases are a very heterogeneous group of chronic kidney diseases. The diagnosis is usually based on clinical and ultrasound characteristics and the final diagnosis is often difficult to be made. Next-generation sequencing (NGS) may help the clinicians to find the correct final diagnosis. The aim of our study was to test the diagnostic yield of NGS and its ability to improve the diagnosis precision in a heterogeneous group of children with cystic kidney diseases. Next-generation sequencing of genes responsible for the formation of cystic kidneys was performed in 31 unrelated patients with various clinically diagnosed cystic kidney diseases gathered at the Department of Pediatrics of Motol University Hospital in Prague between 2013 and 2018. The underlying pathogenic variants were detected in 71% of patients (n = 22), no or only one (in case of autosomal recessive inheritance) pathogenic variant was found in 29% of patients (n = 9). The result of NGS correlated with the clinical diagnosis made before the NGS in 55% of patients (n = 17), in the remaining 14 children (45%) the result of NGS revealed another type of cystic kidney disease that was suspected clinically before or did not find causal mutation in suspected genes. The most common unexpected findings were variants in nephronophthisis (NPHP) genes in children with clinically suspected autosomal recessive polycystic kidney disease (ARPKD, n = 4). Overall, 24 pathogenic or probably pathogenic variants were detected in the PKHD1 gene, 8 variants in the TMEM67 gene, 4 variants in the PKD1 gene, 2 variants in the HNF1B gene and 2 variants in BBS1 and NPHP1 genes, respectively. NGS is a valuable tool in the diagnostics of various forms of cystic kidney diseases. Its results changed the clinically based diagnoses in 16% (n = 5) of the children.
Zobrazit více v PubMed
Loftus H, Ong ACM. Cystic kidney diseases: Many ways to form a cyst. Pediatr Nephrol. 2013;28: 33–49. 10.1007/s00467-012-2221-x PubMed DOI PMC
Bergmann C, von Bothmer J, Ortiz Brüchle N, Venghaus A, Frank V, Fehrenbach H, et al. Mutations in multiple PKD genes may explain early and severe polycystic kidney disease. J Am Soc Nephrol. 2011;22: 2047–56. 10.1681/ASN.2010101080 PubMed DOI PMC
Guay-Woodford LM, Bissler JJ, Braun MC, Bockenhauer D, Cadnapaphornchai M a, Dell KM, et al. Consensus Expert Recommendations for the Diagnosis and Management of Autosomal Recessive Polycystic Kidney Disease: Report of an International Conference. J Pediatr. 2014;165: 611–617. 10.1016/j.jpeds.2014.06.015 PubMed DOI PMC
Gimpel C, Bergmann C, Bockenhauer D, Breysem L, Cadnapaphornchai MA, Cetiner M, et al. International consensus statement on the diagnosis and management of autosomal dominant polycystic kidney disease in children and young people. Nat Rev Nephrol. 2019;15: 713–726. 10.1038/s41581-019-0155-2 PubMed DOI PMC
Gimpel C, Avni EF, Breysem L, Burgmaier K, Caroli A, Cetiner M, et al. Imaging of Kidney Cysts and Cystic Kidney Diseases in Children: An International Working Group Consensus Statement. Radiology. 2019;290: 769–782. 10.1148/radiol.2018181243 PubMed DOI PMC
König J, Kranz B, König S, Schlingmann KP, Titieni A, Tönshoff B, et al. Phenotypic spectrum of children with nephronophthisis and related ciliopathies. Clin J Am Soc Nephrol. 2017;12: 1974–1983. 10.2215/CJN.01280217 PubMed DOI PMC
Bockenhauer D, Jaureguiberry G. HNF1B-associated clinical phenotypes: the kidney and beyond. Pediatr Nephrol. 2016;31: 707–714. 10.1007/s00467-015-3142-2 PubMed DOI
Niederlova V, Modrak M, Tsyklauri O, Huranova M, Stepanek O. Meta-analysis of genotype-phenotype associations in Bardet-Biedl syndrome uncovers differences among causative genes. Hum Mutat. 2019;40: 2068–2087. 10.1002/humu.23862 PubMed DOI
Lurbe E, Agabiti-Rosei E, Cruickshank JK, Dominiczak A, Erdine S, Hirth A, et al. 2016 European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. Journal of Hypertension. 2016. 10.1097/HJH.0000000000001039 PubMed DOI
Schwartz GJ, Muñoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20: 629–637. 10.1681/ASN.2008030287 PubMed DOI PMC
Tan YC, Michaeel A, Blumenfeld J, Donahue S, Parker T, Levine D, et al. A novel long-range PCR sequencing method for genetic analysis of the entire PKD1 gene. J Mol Diagnostics. 2012;14: 305–313. 10.1016/j.jmoldx.2012.02.007 PubMed DOI PMC
Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30: 2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC
Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv Prepr arXiv. 2012;12073907: 1–20. arXiv:1207.3907 [q-bio.GN]
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly (Austin). 2012;6: 80–92. 10.4161/fly.19695 PubMed DOI PMC
