Objective Methods of Muscle Tone Diagnosis and Their Application-A Critical Review
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
397121
Charles University
PubMed
37631726
PubMed Central
PMC10458714
DOI
10.3390/s23167189
PII: s23167189
Knihovny.cz E-resources
- Keywords
- in vivo, muscle tone, myotonometry, soft tissue mechanical properties,
- MeSH
- Databases, Factual MeSH
- Palpation MeSH
- Reproducibility of Results MeSH
- Muscle Tonus * MeSH
- Muscles * MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
"Muscle tone" is a clinically important and widely used term and palpation is a crucial skill for its diagnosis. However, the term is defined rather vaguely, and palpation is not measurable objectively. Therefore, several methods have been developed to measure muscle tone objectively, in terms of biomechanical properties of the muscle. This article aims to summarize these approaches. Through database searches, we identified those studies related to objective muscle tone measurement in vivo, in situ. Based on them, we described existing methods and devices and compared their reliability. Furthermore, we presented an extensive list of the use of these methods in different fields of research. Although it is believed by some authors that palpation cannot be replaced by a mechanical device, several methods have already proved their utility in muscle biomechanical property diagnosis. There appear to be two issues preventing wider usage of these objective methods in clinical practice. Firstly, a high variability of their reliability, and secondly, a lack of valid mathematical models that would provide the observed mechanical characteristics with a clear physical significance and allow the results to be compared with each other.
Faculty of Health Sciences University of Primorska 6310 Izola Slovenia
Faculty of Physical Education and Sport Charles University 162 52 Prague Czech Republic
See more in PubMed
Véle F. Vyšetření Hybných Funkcí z Pohledu Neurofyziologie. Triton; Praha, Czech Republic: 2012.
Haladová E., Nechvátalová L. Vyšetřovací Metody Hybného Systému. Národní Centrum Ošetřovatelství a Nelékařských Zdravotnických Oborů; Brno, Czech Republic: 2003.
Kolar P. Clinical Rehabilitation. Alena Kobesová; Praha, Czech Republic: 2014.
Véle F. Kineziologie. 2nd ed. Triton; Praha, Czech Republic: 2006.
Donnelly J. Travell, Simons & Simons’ Myofascial Pain and Dysfunction: The Trigger Point Manual. Wolters Kluwer Health; Philadelphia, PA, USA: 2018.
Foster M. A Textbook of Physiology. 6th ed. Volume Part III Macmillan and Co.; London, UK: 1892.
Clemmesen S. Some studies on muscle tone. Proc. R. Soc. Med. 1951;44:637–646. doi: 10.1177/003591575104400801. PubMed DOI PMC
McPherson J.J., Kreimeyer D., Aalderks M., Gallagher T. A comparison of dorsal and volar resting hand splints in the reduction of hypertonus. Am. J. Occup. Ther. 1982;36:664–670. doi: 10.5014/ajot.36.10.664. PubMed DOI
Masi A.T., Hannon J.C. Human resting muscle tone (HRMT): Narrative introduction and modern concepts. J. Bodyw. Mov. Ther. 2008;12:320–332. doi: 10.1016/j.jbmt.2008.05.007. PubMed DOI
Fenn W.O., Garvey P.H. The measurement of the elasticity and viscosity of skeletal muscle in normal and pathological cases; a study of socalled “muscle tonus”. J. Clin. Investig. 1934;13:383. doi: 10.1172/JCI100592. PubMed DOI PMC
Simons G.D., Mense S. Understanding and measurement of muscle tone as related to clinical muscle pain. Pain. 1998;75:1–17. doi: 10.1016/S0304-3959(97)00102-4. PubMed DOI
Schleip R. Fascial plasticity—A new neurobiological explanation Part 2. J. Bodyw. Mov. Ther. 2003;7:104–116. doi: 10.1016/S1360-8592(02)00076-1. DOI
Simons D.G., Travell J.G., Simons L.S. Travell & Simons’ Myofascial Pain and Dysfunction: Upper Half of Body. Volume 1 Lippincott Williams & Wilkins; Philadelphia, PA, USA: 1999.
