• This record comes from PubMed

Pan-European phylogeography of the European roe deer (Capreolus capreolus)

. 2022 May ; 12 (5) : e8931. [epub] 20220519

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection

Document type Journal Article

To provide the most comprehensive picture of species phylogeny and phylogeography of European roe deer (Capreolus capreolus), we analyzed mtDNA control region (610 bp) of 1469 samples of roe deer from Central and Eastern Europe and included into the analyses additional 1541 mtDNA sequences from GenBank from other regions of the continent. We detected two mtDNA lineages of the species: European and Siberian (an introgression of C. pygargus mtDNA into C. capreolus). The Siberian lineage was most frequent in the eastern part of the continent and declined toward Central Europe. The European lineage contained three clades (Central, Eastern, and Western) composed of several haplogroups, many of which were separated in space. The Western clade appeared to have a discontinuous range from Portugal to Russia. Most of the haplogroups in the Central and the Eastern clades were under expansion during the Weichselian glacial period before the Last Glacial Maximum (LGM), while the expansion time of the Western clade overlapped with the Eemian interglacial. The high genetic diversity of extant roe deer is the result of their survival during the LGM probably in a large, contiguous range spanning from the Iberian Peninsula to the Caucasus Mts and in two northern refugia.

A N Severtsov Institute of Ecology and Evolution Russian Academy of Sciences Moscow Russia

Bureau of Wildlife Biology Bavaria Rottach Egern Germany

Centre for Agricultural Genomics and Biotechnology Faculty of Agricultural and Food Sciences and Environmental Management University of Debrecen Debrecen Hungary

Department of Anesthesiology University of Virginia Health System Charlottesville Virginia USA

Department of Biology and Ecology Faculty of Sciences University of Novi Sad Novi Sad Republic of Serbia

Department of Biology Vytautas Magnus University Kaunas Lithuania

Department of Fisheries Apiculture Wildlife Management and Special Zoology Faculty of Agriculture University of Zagreb Zagreb Croatia

Department of Forest Ecology Faculty of Forestry and Wood Technology Mendel University in Brno Brno Czech Republic

Department of Forest Ecology Slovenian Forestry Institute Ljubljana Slovenia

Department of Forest Protection and Wildlife Management Mendel University in Brno Brno Czech Republic

Department of Geography Tourism and Hotel Management Faculty of Sciences University of Novi Sad Novi Sad Serbia

Department of Phytology Technical University in Zvolen Zvolen Slovak Republic

Department of Wildlife Monitoring Estonian Environment Agency Tallin Estonia

Department of Zoology Musée National d'Histoire Naturelle Luxembourg City Luxembourg

Faculty of Biology University of Warsaw Warszawa Poland

Faculty of Environmental Protection Velenje Slovenia

Faculty of Forestry Stefan cel Mare University of Suceava Suceava Romania

Faculty of Forestry University of Belgrade Belgrade Serbia

Faculty of Natural Sciences and Mathematics University of Banja Luka Banja Luka Bosnia and Herzegovina

Grigore Antipa National Museum of Natural History Bucharest Romania

Institute of Marine Biology Biotechnology and Aquaculture Hellenic Centre for Marine Research Heraklion Crete Greece

Kyiv Zoological Park of National Importance Kyiv Ukraine

Lammi Biological Station University of Helsinki Lammi Finland

Mammal Research Institute Polish Academy of Sciences Białowieża Poland

Natural Resources Institute Finland Helsinki Finland

Research Institute of Wildlife Ecology University of Veterinary Medicine Vienna Vienna Austria

State National Park Belovezhskaya Pushcha Kamenyuki Republic of Belarus

Wildlife Management Department University of Forestry Sofia Bulgaria

Working Group for Wildlife Research at Clinic for Birds Reptiles Amphibians and Fish Justus Liebig University Giessen Gießen Germany

See more in PubMed

Apollonio, M. , Andersen, R. , & Putman, R. (2010). European ungulates and their management in the 21st century. Cambridge University Press. ISBN: 978‐0‐521‐76061‐4.

Apollonio, M. , Scandura, M. , & Šprem, N. (2014). Reintroductions as a management tool for European ungulates. In Putman R. & Apollonio M. (Eds.), Behaviour and management of European ungulates (pp. 46–77). Whittles Publishing.

