• This record comes from PubMed

Molecular genetic analysis of PKHD1 by next-generation sequencing in Czech families with autosomal recessive polycystic kidney disease

. 2015 Dec 22 ; 16 () : 116. [epub] 20151222

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 26695994
PubMed Central PMC4689053
DOI 10.1186/s12881-015-0261-3
PII: 10.1186/s12881-015-0261-3
Knihovny.cz E-resources

BACKGROUND: Autosomal recessive polycystic kidney disease (ARPKD) is an early-onset form of polycystic kidney disease that often leads to devastating outcomes for patients. ARPKD is caused by mutations in the PKHD1 gene, an extensive gene that encodes for the ciliary protein fibrocystin/polyductin. Next-generation sequencing is presently the best option for molecular diagnosis of ARPKD. Our aim was to set up the first study of ARPKD patients from the Czech Republic, to determine the composition of their mutations and genotype-phenotype correlations, along with establishment of next-generation sequencing of the PKHD1 gene that could be used for the diagnosis of ARPKD patients. METHODS: Mutational analysis of the PKHD1 gene was performed in 24 families using the amplicon-based next-generation sequencing (NGS) technique. In patients without 2 causal mutations identified by NGS, subsequent MLPA analysis of the PKHD1 gene was carried out. RESULTS: Two underlying mutations were detected in 54% of families (n = 13), one mutation in 13% of families (n = 3), and in 33% of families (n = 8) no mutation could be detected. Overall, seventeen different mutations (5 novel) were detected, including deletion of one exon. The detection rate in our study reached 60% in the entire cohort of patients; but 90% in the group of patients who fulfilled all clinical criteria of ARPKD, and 42% in the group of patients with unknown kidney pathology. The most frequent mutation was T36M, accounting for nearly 21% of all identified mutations. CONCLUSIONS: Next-generation sequencing of the PKHD1 gene is a very useful method of molecular diagnosis in patients with a full clinical picture of ARPKD, and it has a high detection rate. Furthermore, its relatively low costs and rapidity allow the molecular genetic analysis of patients without the full clinical criteria of ARPKD, who might also have mutations in the PKHD1 gene.

See more in PubMed

Zerres K, Mücher G, Becker J, Steinkamm C, Rudnik-Schöneborn S, Heikkilä P, et al. Prenatal diagnosis of autosomal recessive polycystic kidney disease (ARPKD): molecular genetics, clinical experience, and fetal morphology. Am J Med Genet. 1998;76:137–44. doi: 10.1002/(SICI)1096-8628(19980305)76:2<137::AID-AJMG6>3.0.CO;2-Q. PubMed DOI

Pérez L, Torra R, Badenas C, Ara J, Coll E, Moise J, et al. Nephrology dialysis transplantation autosomal recessive polycystic kidney disease presenting in adulthood. Nephrol Dial Transpl. 1998;13:1273–6. doi: 10.1093/ndt/13.5.1273. PubMed DOI

Adeva M, El-Youssef M, Rossetti S, Kamath PS, Kubly V, Consugar MB, et al. Clinical and molecular characterization defines a broadened spectrum of autosomal recessive polycystic kidney disease (ARPKD) Medicine (Baltimore) 2006;85:1–21. doi: 10.1097/01.md.0000200165.90373.9a. PubMed DOI

Bergmann C, Senderek J, Windelen E, Küpper F, Middeldorf I, Schneider F, et al. Clinical consequences of PKHD1 mutations in 164 patients with autosomal-recessive polycystic kidney disease (ARPKD) Kidney Int. 2005;67:829–48. doi: 10.1111/j.1523-1755.2005.00148.x. PubMed DOI

Roy S, Dillon MJ, Trompeter RS, Barratt TM. Autosomal recessive polycystic kidney disease: long-term outcome of neonatal survivors. Pediatr Nephrol. 1997;11:302–6. doi: 10.1007/s004670050281. PubMed DOI

