Cost-Effective Protein Production in CHO Cells Following Polyethylenimine-Mediated Gene Delivery Showcased by the Production and Crystallization of Antibody Fabs
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-21-0479, APVV-20-0513
Slovak Research and Development Agency
2/0152/21, 2/0141/23, 2/0125/23
VEGA
PubMed
37606435
PubMed Central
PMC10443350
DOI
10.3390/antib12030051
PII: antib12030051
Knihovny.cz E-zdroje
- Klíčová slova
- CHO cell line, gene delivery, polyethylenimine, production costs, protein crystallography, recombinant protein production,
- Publikační typ
- časopisecké články MeSH
Laboratory production of recombinant mammalian proteins, particularly antibodies, requires an expression pipeline assuring sufficient yield and correct folding with appropriate posttranslational modifications. Transient gene expression (TGE) in the suspension-adapted Chinese Hamster Ovary (CHO) cell lines has become the method of choice for this task. The antibodies can be secreted into the media, which facilitates subsequent purification, and can be glycosylated. However, in general, protein production in CHO cells is expensive and may provide variable outcomes, namely in laboratories without previous experience. While achievable yields may be influenced by the nucleotide sequence, there are other aspects of the process which offer space for optimization, like gene delivery method, cultivation process or expression plasmid design. Polyethylenimine (PEI)-mediated gene delivery is frequently employed as a low-cost alternative to liposome-based methods. In this work, we are proposing a TGE platform for universal medium-scale production of antibodies and other proteins in CHO cells, with a novel expression vector allowing fast and flexible cloning of new genes and secretion of translated proteins. The production cost has been further reduced using recyclable labware. Nine days after transfection, we routinely obtain milligrams of antibody Fabs or human lactoferrin in a 25 mL culture volume. Potential of the platform is established based on the production and crystallization of antibody Fabs and their complexes.
AXON Neuroscience R and D Services SE 811 02 Bratislava Slovakia
Faculty of Natural Sciences Comenius University 842 15 Bratislava Slovakia
Institute of Molecular Biology Slovak Academy of Sciences 845 51 Bratislava Slovakia
Institute of Neuroimmunology Slovak Academy of Sciences 845 10 Bratislava Slovakia
Zobrazit více v PubMed
Ayyar B.V., Arora S., O’Kennedy R. Coming-of-Age of Antibodies in Cancer Therapeutics. Trends Pharmacol. Sci. 2016;37:1009–1028. doi: 10.1016/j.tips.2016.09.005. PubMed DOI
Jadhav S., Avila J., Schöll M., Kovacs G.G., Kövari E., Skrabana R., Evans L.D., Kontsekova E., Malawska B., Silva R., et al. A Walk through Tau Therapeutic Strategies. Acta Neuropathol. Commun. 2019;7:22. doi: 10.1186/s40478-019-0664-z. PubMed DOI PMC
Jung S.M., Kim W.-U. Targeted Immunotherapy for Autoimmune Disease. Immune Netw. 2022;22:e9. doi: 10.4110/in.2022.22.e9. PubMed DOI PMC
Lutgens E., Atzler D., Döring Y., Duchene J., Steffens S., Weber C. Immunotherapy for Cardiovascular Disease. Eur. Heart J. 2019;40:3937–3946. doi: 10.1093/eurheartj/ehz283. PubMed DOI
Rodgers K.R., Chou R.C. Therapeutic Monoclonal Antibodies and Derivatives: Historical Perspectives and Future Directions. Biotechnol. Adv. 2016;34:1149–1158. doi: 10.1016/j.biotechadv.2016.07.004. PubMed DOI
Schmitt M.G., White R.N., Barnard G.C. Development of a High Cell Density Transient CHO Platform Yielding MAb Titers Greater than 2 g/L in Only 7 Days. Biotechnol. Prog. 2020;36:e3047. doi: 10.1002/btpr.3047. PubMed DOI
