Sequence of a 189-kb segment of the chromosome of Rhodobacter capsulatus SB1003
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
9256491
PubMed Central
PMC23199
DOI
10.1073/pnas.94.17.9384
Knihovny.cz E-zdroje
- MeSH
- bakteriální chromozomy * MeSH
- Rhodobacter capsulatus genetika MeSH
- sekvenční analýza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Cosmids from the 1A3-1A10 region of the complete miniset were individually subcloned by using the vector M13 mp18. Sequences of each cosmid were assembled from about 400 DNA fragments generated from the ends of these phage subclones and merged into one 189-kb contig. About 160 ORFs identified by the CodonUse program were subjected to similarity searches. The biological functions of 80 ORFs could be assigned reliably by using the WIT and Magpie genome investigation tools. Eighty percent of these recognizable ORFs were organized in functional clusters, which simplified assignment decisions and increased the strength of the predictions. A set of 26 genes for cobalamin biosynthesis, genes for polyhydroxyalkanoic acid metabolism, DNA replication and recombination, and DNA gyrase were among those identified. Most of the ORFs lacking significant similarity with reference databases also were grouped. There are two large clusters of these ORFs, one located between 45 and 67 kb of the map, and the other between 150 and 183 kb. Nine of the loosely identified ORFs (of 15) of the first of these clusters match ORFs from phages or transposons. The other cluster also has four ORFs of possible phage origin.
Zobrazit více v PubMed
Donohue T J, Kaplan S. Methods Enzymol. 1991;204:459–485. PubMed
Klug G. Arch Microbiol. 1993;159:397–404. PubMed
Bauer C, Buggy J, Mosley C. Trends Genet. 1993;9:56–60. PubMed
Kranz R G, Foster-Hartnett D. Mol Microbiol. 1990;4:1793–1800. PubMed
Oelze J, Klein G. Arch Microbiol. 1996;165:219–225. PubMed
Willison J C. FEMS Microbiol Rev. 1993;10:1–38. PubMed
Johnson J A, Wong W K, Beatty J T. J Bacteriol. 1986;167:604–610. PubMed PMC
Kranz R G, Pace V M, Caldicott I M. J Bacteriol. 1990;172:53–62. PubMed PMC
Ponnampalam S N, Buggy J J, Bauer C E. J Bacteriol. 1995;177:2990–2997. PubMed PMC
Hubner P, Masepohl B, Klipp W, Bickle T A. Mol Microbiol. 1993;10:123–132. PubMed
Fonstein M, Haselkorn R. Proc Natl Acad Sci USA. 1993;90:2522–2526. PubMed PMC
Fonstein M, Koshy E G, Nikolskaya T, Mourachov P, Haselkorn R. EMBO J. 1995;14:1827–1841. PubMed PMC
Fonstein M, Nikolskaya T, Haselkorn R. J Bacteriol. 1995;177:2368–2372. PubMed PMC
Gaasterland T, Sensen C W S. Biochimie. 1996;78:302–310. PubMed
Fleischmann R D, Adams M D, White O, Clayton R A, Kirkness E F, et al. Science. 1995;269:496–512. PubMed
Chee M, Yang R, Hubbell E, Berno A, Huang X C, Stern D, Winkler J, Lockhart D J, Morris M S, Fodor S P. Science. 1996;274:610–614. PubMed
Yershov G, Barsky V, Belgovskiy A, Kirillov E, Kreindlin E, Ivanov I, Parinov S, Guschin D, Drobishev A, Dubiley S, Mirzabekov A. Proc Natl Acad Sci USA. 1996;93:4913–4918. PubMed PMC
Oliver G S. Nature (London) 1996;379:597–600. PubMed
Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, et al. DNA Res. 1996;3:109–136. PubMed
Vlcek C, Paces V. Gene. 1995;165:137–138. PubMed
Messing J, Vieira J. Gene. 1982;19:269–276. PubMed
Blattner F R, Burland V, Plunkett G, Sofia H J, Daniels D L. Nucleic Acids Res. 1993;21:5408–5417. PubMed PMC
Borodovsky M, McIninch J D, Koonin E V, Rudd K E, Medigue C, Danchin A. Nucleic Acids Res. 1995;23:3554–3562. PubMed PMC
Roth J R, Lawrence J G, Bobik T A. Annu Rev Microbiol. 1996;50:137–181. PubMed
Battersby A R. Science. 1994;264:1551–1557. PubMed
Riley M. Microbiol Rev. 1993;57:862–952. PubMed PMC
Zheng S, Haselkorn R. Mol Microbiol. 1996;20:1001–1011. PubMed
Yen H C, Hu N T, Marrs B L. J Mol Biol. 1979;131:157–168. PubMed
Kumar V, Fonstein M, Haselkorn R. Nature (London) 1996;381:653–654. PubMed
GENBANK
AF010496