Latash M.L., Zatsiorsky V. Biomechanics and Motor Control: Defining Central Concepts. Academic Press; Cambridge, UK: 2016. pp. 85–98.
Laurent R. Disorders of Skeletal Muscle. In: Sambrook P., Taylor T., Ellis A., editors. The Musculoskeletal System. 2nd ed. Elsevier Health Sciences; Amsterdam, The Netherlands: 2010. pp. 109–122. (Systems of the Body).
Darby S.A., Frysztak R.J. Neuroanatomy of the Spinal Cord. In: Cramer G.D., Darby S.A., editors. Clinical Anatomy of the Spine, Spinal Cord, and ANS. 3rd ed. Elsevier Health Sciences; Amsterdam, The Netherlands: 2014. pp. 341–412.
Katner T.L., Kasarskis E.J. Muscle Tone. In: Daroff R.B., Aminoff M.J., editors. Encyclopedia of the Neurological Sciences. Elsevier Science; Amsterdam, The Netherlands: 2014. pp. 194–196.
Shortland A.P. Muscle tone is not a well-defined term. Dev. Med. Child Neurol. 2018;60:637. doi: 10.1111/dmcn.13707. PubMed DOI
Ganguly J., Kulshreshtha D., Almotiri M., Jog M. Muscle Tone Physiology and Abnormalities. Toxins. 2021;13:282. doi: 10.3390/toxins13040282. PubMed DOI PMC
Bernstein N.A., Latash M.L., Turvey M.T. Dexterity and Its Development. Taylor & Francis; Abingdon, UK: 2014.
Rychlíková E. Manuální Medicína: Průvodce Diagnostikou a Léčbou Vertebrogenních Poruch. 2nd ed. Maxdorf; Praha, Czech Republic: 1997.
Page M.J., Moher D., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., Shamseer L., Tetzlaff J.M., Akl E.A., Brennan S.E., et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ (Clin. Res. Ed.) 2021;372:n160. doi: 10.1136/bmj.n160. PubMed DOI PMC
Brennan J.B. Response to stretch of hypertonic muscle groups in hemiplegia. Br. Med. J. 1959;1:1504–1507. doi: 10.1136/bmj.1.5136.1504. PubMed DOI PMC
Bohannon R.W., Smith M.B. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys. Ther. 1987;67:206–207. doi: 10.1093/ptj/67.2.206. PubMed DOI
Ehler E.J.N. Spasticita-klinické škály. Neurol. Praxi. 2015;16:20–23.
Tognella F., Mainar A., Vanhoutte C., Goubel F. A mechanical device for studying mechanical properties of human muscles in vivo. J. Biomech. 1997;30:1077–1080. doi: 10.1016/S0021-9290(97)00067-5. PubMed DOI
Jacobson E. Innervation and “tonus” of striated muscle in man. J. Nerv. Ment. Dis. 1943;97:197–203. doi: 10.1097/00005053-194302000-00007. DOI
Adrian E.D., Bronk D.W. The discharge of impulses in motor nerve fibres: Part II. The frequency of discharge in reflex and voluntary contractions. J. Physiol. 1929;67:i3–i151. PubMed PMC
Mullix J., Warner M., Stokes M. Testing muscle tone and mechanical properties of rectus femoris and biceps femoris using a novel hand held MyotonPRO device: Relative ratios and reliability. Work. Pap. Health Sci. 2012;1:1–8.