Zhong X., Ma W., Meade C.L., Tam A.S., Llewellyn E., Cornell R., Cote K., Scarcelli J.J., Marshall J.K., Tzvetkova B., et al. Transient CHO Expression Platform for Robust Antibody Production and Its Enhanced N-Glycan Sialylation on Therapeutic Glycoproteins. Biotechnol. Prog. 2019;35:e2724. doi: 10.1002/btpr.2724. PubMed DOI
Jain N.K., Barkowski-Clark S., Altman R., Johnson K., Sun F., Zmuda J., Liu C.Y., Kita A., Schulz R., Neill A., et al. A High Density CHO-S Transient Transfection System: Comparison of ExpiCHO and Expi293. Protein Expr. Purif. 2017;134:38–46. doi: 10.1016/j.pep.2017.03.018. PubMed DOI
Chen R. Bacterial Expression Systems for Recombinant Protein Production: E. Coli and Beyond. Biotechnol. Adv. 2012;30:1102–1107. doi: 10.1016/j.biotechadv.2011.09.013. PubMed DOI
Tripathi N.K., Shrivastava A. Recent Developments in Bioprocessing of Recombinant Proteins: Expression Hosts and Process Development. Front. Bioeng. Biotechnol. 2019;7:420. doi: 10.3389/fbioe.2019.00420. PubMed DOI PMC
Steger K., Brady J., Wang W., Duskin M., Donato K., Peshwa M. CHO-S Antibody Titers >1 Gram/Liter Using Flow Electroporation-Mediated Transient Gene Expression Followed by Rapid Migration to High-Yield Stable Cell Lines. J. Biomol. Screen. 2015;20:545–551. doi: 10.1177/1087057114563494. PubMed DOI PMC
Vazquez-Lombardi R., Nevoltris D., Luthra A., Schofield P., Zimmermann C., Christ D. Transient Expression of Human Antibodies in Mammalian Cells. Nat. Publ. Group. 2017;13:99–117. doi: 10.1038/nprot.2017.126. PubMed DOI
Forcato D.O., Fili A.E., Alustiza F.E., Lázaro Martínez J.M., Bongiovanni Abel S., Olmos Nicotra M.F., Alessio A.P., Rodríguez N., Barbero C., Bosch P. Transfection of Bovine Fetal Fibroblast with Polyethylenimine (PEI) Nanoparticles: Effect of Particle Size and Presence of Fetal Bovine Serum on Transgene Delivery and Cytotoxicity. Cytotechnology. 2017;69:655–665. doi: 10.1007/s10616-017-0075-6. PubMed DOI PMC
Sou S.N., Polizzi K.M., Kontoravdi C. Evaluation of Transfection Methods for Transient Gene Expression in Chinese Hamster Ovary Cells. Adv. Biosci. Biotechnol. 2013;04:1013–1019. doi: 10.4236/abb.2013.412135. DOI
Dekevic G., Tasto L., Czermak P., Salzig D. Statistical Experimental Designs to Optimize the Transient Transfection of HEK 293T Cells and Determine a Transfer Criterion from Adherent Cells to Larger-Scale Cell Suspension Cultures. J. Biotechnol. 2022;346:23–34. doi: 10.1016/j.jbiotec.2022.01.004. PubMed DOI
Stuible M., Burlacu A., Perret S., Brochu D., Paul-Roc B., Baardsnes J., Loignon M., Grazzini E., Durocher Y. Optimization of a High-Cell-Density Polyethylenimine Transfection Method for Rapid Protein Production in CHO-EBNA1 Cells. J. Biotechnol. 2018;281:39–47. doi: 10.1016/j.jbiotec.2018.06.307. PubMed DOI
Combe M., Sokolenko S. Quantifying the Impact of Cell Culture Media on CHO Cell Growth and Protein Production. Biotechnol. Adv. 2021;50:107761. doi: 10.1016/j.biotechadv.2021.107761. PubMed DOI
Rekena A., Livkisa D., Loca D. Factors Affecting Chinese Hamster Ovary Cell Proliferation and Viability. Vide Tehnol. Resur. Environ. Technol. Resour. 2019;1:145–248. doi: 10.17770/etr2019vol1.4106. DOI
Donaldson J., Kleinjan D.J., Rosser S. Synthetic Biology Approaches for Dynamic CHO Cell Engineering. Curr. Opin. Biotechnol. 2022;78:102806. doi: 10.1016/j.copbio.2022.102806. PubMed DOI
Rajendra Y., Hougland M.D., Schmitt M.G., Barnard G.C. Transcriptional and Post-Transcriptional Targeting for Enhanced Transient Gene Expression in CHO Cells. Biotechnol. Lett. 2015;37:2379–2386. doi: 10.1007/s10529-015-1938-6. PubMed DOI