Onuchic LF, Furu L, Nagasawa Y, Hou X, Eggermann T, Ren Z, et al. PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like plexin-transcription-factor domains and parallel beta-helix 1 repeats. Am J Hum Genet. 2002;70:1305–17. doi: 10.1086/340448. PubMed DOI PMC

Ward CJ, Hogan MC, Rossetti S, Walker D, Sneddon T, Wang X, et al. The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat Genet. 2002;30:259–69. doi: 10.1038/ng833. PubMed DOI

Kim I, Li C, Liang D, Coffy RJ, Ma J, Zhao P, et al. Polycystin-2 expression is regulated by a PC2-binding domain in the intracellular portion of fibrocystin. J Biol Chem. 2008;283:31559–66. doi: 10.1074/jbc.M805452200. PubMed DOI PMC

Kim I, Fu Y, Hui K, Moeckel G, Mai W, Li C, et al. Fibrocystin/polyductin modulates renal tubular formation by regulating polycystin-2 expression and function. J Am Soc Nephrol. 2008;19:455–68. doi: 10.1681/ASN.2007070770. PubMed DOI PMC

Bakeberg JL, Tammachote R, Woollard JR, Hogan MC, Tuan H, Li M, et al. Epitope-tagged Pkhd1 tracks the processing, secretion, and localization of fibrocystin. J Am Soc Nephrol. 2011;22:2266–77. doi: 10.1681/ASN.2010111173. PubMed DOI PMC

Zerres K, Senderek J, Rudnik-Schöneborn S, Eggermann T, Kunze J, Mononen T, et al. New options for prenatal diagnosis in autosomal recessive polycystic kidney disease by mutation analysis of the PKHD1 gene. Clin Genet. 2004;66:53–7. doi: 10.1111/j.0009-9163.2004.00259.x. PubMed DOI

Bergmann C, von Bothmer J, Ortiz Brüchle N, Venghaus A, Frank V, Fehrenbach H, et al. Mutations in multiple PKD genes may explain early and severe polycystic kidney disease. J Am Soc Nephrol. 2011;22:2047–56. doi: 10.1681/ASN.2010101080. PubMed DOI PMC

Gunay-Aygun M, Font-Montgomery E, Lukose L, Tuchman M, Graf J, Bryant JC, et al. Correlation of kidney function, volume and imaging findings, and PKHD1 mutations in 73 patients with autosomal recessive polycystic kidney disease. Clin J Am Soc Nephrol. 2010;5:972–84. doi: 10.2215/CJN.07141009. PubMed DOI PMC

Guay-Woodford LM, Bissler JJ, Braun MC, Bockenhauer D, Cadnapaphornchai MA, Dell KM, et al. Consensus expert recommendations for the diagnosis and management of autosomal recessive polycystic kidney disease: report of an international conference. J Pediatr. 2014;165:611–7. doi: 10.1016/j.jpeds.2014.06.015. PubMed DOI PMC

Losekoot M, Haarloo C, Ruivenkamp C, White SJ, Breuning MH, Peters DJM. Analysis of missense variants in the PKHD1-gene in patients with autosomal recessive polycystic kidney disease (ARPKD) Hum Genet. 2005;118:185–206. doi: 10.1007/s00439-005-0027-7. PubMed DOI

Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9. doi: 10.1038/nmeth0410-248. PubMed DOI PMC

Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11:361–2. doi: 10.1038/nmeth.2890. PubMed DOI

Hebsgaard SM, Korning PG, Tolstrup N, Engelbrecht J, Rouzé P, Brunak S. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucleic Acids Res. 1996;24:3439–53. doi: 10.1093/nar/24.17.3439. PubMed DOI PMC

Brunak S, Engelbrecht J, Knudsen S. Prediction of human mRNA donor and acceptor sites from the DNA sequence. J Mol Biol. 1991;220:49–65. doi: 10.1016/0022-2836(91)90380-O. PubMed DOI