Peipsi A., Kerpe R., Jäger H., Soeder S., Gordon C., Schleip R. Myoton pro: A novel tool for the assessment of mechanical properties of fascial tissues. J. Bodyw. Mov. Ther. 2012;16:527. doi: 10.1016/j.jbmt.2012.01.015. DOI
Aird L., Samuel D., Stokes M. Quadriceps muscle tone, elasticity and stiffness in older males: Reliability and symmetry using the MyotonPRO. Arch. Gerontol. Geriatr. 2012;55:e31–e39. doi: 10.1016/j.archger.2012.03.005. PubMed DOI
Feng Y.N., Li Y.P., Liu C.L., Zhang Z.J. Assessing the elastic properties of skeletal muscle and tendon using shearwave ultrasound elastography and MyotonPRO. Sci. Rep. 2018;8:17064. doi: 10.1038/s41598-018-34719-7. PubMed DOI PMC
Kelly J.P., Koppenhaver S.L., Michener L.A., Proulx L., Bisagni F., Cleland J.A. Characterization of tissue stiffness of the infraspinatus, erector spinae, and gastrocnemius muscle using ultrasound shear wave elastography and superficial mechanical deformation. J. Electromyogr. Kinesiol. 2018;38:73–80. doi: 10.1016/j.jelekin.2017.11.001. PubMed DOI
Lohr C., Braumann K.M., Reer R., Schroeder J., Schmidt T. Reliability of tensiomyography and myotonometry in detecting mechanical and contractile characteristics of the lumbar erector spinae in healthy volunteers. Eur. J. Appl. Physiol. 2018;118:1349–1359. doi: 10.1007/s00421-018-3867-2. PubMed DOI
Albin S.R., Koppenhaver S.L., Bailey B., Blommel H., Fenter B., Lowrimore C., Smith A.C., McPoil T.G. The effect of manual therapy on gastrocnemius muscle stiffness in healthy individuals. Foot. 2019;38:70–75. doi: 10.1016/j.foot.2019.01.006. PubMed DOI PMC
Chen G., Wu J., Chen G., Lu Y., Ren W., Xu W., Xu X., Wu Z., Guan Y., Zheng Y., et al. Reliability of a portable device for quantifying tone and stiffness of quadriceps femoris and patellar tendon at different knee flexion angles. PLoS ONE. 2019;14:e0220521. doi: 10.1371/journal.pone.0220521. PubMed DOI PMC
Tas S., Salkin Y. An investigation of the sex-related differences in the stiffness of the Achilles tendon and gastrocnemius muscle: Inter-observer reliability and inter-day repeatability and the effect of ankle joint motion. Foot. 2019;41:44–50. doi: 10.1016/j.foot.2019.09.003. PubMed DOI
Li Y.P., Feng Y.N., Liu C.L., Zhang Z.J. Paraffin therapy induces a decrease in the passive stiffness of gastrocnemius muscle belly and Achilles tendon: A randomized controlled trial. Medicine. 2020;99:e19519. doi: 10.1097/MD.0000000000019519. PubMed DOI PMC
Yu J.F., Chang T.T., Zhang Z.J. The Reliability of MyotonPRO in Assessing Masseter Muscle Stiffness and the Effect of Muscle Contraction. Med. Sci. Monit. 2020;26:e926578. doi: 10.12659/MSM.926578. PubMed DOI PMC
Bravo-Sánchez A., Abián P., Sánchez-Infante J., Esteban-Gacía P., Jiménez F., Abián-Vicén J. Objective Assessment of Regional Stiffness in Vastus Lateralis with Different Measurement Methods: A Reliability Study. Sensors. 2021;21:3213. doi: 10.3390/s21093213. PubMed DOI PMC
Pimentel-Santos F., Rodrigues Manica S., Masi A.T., Lagoas-Gomes J., Santos M.B., Ramiro S., Sepriano A., Nair K., Gomes-Alves P., Costa J., et al. Lumbar myofascial physical properties in healthy adults: Myotonometry vs. shear wave elastography measurements. Acta Reumatol. Port. 2021;46:110–119. PubMed