Rajendra Y., Hougland M.D., Alam R., Morehead T.A., Barnard G.C. A High Cell Density Transient Transfection System for Therapeutic Protein Expression Based on a CHO GS-Knockout Cell Line: Process Development and Product Quality Assessment. Biotechnol. Bioeng. 2015;112:977–986. doi: 10.1002/bit.25514. PubMed DOI
Fang X.T., Sehlin D., Lannfelt L., Syvänen S., Hultqvist G. Efficient and Inexpensive Transient Expression of Multispecific Multivalent Antibodies in Expi293 Cells. Biol. Proced. Online. 2017;19:11. doi: 10.1186/s12575-017-0060-7. PubMed DOI PMC
Kontsekova E., Zilka N., Kovacech B., Skrabana R., Novak M. Identification of Structural Determinants on Tau Protein Essential for Its Pathological Function: Novel Therapeutic Target for Tau Immunotherapy in Alzheimer’s Disease. Alzheimer’s Res. Ther. 2014;6:45. doi: 10.1186/alzrt277. PubMed DOI PMC
Novak M., Kabat J., Wischik C.M. Molecular Characterization of the Minimal Protease Resistant Tau Unit of the Alzheimer’s Disease Paired Helical Filament. EMBO J. 1993;12:365–370. doi: 10.1002/j.1460-2075.1993.tb05665.x. PubMed DOI PMC
Jakes R., Novak M., Davison M., Wischik C.M. Identification of 3- and 4-Repeat Tau Isoforms within the PHF in Alzheimer’s Disease. EMBO J. 1991;10:2725–2729. doi: 10.1002/j.1460-2075.1991.tb07820.x. PubMed DOI PMC
Wischik C.M., Novak M., Edwards P.C., Tichelaar W., Klug A., Crowther R.A. Structural Characterization of the Core of the Paired Helical Filament of Alzheimer Disease. Proc. Natl. Acad. Sci. USA. 1988;85:4884–4888. doi: 10.1073/pnas.85.13.4884. PubMed DOI PMC
Wischik C.M., Novak M., Thøgersen H.C., Edwards P.C., Runswick M.J., Jakes R., Walker J.E., Milstein C., Roth M., Klug A. Isolation of a Fragment of Tau Derived from the Core of the Paired Helical Filament of Alzheimer Disease. Proc. Natl. Acad. Sci. USA. 1988;85:4506–4510. doi: 10.1073/pnas.85.12.4506. PubMed DOI PMC
Csokova N., Skrabana R., Liebig H.D., Mederlyova A., Kontsek P., Novak M. Rapid Purification of Truncated Tau Proteins: Model Approach to Purification of Functionally Active Fragments of Disordered Proteins, Implication for Neurodegenerative Diseases. Protein Expr. Purif. 2004;35:366–372. doi: 10.1016/j.pep.2004.01.012. PubMed DOI
Krajciova G., Skrabana R., Filipcik P., Novak M. Preserving Free Thiols of Intrinsically Disordered Tau Protein without the Use of a Reducing Agent. Anal. Biochem. 2008;383:343–345. doi: 10.1016/j.ab.2008.09.022. PubMed DOI
Skrabana R., Cehlar O., Novak M. Non-Robotic High-Throughput Setup for Manual Assembly of Nanolitre Vapour-Diffusion Protein Crystallization Screens. J. Appl. Crystallogr. 2012;45:1061–1065. doi: 10.1107/S0021889812036527. DOI
Kabsch W. XDS. Acta Crystallogr. D Biol. Crystallogr. 2010;66:125–132. doi: 10.1107/S0907444909047337. PubMed DOI PMC
Winn M.D., Ballard C.C., Cowtan K.D., Dodson E.J., Emsley P., Evans P.R., Keegan R.M., Krissinel E.B., Leslie A.G.W., McCoy A., et al. Overview of the CCP4 Suite and Current Developments. Acta Crystallogr. D Biol. Crystallogr. 2011;67:235–242. doi: 10.1107/S0907444910045749. PubMed DOI PMC
Romanova N., Noll T. Engineered and Natural Promoters and Chromatin-Modifying Elements for Recombinant Protein Expression in CHO Cells. Biotechnol. J. 2018;13:1700232. doi: 10.1002/biot.201700232. PubMed DOI
Matoulkova E., Michalova E., Vojtesek B., Hrstka R. The Role of the 3′ Untranslated Region in Post-Transcriptional Regulation of Protein Expression in Mammalian Cells. RNA Biol. 2012;9:563–576. doi: 10.4161/rna.20231. PubMed DOI
Moore M. From Birth to Death: The Complex Lives of Eukaryotic MRNAs. Science. 2005;309:1514–1518. doi: 10.1126/science.1111443. PubMed DOI
Kovacech B., Skrabana R., Novak M. Transition of Tau Protein from Disordered to Misordered in Alzheimer’s Disease. Neurodegener. Dis. 2010;7:24–27. doi: 10.1159/000283478. PubMed DOI