Baca, M. , Popović, D. , Baca, K. , Lemanik, A. , Doan, K. , Horáček, I. , López‐García, J. M. , Bañuls‐Cardona, S. , Pazonyi, P. , Desclaux, E. , Crégut‐Bonnoure, E. , Berto, C. , Lenardić, J. M. , Miękina, B. , Murelaga, X. , Cuenca‐Bescós, G. , Krajcarz, M. , Marković, Z. , Petculescu, A. , … Nadachowski, A. (2020). Diverse responses of common vole (Microtus arvalis) populations to Late Glacial and Early Holocene climate changes – Evidence from ancient DNA. Quaternary Science Reviews, 233, 106239. 10.1016/j.quascirev.2020.106239 DOI

Baker, K. H. , & Hoelzel, A. R. (2013). Evolution of population genetic structure of the British roe deer by natural and anthropogenic processes (Capreolus capreolus). Ecology and Evolution, 3, 89–102. 10.1002/ece3.430 DOI

Baker, K. H. , & Hoelzel, A. R. (2014). Influence of Holocene environmental change and anthropogenic impact on the diversity and distribution of roe deer. Heredity, 112, 607–615. 10.1038/hdy.2013.142 PubMed DOI PMC

Biosa, D. , Scandura, M. , Tagliavini, J. , Luccarini, S. , Mattioli, L. , & Apollonio, M. (2015). Patterns of genetic admixture between roe deer of different origin in central Italy. Journal of Mammalogy, 96, 827–838. 10.1093/jmammal/gyv098 DOI

Dalén, L. , Nyström, V. , Valdiosera, C. , Germonpré, M. , Sablin, M. , Turner, E. , Angerbjörn, A. , Arsuaga, J. L. , & Götherström, A. (2007). Ancient DNA reveals lack of postglacial habitat tracking in the arctic fox. Proceedings of the National Academy of Sciences of the United States of America, 104, 6726–6729. 10.1073/pnas.0701341104 PubMed DOI PMC

Danilkin, A. (1995). Behavioural ecology of Siberian and European roe deer. Springer.

Danilkin, A. A. , Plakhina, D. A. , Zvychaynaya, E. Y. , Domnich, A. V. , Kholodova, M. V. , Sorokin, P. A. , & Volokh, A. M. (2017). Siberian roe deer (Capreolus pygargus Pallas, 1771) in Ukraine: Analysis of the mitochondrial and nuclear DNA. Biology Bulletin, 44(6), 575–583. 10.1134/S106235901706005X DOI

Darriba, D. , Taboada, G. L. , Doallo, R. , & Posada, D. (2012). jModelTest 2: More models, new heuristics and parallel computing. Nature Methods, 9, 772. 10.1038/nmeth.2109 DOI

Excoffier, L. , & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564–567. 10.1111/j.1755-0998.2010.02847.x PubMed DOI

Fu, Y. X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147, 915–925. 10.1093/genetics/147.2.915 PubMed DOI PMC

Geist, V. (1998). Deer of the world: Their evolution, behaviour and ecology. Stackpole Books.

Gentile, G. , Vernesi, C. , Vicario, S. , Pecchioli, E. , Caccone, A. , Bertorelle, G. , & Sbordoni, V. (2009). Mitochondrial DNA variation in roe deer (Capreolus capreolus) from Italy: Evidence of admixture in one of the last C. c. italicus pure populations from central‐southern Italy. Italian Journal of Zoology, 76, 16–27. 10.1080/11250000802018725 DOI

Hall, T. A. (1999). BioEdit: A user‐friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98. 10.14601/Phytopathol_Mediterr-14998u1.29 DOI

Hasegawa, M. , Kishino, H. , & Yano, T. (1985). Dating of the human‐ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22, 160–174. 10.1007/BF02101694 PubMed DOI

Heikkilä, M. , Fontana, S. L. , & Seppä, H. (2009). Rapid Late glacial tree population dynamics and ecosystem changes in the eastern Baltic region. Journal of Quaternary Science, 24, 802–815. 10.1002/jqs.1254 DOI

Hewitt, G. M. (2004). Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 359, 183–195. 10.1098/rstb.2003.1388 PubMed DOI PMC

Kashinina, N. V. , Danilkin, A. A. , Zvychaynaya, E. Y. , Kholodova, M. V. , & Kiryakulov, V. M. (2018). On the gene pool of roe deer (Capreolus) of Eastern Europe: Analysis of the cyt b gene sequence variability. Russian Journal of Genetics, 54, 825–831. 10.1134/S1022795418070049 DOI