Çevik Saldıran T., Kara İ., Kutlutürk Yıkılmaz S. Quantification of the forearm muscles mechanical properties using Myotonometer: Intra- and Inter-Examiner reliability and its relation with hand grip strength. J. Electromyogr. Kinesiol. 2022;67:102718. doi: 10.1016/j.jelekin.2022.102718. PubMed DOI
Li Y.P., Liu C.L., Zhang Z.J. Feasibility of Using a Portable MyotonPRO Device to Quantify the Elastic Properties of Skeletal Muscle. Med. Sci. Monit. 2022;28:e934121. doi: 10.12659/MSM.934121. PubMed DOI PMC
Muckelt P.E., Warner M.B., Cheliotis-James T., Muckelt R., Hastermann M., Schoenrock B., Martin D., MacGregor R., Blottner D., Stokes M. Protocol and reference values for minimal detectable change of MyotonPRO and ultrasound imaging measurements of muscle and subcutaneous tissue. Sci. Rep. 2022;12:13654. doi: 10.1038/s41598-022-17507-2. PubMed DOI PMC
McGowen J.M., Hoppes C.W., Forsse J.S., Albin S.R., Abt J., Koppenhaver S.L. Myotonometry is Capable of Reliably Obtaining Trunk and Thigh Muscle Stiffness Measures in Military Cadets during Standing and Squatting Postures. Mil. Med. 2023:usad179. doi: 10.1093/milmed/usad179. PubMed DOI
Fischer A.A. Pressure threshold meter: Its use for quantification of tender spots. Arch. Phys. Med. Rehabil. 1986;67:836–838. PubMed
Fischer A.A. Tissue compliance meter for objective, quantitative documentation of soft tissue consistency and pathology. Arch. Phys. Med. Rehabil. 1987;68:122–125. PubMed
Kawchuk G., Herzog W. The reliability and accuracy of a standard method of tissue compliance assessment. J. Manip. Physiol. Ther. 1995;18:298–301. PubMed
Horikawa M., Ebihara S., Sakai F., Akiyama M. Non-invasive measurement method for hardness in muscular tissues. Med. Biol. Eng. Comput. 1993;31:623–627. doi: 10.1007/BF02441811. PubMed DOI
Zheng Y., Mak A.F. Effective elastic properties for lower limb soft tissues from manual indentation experiment. IEEE Trans. Rehabil. Eng. 1999;7:257–267. doi: 10.1109/86.788463. PubMed DOI
Murayama M., Nosaka K., Yoneda T., Minamitani K. Changes in hardness of the human elbow flexor muscles after eccentric exercise. Eur. J. Appl. Physiol. 2000;82:361–367. doi: 10.1007/s004210000242. PubMed DOI
Leonard C.T., Stephens J.U., Stroppel S.L. Assessing the spastic condition of individuals with upper motoneuron involvement: Validity of the myotonometer. Arch. Phys. Med. Rehabil. 2001;82:1416–1420. doi: 10.1053/apmr.2001.26070. PubMed DOI
Arokoski J.P., Surakka J., Ojala T., Kolari P., Jurvelin J.S. Feasibility of the use of a novel soft tissue stiffness meter. Physiol. Meas. 2005;26:215–228. doi: 10.1088/0967-3334/26/3/007. PubMed DOI
Šifta P., Otáhal S., Süssová J., Jaeger M. Measurement of viscoelastic properties of soft tissue in spastic syndrome; Proceedings of the 4th Congress for Neurorehabilitation; Hong Kong, China. 12–16 February 2006; p. 20. Neurorehabilitation and Neural Repair.
Ylinen J., Teittinen I., Kainulainen V., Kautiainen H., Vehmaskoski K., Hakkinen A. Repeatability of a computerized muscle tonometer and the effect of tissue thickness on the estimation of muscle tone. Physiol. Meas. 2006;27:787–796. doi: 10.1088/0967-3334/27/9/003. PubMed DOI
Kysela M., Kolář M. Myotonometer—Device for measurements of viscoelastic characteristics of soft tissues; Proceedings of the 2016 ELEKTRO; Strbske Pleso, Slovakia. 16–18 May 2016; pp. 556–560.