Cingolani P, Patel VM, Coon M, Nguyen T, Land SJ, Ruden DM, et al. Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift. Front Genet. 2012;3 10.3389/fgene.2012.00035 PubMed DOI PMC
Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: Predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012;40: 452–457. 10.1093/nar/gks539 PubMed DOI PMC
Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7: 248–9. 10.1038/nmeth0410-248 PubMed DOI PMC
Chun S, Fay JC. Identification of deleterious mutations within three human genomes. Genome Res. 2009;19: 1553–1561. 10.1101/gr.092619.109 PubMed DOI PMC
Reva B, Antipin Y, Sander C. Predicting the functional impact of protein mutations: Application to cancer genomics. Nucleic Acids Res. 2011;39: 37–43. 10.1093/nar/gkr407 PubMed DOI PMC
Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GLA, Edwards KJ, et al. Predicting the Functional, Molecular, and Phenotypic Consequences of Amino Acid Substitutions using Hidden Markov Models. Hum Mutat. 2013;34: 57–65. 10.1002/humu.22225 PubMed DOI PMC
Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the Functional Effect of Amino Acid Substitutions and Indels. PLoS One. 2012;7 10.1371/journal.pone.0046688 PubMed DOI PMC
Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: Predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47: D886–D894. 10.1093/nar/gky1016 PubMed DOI PMC
Dong C, Wei P, Jian X, Gibbs R, Boerwinkle E, Wang K, et al. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum Mol Genet. 2015;24: 2125–2137. 10.1093/hmg/ddu733 PubMed DOI PMC
Kopanos C, Tsiolkas V, Kouris A, Chapple CE, Albarca Aguilera M, Meyer R, et al. VarSome: the human genomic variant search engine. Bioinformatics. 2019;35: 1978–1980. 10.1093/bioinformatics/bty897 PubMed DOI PMC
Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, et al. ClinVar: Public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016;44: D862–D868. 10.1093/nar/gkv1222 PubMed DOI PMC
Bateman A, Martin MJ, O’Donovan C, Magrane M, Alpi E, Antunes R, et al. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2017;45: D158–D169. 10.1093/nar/gkw1099 PubMed DOI PMC
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17: 405–424. 10.1038/gim.2015.30 PubMed DOI PMC
Talevich E, Shain AH, Botton T, Bastian BC. CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing. PLOS Comput Biol. 2016;12: e1004873 10.1371/journal.pcbi.1004873 PubMed DOI PMC
Obeidova L, Seeman T, Elisakova V, Reiterova J, Puchmajerova A, Stekrova J. Molecular genetic analysis of PKHD1 by next-generation sequencing in Czech families with autosomal recessive polycystic kidney disease. BMC Med Genet. 2015;16: 116 10.1186/s12881-015-0261-3 PubMed DOI PMC
Bullich G, Domingo-Gallego A, Vargas I, Ruiz P, Lorente-Grandoso L, Furlano M, et al. A kidney-disease gene panel allows a comprehensive genetic diagnosis of cystic and glomerular inherited kidney diseases. Kidney Int. 2018;94: 363–371. 10.1016/j.kint.2018.02.027 PubMed DOI
Heidet L, Decramer S, Pawtowski A, Morinière V, Bandin F, Knebelmann B, et al. Spectrum of HNF1B mutations in a large cohort of patients who harbor renal diseases. Clin J Am Soc Nephrol. 2010;5: 1079–90. 10.2215/CJN.06810909 PubMed DOI PMC
Chaki M, Hoefele J, Allen SJ, Ramaswami G, Janssen S, Bergmann C, et al. Genotype–phenotype correlation in 440 patients with NPHP-related ciliopathies. Kidney Int. 2011;80: 1239–1245. 10.1038/ki.2011.284 PubMed DOI PMC
Otto EA, Tory K, Attanasio M, Zhou W, Chaki M, Paruchuri Y, et al. Hypomorphic mutations in meckelin (MKS3/TMEM67) cause nephronophthisis with liver fibrosis (NPHP11). J Med Genet. 2009;46: 663–670. 10.1136/jmg.2009.066613 PubMed DOI
Bergmann C, Senderek J, Windelen E, Küpper F, Middeldorf I, Schneider F, et al. Clinical consequences of PKHD1 mutations in 164 patients with autosomal-recessive polycystic kidney disease (ARPKD). Kidney Int. 2005;67: 829–48. 10.1111/j.1523-1755.2005.00148.x PubMed DOI
Gunay-Aygun M, Turkbey BI, Bryant J, Daryanani KT, Gerstein MT, Piwnica-Worms K, et al. Hepatorenal findings in obligate heterozygotes for autosomal recessive polycystic kidney disease. Mol Genet Metab. 2011;104: 677–681. 10.1016/j.ymgme.2011.09.001 PubMed DOI PMC
Lu H, Galeano MCR, Ott E, Kaeslin G, Kausalya PJ, Kramer C, et al. Mutations in DZIP1L, which encodes a ciliary-transition-zone protein, cause autosomal recessive polycystic kidney disease. Nat Genet. 2017;49: 1025–1034. 10.1038/ng.3871 PubMed DOI PMC
Failler M, Gee HY, Krug P, Joo K, Halbritter J, Belkacem L, et al. Mutations of CEP83 cause infantile nephronophthisis and intellectual disability. Am J Hum Genet. 2014;94: 905–914. 10.1016/j.ajhg.2014.05.002 PubMed DOI PMC
Novarino G, Akizu N, Gleeson JG. Review Modeling Human Disease in Humans: The Ciliopathies. Cell. 2011;147: 70–79. 10.1016/j.cell.2011.09.014 PubMed DOI PMC