Kumar, S. , Stecher, G. , & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874. 10.1093/molbev/msw054 PubMed DOI PMC

Levins, R. (2020). Evolution in changing environments. 10.2307/j.ctvx5wbbh DOI

Librado, P. , & Rozas, J. (2009). DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451–1452. 10.1093/bioinformatics/btp187 PubMed DOI

Lorenzini, R. , Garofalo, L. , Qin, X. , Voloshina, I. , & Lovari, S. (2014). Global phylogeography of the genus Capreolus (Artiodactyla: Cervidae), a Palaearctic meso‐mammal. Zoological Journal of the Linnean Society, 170, 209–221. 10.1111/zoj.12091 DOI

Lorenzini, R. , Lovari, S. , & Masseti, M. (2002). The rediscovery of the Italian roe deer: Genetic differentiation and management implications. Italian Journal of Zoology, 69, 367–379. 10.1080/11250000209356482 DOI

Lorenzini, R. , Lovari, S. , & Masseti, M. (2006). Ice marginal fluctuations during the Weichselian glaciation in Fennoscandia, a literature review. Swedish Nuclear Fuel and Waste Management Co.

Lovari, S. , Herrero, J. , Masseti, M. , Ambarli, H. , Lorenzini, R. , & Giannatos, G. (2016). Capreolus capreolus . The IUCN Red List of Threatened Species 2016. e.T42395A22161386. 10.2305/IUCN.UK.2016-1.RLTS.T42395A22161386.en. Downloaded on 07 October 2021. DOI

Markov, G. , Zvychaynaya, E. , Danilkin, A. , Kholodova, M. , & Sugar, L. (2016). Genetic diversity and phylogeography of roe deer (Capreolus capreolus L.) in different biogeographical regions in Europe. Comptes Rendus De L Academie Bulgare Des Sciences, 69, 579–584.

Markov, G. G. , Zvychaynaya, E. Y. , Danilkin, A. , Kholodova, M. V. , Sugár, L. , & Dimitrov, H. (2017). Indication for genetic diversity of European Roe Deer Capreolus capreolus (L.) in southeastern Europe revealed by mt DNA markers. Acta Zoologica Bulgarica, Suppl, 8, 61–67.

Markova, A. , Kolfschoten, T. , Bohnke, S. , Kosinsev, P. A. , Mol, J. , Puzachenko, A. , Simakova, A. N. , Smirnov, N. , Verpoorte, A. , & Golovachev, I. V. (2008). Evolution of European ecosystems during pleistocene‐Holocene Transition (24–8 Kyr BP). KMK.

Markova, A. , & Puzachenko, A. (2019). Mammal assemblages during the last glacial maximum (LGM) (≤24 ‐ ≥17 kyr BP). In Markova A., Kolfschoten T., & Puzachenko A. (Eds.), Evolution of European ecosystems during pleistocene ‐ holocene transition (24–8 kyr BP) (pp. 44–56). GEOS Press.

Matosiuk, M. , Borkowska, A. , Świsłocka, M. , Mirski, P. , Borowski, Z. , Krysiuk, K. , Danilkin, A. A. , Zvychaynaya, E. Y. , Saveljev, A. P. , & Ratkiewicz, M. (2014). Unexpected population genetic structure of European roe deer in Poland: An invasion of the mtDNA genome from Siberian roe deer. Molecular Ecology, 23, 2559–2572. 10.1111/mec.12745 PubMed DOI

McDevitt, A. D. , Zub, K. , Kawałko, A. , Oliver, M. K. , Herman, J. S. , & Wójcik, J. M. (2012). Climate and refugial origin influence the mitochondrial lineage distribution of weasels (Mustela nivalis) in a phylogeographic suture zone. Biological Journal of the Linnean Society, 106, 57–69. 10.1111/j.1095-8312.2012.01840.x DOI

Meunier, K. (1983). Das spanisches Reh. In Hoffman R. R. (Ed.), Wildbiologische Informationen für den Jäger (pp. 120–131). Berlin.

Miller, M. A. , Pfeiffer, W. , & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop. 10.1109/GCE.2010.5676129 DOI

Mucci, N. , Mattucci, F. , & Randi, E. (2012). Conservation of threatened local gene pools: Landscape genetics of the Italian roe deer (Capreolus c. italicus) populations. Evolutionary Ecology Research, 14, 897–920.