Leonard C.T., Deshner W.P., Romo J.W., Suoja E.S., Fehrer S.C., Mikhailenok E.L. Myotonometer intra- and interrater reliabilities. Arch. Phys. Med. Rehabil. 2003;84:928–932. doi: 10.1016/S0003-9993(03)00006-6. PubMed DOI
Kerins C.M., Moore S.D., Butterfield T.A., McKeon P.O., Uhl T.L. Reliability of the myotonometer for assessment of posterior shoulder tightness. Int. J. Sports Phys. Ther. 2013;8:248–255. PubMed PMC
Pamukoff D.N., Bell S.E., Ryan E.D., Blackburn J.T. The Myotonometer: Not a Valid Measurement Tool for Active Hamstring Musculotendinous Stiffness. J. Sport Rehabil. 2016;25:111–116. doi: 10.1123/jsr.2014-0271. PubMed DOI
Williams R.L., Ji W., Howell J.N., Conatser R.R., Jr. In Vivo Measurement of Human Tissue Compliance. SAE Trans. 2007;116:824–834.
Alamaki A., Hakkinen A., Malkia E., Ylinen J. Muscle tone in different joint positions and at submaximal isometric torque levels. Physiol. Meas. 2007;28:793–802. doi: 10.1088/0967-3334/28/8/003. PubMed DOI
Dordevic S., Stancin S., Meglic A., Milutinovic V., Tomazic S. MC sensor--a novel method for measurement of muscle tension. Sensors. 2011;11:9411–9425. doi: 10.3390/s111009411. PubMed DOI PMC
Fukashiro S., Noda M., Shibayama A. In Vivo determination of muscle viscoelasticity in the human leg. Acta Physiol. Scand. 2001;172:241–248. doi: 10.1046/j.1365-201x.2001.00866.x. PubMed DOI
Levinson S.F., Shinagawa M., Sato T. Sonoelastic determination of human skeletal muscle elasticity. J. Biomech. 1995;28:1145–1154. doi: 10.1016/0021-9290(94)00173-2. PubMed DOI
Hoyt K., Kneezel T., Castaneda B., Parker K.J. Quantitative sonoelastography for the in vivo assessment of skeletal muscle viscoelasticity. Phys. Med. Biol. 2008;53:4063–4080. doi: 10.1088/0031-9155/53/15/004. PubMed DOI PMC
Sikdar S., Shah J.P., Gilliams E., Gebreab T., Gerber L.H. Assessment of myofascial trigger points (MTrPs): A new application of ultrasound imaging and vibration sonoelastography. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2008;2008:5585–5588. doi: 10.1109/IEMBS.2008.4650480. PubMed DOI
Parker K.J., Doyley M.M., Rubens D.J. Imaging the elastic properties of tissue: The 20 year perspective. Phys. Med. Biol. 2011;56:R1–R29. doi: 10.1088/0031-9155/56/1/R01. PubMed DOI
Bercoff J., Tanter M., Fink M. Supersonic shear imaging: A new technique for soft tissue elasticity mapping. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2004;51:396–409. doi: 10.1109/TUFFC.2004.1295425. PubMed DOI
Leong H.T., Ng G.Y., Leung V.Y., Fu S.N. Quantitative estimation of muscle shear elastic modulus of the upper trapezius with supersonic shear imaging during arm positioning. PLoS ONE. 2013;8:e67199. doi: 10.1371/journal.pone.0067199. PubMed DOI PMC
Lima K., Martins N., Pereira W., Oliveira L. Triceps surae elasticity modulus measured by shear wave elastography is not correlated to the plantar flexion torque. Muscles Ligaments Tendons J. 2017;7:347–352. doi: 10.11138/mltj/2017.7.2.347. PubMed DOI PMC