Desmet F-O, Hamroun D, Lalande M, Collod-Béroud G, Claustres M, Béroud C. Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37:1–14. doi: 10.1093/nar/gkp215. PubMed DOI PMC

Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature. 2012;488:471–5. doi: 10.1038/nature11396. PubMed DOI PMC

Furu L, Onuchic LF, Gharavi A, Hou X, Esquivel EL, Nagasawa Y, et al. Milder presentation of recessive polycystic kidney disease requires presence of amino acid substitution mutations. J Am Soc Nephrol. 2003;14:2004–14. doi: 10.1097/01.ASN.0000078805.87038.05. PubMed DOI

Gunay-Aygun M, Tuchman M, Font-Montgomery E, Lukose L, Edwards H, Garcia A, et al. PKHD1 sequence variations in 78 children and adults with autosomal recessive polycystic kidney disease and congenital hepatic fibrosis. Mol Genet Metab. 2010;99:160–73. doi: 10.1016/j.ymgme.2009.10.010. PubMed DOI PMC

Sharp AM, Messiaen LM, Page G, Antignac C, Gubler M-C, Onuchic LF, et al. Comprehensive genomic analysis of PKHD1 mutations in ARPKD cohorts. J Med Genet. 2005;42:336–49. doi: 10.1136/jmg.2004.024489. PubMed DOI PMC

Bergmann C. Spectrum of mutations in the gene for autosomal recessive polycystic kidney disease (ARPKD/PKHD1) J Am Soc Nephrol. 2003;14:76–89. doi: 10.1097/01.ASN.0000039578.55705.6E. PubMed DOI

Bergmann C, Senderek J, Küpper F, Schneider F, Dornia C, Windelen E, et al. PKHD1 mutations in autosomal recessive polycystic kidney disease (ARPKD) Hum Mutat. 2004;23:453–63. doi: 10.1002/humu.20029. PubMed DOI

Decramer S, Parant O, Beaufils S, Clauin S, Guillou C, Kessler S, et al. Anomalies of the TCF2 gene are the main cause of fetal bilateral hyperechogenic kidneys. J Am Soc Nephrol. 2007;18:923–33. doi: 10.1681/ASN.2006091057. PubMed DOI

Bergmann C, Küpper F, Dornia C, Schneider F, Senderek J, Zerres K. Algorithm for efficient PKHD1 mutation screening in autosomal recessive polycystic kidney disease (ARPKD) Hum Mutat. 2005;25:225–31. doi: 10.1002/humu.20145. PubMed DOI

Krall P, Pineda C, Ruiz P, Ejarque L, Vendrell T, Camacho JA, et al. Cost-effective PKHD1 genetic testing for autosomal recessive polycystic kidney disease. Pediatr Nephrol. 2014;29:223–34. doi: 10.1007/s00467-013-2657-7. PubMed DOI

Rossetti S, Torra R, Coto E, Consugar M, Kubly V, Málaga S, et al. A complete mutation screen of PKHD1 in autosomal-recessive polycystic kidney disease (ARPKD) pedigrees. Kidney Int. 2003;64:391–403. doi: 10.1046/j.1523-1755.2003.00111.x. PubMed DOI

Denamur E, Delezoide A-L, Alberti C, Bourillon A, Gubler M-C, Bouvier R, et al. Genotype-phenotype correlations in fetuses and neonates with autosomal recessive polycystic kidney disease. Kidney Int. 2010;77:350–8. doi: 10.1038/ki.2009.440. PubMed DOI

Estroff JA, Mandell J, Benacerraf BR. Increased renal parenchymal echogenicity in the fetus: importance and clinical outcome. Radiology. 1991;181:135–9. doi: 10.1148/radiology.181.1.1887022. PubMed DOI

Ren J, Wen L, Gao X, Jin C, Xue Y, Yao X. DOG 1.0: illustrator of protein domain structures. Cell Res. 2009;19:271–3. doi: 10.1038/cr.2009.6. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...