Effect of Wort Boiling System and Hopping Regime on Wort and Beer Stale-Flavor Aldehydes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MZE-RO1922
Ministry of Agriculture of the Czech Republic
PubMed
37628110
PubMed Central
PMC10453677
DOI
10.3390/foods12163111
PII: foods12163111
Knihovny.cz E-zdroje
- Klíčová slova
- Strecker aldehydes, beer, carbonyls, hopping regimes, pressurized wort boiling, wort,
- Publikační typ
- časopisecké články MeSH
The main factor responsible for the sensory aging of beer is the increase in off-flavor aldehydes during beer storage. In pilot brews (200 L) of pale lager beer with different hopping regimes and wort boiling systems, 15 carbonyls were monitored using the GC-MS method. Factor analysis revealed several groups of aldehydes with similar behavior during wort boiling. The concentration of most of them decreased with atmospheric wort boiling and increased with the time and energy-saving pressurized boiling system. Wort clarification was a critical step because of the increase in carbonyl concentration, with the level of most carbonyls being higher in the final wort compared to sweet wort. The hopping regimes only affected the level of 3-methylbutan-2-one in the wort. The concentration of carbonyls decreased significantly (30-90%) during fermentation, except for trans-2-butenal, which increased by 59% on average, likely due to the release from imine complex. The concentration of free aldehydes in the fresh beers was similar for all variants used, but the pressurized wort boiling system could result in lower sensory stability of the beer due to the release of aldehydes from inactive complexes formed during fermentation. This aspect requires further investigation.
Zobrazit více v PubMed
Filipowska W., Jaskula-Goiris B., Ditrych M., Bustillo Trueba P., De Rouck G., Aerts G., Powell C., Cook D., De Cooman L. On the contribution of malt quality and the malting process to the formation of beer staling aldehydes: A review. J. Inst. Brew. 2021;127:107–126. doi: 10.1002/jib.644. DOI
Basařová G., Šavel J., Basař P., Lejsek T. The Comprehensive Guide to Brewing. Fachverlag Hans Carl; Nürenberg, Germany: 2017.
Baert J.J., De Clippeleer J., Hughes P.S., De Cooman L., Aerts G. On the origin of free and bound staling aldehydes in beer. J. Agric. Food Chem. 2012;60:11449–11472. doi: 10.1021/jf303670z. PubMed DOI
Vanderhaegen B., Neven H., Verachtert H., Derdelinckx G. The chemistry of beer aging—A critical review. Food Chem. 2006;95:357–381. doi: 10.1016/j.foodchem.2005.01.006. DOI
Bustillo Trueba P., Jaskula-Goiris B., Ditrych M., Filipowska W., De Brabanter J., De Rouck G., Aerts G., De Cooman L., De Clippeleer J. Monitoring the evolution of free and cysteinylated aldehydes from malt to fresh and forced aged beer. Food Res. Int. 2021;140:110049. doi: 10.1016/j.foodres.2020.110049. PubMed DOI
Baert J.J., De Clippeleer J., De Cooman L., Aerts G. Exploring the binding behaviour of beer staling aldehydes in model systems. J. Am. Soc. Brew. Chem. 2015;73:100–108.
Wietstock P.C., Kunz T., Methner F.-J. Relevance of oxygen for the formation of Strecker aldehydes during beer production and storage. J. Agric. Food Chem. 2016;64:8035–8044. doi: 10.1021/acs.jafc.6b03502. PubMed DOI
Suda T., Yasuda Y., Imai T., Ogawa Y. Mechanisms for the development of Strecker aldehydes during beer aging; Proceedings of the 31th EBC Congress; Venice, Italy. 6–10 May 2007; Nürnberg, Germany: Fachverlag Hans Carl; 2007. pp. 931–937.
Yano M., Back W., Krottenthaler M. The impact of low heat load and activated carbon treatment of second wort on beer taste and flavour stability. J. Inst. Brew. 2008;114:357–364. doi: 10.1002/j.2050-0416.2008.tb00780.x. DOI
De Schutter D.P., De Meester M.R., Saison D., Delvaux F., Derdelinckx G., Rock J.M., Neven H., Delvaux F.R. Characterization and quantification of thermal load during wort boiling. Brew. Sci. 2008;52:121–134.