Nadachowski, A. , Lipecki, G. , Ratajczak, U. , Stefaniak, K. , & Wojtal, P. (2016). Dispersal events of the saiga antelope (Saiga tatarica) in Central Europe in response to the climatic fluctuations in MIS 2 and the early part of MIS 1. Quaternary International, 420, 357–362. 10.1016/j.quaint.2015.11.068 DOI

Niedziałkowska, M. , Doan, K. , Górny, M. , Sykut, M. , Stefaniak, K. , Piotrowska, N. , Jędrzejewska, B. , Ridush, B. , Pawełczyk, S. , Mackiewicz, P. , Schmölcke, U. , Kosintsev, P. , Makowiecki, D. , Charniauski, M. , Krasnodębski, D. , Rannamäe, E. , Saarma, U. , Arakelyan, M. , Manaseryan, N. , … Stanković, A. (2021). Winter temperature and forest cover have shaped red deer distribution in Europe and the Ural Mountains since the Late Pleistocene. Journal of Biogeography, 48(1), 147–159. 10.1111/jbi.13989 DOI

Niedziałkowska, M. , Tarnowska, E. , Ligmanowska, J. , Jędrzejewska, B. , Podgórski, T. , Radziszewska, A. , Ratajczyk, I. , Kusza, S. , Bunevich, A. N. , Danila, G. , Shkvyria, M. , Grzybowski, T. , & Woźniak, M. (2021). Clear phylogeographic pattern and genetic structure of wild boar Sus scrofa population in Central and Eastern Europe. Scientific Reports, 11, 9680. 10.1038/s41598-021-88991-1 PubMed DOI PMC

Olano‐Marin, J. , Plis, K. , Sönnichsen, L. , Borowik, T. , Niedziałkowska, M. , & Jędrzejewska, B. (2014). Weak population structure in European roe deer (Capreolus capreolus) and evidence of introgressive hybridization with Siberian roe deer (C. pygargus) in northeastern Poland. PLoS One, 9, e109147. 10.1371/journal.pone.0109147 PubMed DOI PMC

Plakhina, D. A. , Zvychaynaya, E. Y. , Kholodova, M. V. , & Danilkin, A. A. (2014). Identification of European (Capreolus capreolus L.) and Siberian (C. pygargus Pall.) roe deer hybrids by microsatellite marker analysis. Russian Journal of Genetics, 50, 757–762. 10.1134/S1022795414070151 DOI

Randi, E. , Alves, P. C. , Carranza, J. , Milošević‐Zlatanović, S. , Sfougaris, A. , & Mucci, N. (2004). Phylogeography of roe deer (Capreolus capreolus) populations: the effects of historical genetic subdivisions and recent nonequilibrium dynamics. Molecular Ecology, 13, 3071–3083. 10.1111/j.1365-294x.2004.02279.x PubMed DOI

Randi, E. , Pierpaoli, M. , & Danilkin, A. (1998). Mitochondrial DNA polymorphism in populations of Siberian and European roe deer (Capreolus pygargus and C. capreolus). Heredity, 80, 429–437. 10.1046/j.1365-2540.1998.00318.x PubMed DOI

Rogers, A. R. , & Harpending, H. (1992). Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9, 552–569. 10.1093/oxfordjournals.molbev.a040727 PubMed DOI

Ronquist, F. , & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574. 10.1093/bioinformatics/btg180 PubMed DOI

Royo, L. J. , Pajares, G. , Álvarez, I. , Fernández, I. , & Goyache, F. (2007). Genetic variability and differentiation in Spanish roe deer (Capreolus capreolus): A phylogeographic reassessment within the European framework. Molecular Phylogenetics and Evolution, 42, 47–61. 10.1016/j.ympev.2006.05.020 PubMed DOI

Salzburger, W. , Ewing, G. B. , & Haeseler, A. V. (2011). The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Molecular Ecology, 20, 1952–1963. 10.1111/j.1365-294x.2011.05066.x PubMed DOI

Schenekar, T. , & Weiss, S. (2011). High rate of calculation errors in mismatch distribution analysis results in numerous false inferences of biological importance. Heredity, 107, 511–512. 10.1038/hdy.2011.48 PubMed DOI PMC

Sommer, R. S. , Fahlke, J. M. , Schmölcke, U. , Benecke, N. , & Zachos, F. E. (2009). Quaternary history of the European roe deer Capreolus capreolus . Mammal Review, 39, 1–16. 10.1111/j.1365-2907.2008.00137.x DOI

Sommer, R. S. , Kalbe, J. , Ekström, J. , Benecke, N. , & Liljegren, R. (2014). Range dynamics of the reindeer in Europe during the last 25,000 years. Journal of Biogeography, 41, 298–306. 10.1111/jbi.12193 DOI

Stefaniak, K. (2015). Neogene and quaternary cervidae from Poland. Habilitation thesis, Kraków, Poland: Institute of Systematics and Evolution of Animals Polish Academy of Sciences.