Vechterova L., Kontsekova E., Zilka N., Ferencik M., Ravid R., Novak M. DCII: A Novel Monoclonal Antibody Revealing Alzheimer’s Disease-Specific Tau Epitope. NeuroReport. 2003;14:87–91. doi: 10.1097/00001756-200301200-00017. PubMed DOI
Skrabana R., Kontsek P., Mederlyova A., Iqbal K., Novak M. Folding of Alzheimer’s Core PHF Subunit Revealed by Monoclonal Antibody 423. FEBS Lett. 2004;568:178–182. doi: 10.1016/j.febslet.2004.04.098. PubMed DOI
Ohradanova-Repic A., Praženicová R., Gebetsberger L., Moskalets T., Skrabana R., Cehlar O., Tajti G., Stockinger H., Leksa V. Time to Kill and Time to Heal: The Multifaceted Role of Lactoferrin and Lactoferricin in Host Defense. Pharmaceutics. 2023;15:1056. doi: 10.3390/pharmaceutics15041056. PubMed DOI PMC
Kaneyoshi K., Kuroda K., Uchiyama K., Onitsuka M., Yamano-Adachi N., Koga Y., Omasa T. Secretion Analysis of Intracellular “Difficult-to-Express” Immunoglobulin G (IgG) in Chinese Hamster Ovary (CHO) Cells. Cytotechnology. 2019;71:305–316. doi: 10.1007/s10616-018-0286-5. PubMed DOI PMC
Mathias S., Wippermann A., Raab N., Zeh N., Handrick R., Gorr I., Schulz P., Fischer S., Gamer M., Otte K. Unraveling What Makes a Monoclonal Antibody Difficult-to-Express: From Intracellular Accumulation to Incomplete Folding and Degradation via ERAD. Biotechnol. Bioeng. 2020;117:5–16. doi: 10.1002/bit.27196. PubMed DOI
Cehlar O., Skrabana R., Kovac A., Kovacech B., Novak M. Crystallization and Preliminary X-Ray Diffraction Analysis of Tau Protein Microtubule-Binding Motifs in Complex with Tau5 and DC25 Antibody Fab Fragments. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2012;68:1181–1185. doi: 10.1107/S1744309112030382. PubMed DOI PMC
Skrabana R., Dvorsky R., Sevcik J., Novak M. Monoclonal Antibody MN423 as a Stable Mold Facilitates Structure Determination of Disordered Tau Protein. J. Struct. Biol. 2010;171:74–81. doi: 10.1016/j.jsb.2010.02.016. PubMed DOI
Sevcik J., Skrabana R., Kontsekova E., Novak M. Structure Solution of Misfolded Conformations Adopted by Intrinsically Disordered Alzheimers Tau Protein. Protein Pept. Lett. 2009;16:61–64. doi: 10.2174/092986609787049349. PubMed DOI
Tossolini I., Gugliotta A., López Díaz F., Kratje R., Prieto C. Screening of CHO-K1 Endogenous Promoters for Expressing Recombinant Proteins in Mammalian Cell Cultures. Plasmid. 2022;119–120:102620. doi: 10.1016/j.plasmid.2022.102620. PubMed DOI
Kober L., Zehe C., Bode J. Optimized Signal Peptides for the Development of High Expressing CHO Cell Lines. Biotechnol. Bioeng. 2013;110:1164–1173. doi: 10.1002/bit.24776. PubMed DOI
Haryadi R., Ho S., Kok Y.J., Pu H.X., Zheng L., Pereira N.A., Li B., Bi X., Goh L.-T., Yang Y., et al. Optimization of Heavy Chain and Light Chain Signal Peptides for High Level Expression of Therapeutic Antibodies in CHO Cells. PLoS ONE. 2015;10:e0116878. doi: 10.1371/journal.pone.0116878. PubMed DOI PMC
Khansarizadeh M., Mokhtarzadeh A., Rashedinia M., Taghdisi S.M., Lari P., Abnous K.H., Ramezani M. Identification of Possible Cytotoxicity Mechanism of Polyethylenimine by Proteomics Analysis. Hum. Exp. Toxicol. 2016;35:377–387. doi: 10.1177/0960327115591371. PubMed DOI
Sevcik J., Skrabana R., Dvorsky R., Csokova N., Iqbal K., Novak M. X-Ray Structure of the PHF Core C-Terminus: Insight into the Folding of the Intrinsically Disordered Protein Tau in Alzheimer’s Disease. FEBS Lett. 2007;581:5872–5878. doi: 10.1016/j.febslet.2007.11.067. PubMed DOI
Li W., Fan Z., Lin Y., Wang T.-Y. Serum-Free Medium for Recombinant Protein Expression in Chinese Hamster Ovary Cells. Front. Bioeng. Biotechnol. 2021;9:646363. doi: 10.3389/fbioe.2021.646363. PubMed DOI PMC