Herrmann M., Klotzbücher B., Wurzbacher M., Hanke S., Kattein U., Back W., Becker T., Krottenthaler M. A new validation of relevant substances for the evaluation of beer aging depending on the employed boiling system. J. Inst. Brew. 2010;116:41–48. doi: 10.1002/j.2050-0416.2010.tb00396.x. DOI
Ditrych M., Filipowska W., De Rouck G., Jaskula-Goiris B., Aerts G., Andersen M.L., De Cooman L. Investigating the evolution of free staling aldehydes throughout the wort production process. Brew. Sci. 2019;72:10–17.
Wauters R., Herrera-Malaver B., Schreurs M., Bircham P., Cautereels C., Cortebeeck J., Duffin P.M., Steensels J., Verstrepen K.J. Novel Saccharomyces cerevisiae variants slow down the accumulation of staling aldehydes and improve beer shelf-life. Food Chem. 2023;398:133863. doi: 10.1016/j.foodchem.2022.133863. PubMed DOI
Saison D., De Schutter D.P., Vanbeneden N., Daenen L., Delvaux F., Delvaux F.R. Decrease of aged beer aroma by the reducing activity of brewing yeast. J. Agric. Food Chem. 2010;58:3107–3115. doi: 10.1021/jf9037387. PubMed DOI
Ahrens H., Schröpfer J., Stumpf L., Pahl R., Brauer J., Schildbach S. Enhancing flavour stability in beer using biological scavengers part 2: Screening of yeasts. Brew. Sci. 2018;71:24–30.
European Brewery Convention . Analytica-EBC. Fachverlag Hans Carl; Nüremberg, Germany: 2010.
MEBAK 2.4 . MEBAK Wort, Beer, Beer-Based Beverages. Weihenstephan; Freising, Germany: 2013. Thiobarbituric Acid Index.
Čejka P., Čulík J., Horák T., Jurková M., Olšovská J. Use of chemical indicators of beer aging for ex-post checking of storage conditions and prediction of the sensory stability of beer. J. Agric. Food Chem. 2013;61:12670–12675. doi: 10.1021/jf403361h. PubMed DOI
Mertens T., Kunz T., Methner F.-J. Assessment of chelators in wort and beer model solutions. Brew. Sci. 2020;73:58–67.
Mikyška A., Krofta K., Hašková D., Čulík J., Čejka P. The influence of hopping on formation of carbonyl compounds during storage of beer. J. Inst. Brew. 2011;117:47–54. doi: 10.1002/j.2050-0416.2011.tb00442.x. DOI
Narziss L., Back W. Die Bierbrauerei: Band 2: Die Technologie der Würzebereitung. Wiley-VCH; Weinheim, Germany: 2009.
De Clippeleer J., De Rouck G., De Cooman L., Aerts G. Influence of hopping technology on the storage-induced appearance of staling aldehydes in beer. J. Inst. Brew. 2010;116:381–398. doi: 10.1002/j.2050-0416.2010.tb00789.x. DOI
Wietstock P.C., Baldus M., Öhlschläger M., Methner F.-J. Hop constituents supress the formation of 3-methylbutanal and 2-furfural in wort-like model solutions. J. Am. Soc. Brew. Chem. 2017;75:41–51.
Malfliet S., Van Opstaele F., De Clippeleer J., Syryn E., Goiris K., De Cooman L., Aerts G. Flavour instability of pale lager beers: Determination of analytical markers in relation to sensory ageing. J. Inst. Brew. 2008;114:180–192. doi: 10.1002/j.2050-0416.2008.tb00324.x. DOI
Vesely P., Duncombe D., Lusk L., Basarova G., Seabrooks J., Ryder D. The Impact of Fermentation Temperature on Yeast Reductase Activity. MBAA Technol. Q. 2004;41:282–292.
Acácio M.S.S., Alves E.C., De Andrade J.B., Dos Anjos J.C.P. Evaluation of Free- and Bound-Carbonyl Compounds in Craft Beers. J. Braz. Chem. Soc. 2023:1–13. doi: 10.21577/0103-5053.20230100. DOI
Beer Flavors Database of ASBC. [(accessed on 12 August 2023)]. Available online: https://www.asbcnet.org/Methods/SensoryAnalysis/pages/default.aspx.