Stojak, J. , Borowik, T. , Górny, M. , McDevitt, A. D. , & Wójcik, J. M. (2019). Climatic influences on the genetic structure and distribution of the common vole and field vole in Europe. Mammal Research, 64, 19–29. 10.1007/s13364-018-0395-8 DOI

Stojak, J. , McDevitt, A. D. , Herman, J. S. , Searle, J. B. , & Wójcik, J. M. (2015). Postglacial colonization of eastern Europe from the Carpathian refugium: Evidence from mitochondrial DNA of the common vole Microtus arvalis. Biological Journal of the Linnean Society, 115, 927–939.

Stronen, A. V. , Jędrzejewska, B. , Pertoldi, C. , Demontis, D. , Randi, E. , Niedziałkowska, M. , Pilot, M. , Sidorovich, V. E. , Dykyy, I. , Kusak, J. , Tsingarska, E. , Kojola, I. , Karamanlidis, A. A. , Ornicans, A. , Lobkov, V. A. , Dumenko, V. , & Czarnomska, S. D. (2013). North‐south differentiation and a region of high diversity in European wolves (Canis lupus). PLoS One, 8, e76454. 10.1371/journal.pone.0076454 PubMed DOI PMC

Svenning, J.‐C. , Normand, S. , & Kageyama, M. (2008). Glacial refugia of temperate trees in Europe: insights from species distribution modelling. Journal of Ecology, 96, 1117–1127. 10.1111/j.1365-2745.2008.01422.x DOI

Świsłocka, M. , Czajkowska, M. , Matosiuk, M. , Saveljev, A. P. , Ratkiewicz, M. , & Borkowska, A. (2019). No evidence for recent introgressive hybridization between the European and Siberian roe deer in Poland. Mammalian Biology, 97, 59–63. 10.1016/j.mambio.2019.04.008 DOI

Taberlet, P. , Fumagalli, L. , Wust‐Saucy, A. G. , & Cosson, J.‐F. (1998). Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology, 7, 453–464. 10.1046/j.1365-294x.1998.00289.x PubMed DOI

Tajima, F. (1989). The effect of change in population size on DNA polymorphism. Genetics, 123, 597–601. 10.1093/genetics/123.3.597 PubMed DOI PMC

Tarnowska, E. , Niedziałkowska, M. , & Jędrzejewska, B. (2019). Genetic structure of bank vole populations in the contact zone of two lineages in north‐eastern Poland. Mammalian Biology, 96, 93–101. 10.1016/j.mambio.2018.10.011 DOI

Tsaparis, D. , Sotiropoulos, K. , Legakis, A. , Kotoulas, G. , & Kasapidis, P. (2019). New phylogeographic insights support the distinctiveness and conservation value of the little‐known Greek roe deer populations. Mammalian Biology, 96, 23–27. 10.1016/j.mambio.2019.03.010 DOI

Tzedakis, P. C. , Emerson, B. C. , & Hewitt, G. M. (2013). Cryptic or mystic? Glacial tree refugia in northern Europe. Trends in Ecology & Evolution, 28, 696–704. 10.1016/j.tree.2013.09.001 PubMed DOI

van Kolfschoten, T. (2000). The Eemian mammal fauna of central Europe. Netherlands Journal of Geosciences, 79, 269–281. 10.1017/S0016774600021752 DOI

van Loon, A. J. , Błaszkiewicz, M. , & Degórski, M. (2012). The role of permafrost in shaping the Late Glacial relief of northern Poland. Netherlands Journal of Geosciences, 91, 223–231. 10.1017/S001677460000161X DOI

Vernesi, C. , Pecchioli, E. , Caramelli, D. , Tiedemann, R. , Randi, E. , & Bertorelle, G. (2002). The genetic structure of natural and reintroduced roe deer (Capreolus capreolus) populations in the Alps and central Italy, with reference to the mitochondrial DNA phylogeography of Europe. Molecular Ecology, 11, 1285–1297. 10.1046/j.1365-294X.2002.01534.x PubMed DOI

See more in PubMed

Dryad
10.5061/dryad.76hdr7t01

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...