Taş S., Onur M.R., Yılmaz S., Soylu A.R., Korkusuz F. Shear Wave Elastography Is a Reliable and Repeatable Method for Measuring the Elastic Modulus of the Rectus Femoris Muscle and Patellar Tendon. J. Ultrasound Med. 2017;36:565–570. doi: 10.7863/ultra.16.03032. PubMed DOI
Alfuraih A.M., O’Connor P., Hensor E., Tan A.L., Emery P., Wakefield R.J. The effect of unit, depth, and probe load on the reliability of muscle shear wave elastography: Variables affecting reliability of SWE. J. Clin. Ultrasound. 2018;46:108–115. doi: 10.1002/jcu.22534. PubMed DOI
Zhang J., Yu J., Liu C., Tang C., Zhang Z. Modulation in Elastic Properties of Upper Trapezius with Varying Neck Angle. Appl. Bionics Biomech. 2019;2019:6048562. doi: 10.1155/2019/6048562. PubMed DOI PMC
Zhou J., Yu J., Liu C., Tang C., Zhang Z. Regional Elastic Properties of the Achilles Tendon Is Heterogeneously Influenced by Individual Muscle of the Gastrocnemius. Appl. Bionics Biomech. 2019;2019:8452717. doi: 10.1155/2019/8452717. PubMed DOI PMC
Flatres A., Aarab Y., Nougaret S., Garnier F., Larcher R., Amalric M., Klouche K., Etienne P., Subra G., Jaber S., et al. Real-time shear wave ultrasound elastography: A new tool for the evaluation of diaphragm and limb muscle stiffness in critically ill patients. Crit. Care. 2020;24:34. doi: 10.1186/s13054-020-2745-6. PubMed DOI PMC
Ma C.Z., Ren L.J., Cheng C.L., Zheng Y.P. Mapping of Back Muscle Stiffness along Spine during Standing and Lying in Young Adults: A Pilot Study on Spinal Stiffness Quantification with Ultrasound Imaging. Sensors. 2020;20:7317. doi: 10.3390/s20247317. PubMed DOI PMC
Liu X., Yu H.K., Sheng S.Y., Liang S.M., Lu H., Gu L.X., Fu P., Pan M. Measurement consistency of dynamic stretching muscle stiffness evaluated using shear wave elastography: Comparison among different stretched levels and ROI sizes. Med. Ultrason. 2021;23:55–61. doi: 10.11152/mu-2731. PubMed DOI
Olchowy C., Olchowy A., Hadzik J., Dąbrowski P., Mierzwa D. Dentists can provide reliable shear wave elastography measurements of the stiffness of masseter muscles: A possible scenario for a faster diagnostic process. Adv. Clin. Exp. Med. Off. Organ Wroc. Med. Univ. 2021;30:575–580. doi: 10.17219/acem/134875. PubMed DOI
Abou Karam M., Mukhina E., Daras N., Rivals I., Pillet H., Skalli W., Connesson N., Payan Y., Rohan P.Y. Reliability of B-mode ultrasound and shear wave elastography in evaluating sacral bone and soft tissue characteristics in young adults with clinical feasibility in elderly. J. Tissue Viability. 2022;31:245–254. doi: 10.1016/j.jtv.2022.02.003. PubMed DOI
Niu Y., Yue Y., Zheng Y., Long C., Li Q., Chen Y., Chen Z., Ma X. SWEmean of Quadriceps, a Potential Index of Complication Evaluation to Patients with Chronic Obstructive Pulmonary Disease. Int. J. Chronic Obstr. Pulm. Dis. 2022;17:1921–1928. doi: 10.2147/COPD.S374945. PubMed DOI PMC
Roots J., Trajano G.S., Drovandi C., Fontanarosa D. Variability of Biceps Muscle Stiffness Measured Using Shear Wave Elastography at Different Anatomical Locations with Different Ultrasound Machines. Ultrasound. Med. Biol. 2023;49:398–409. doi: 10.1016/j.ultrasmedbio.2022.09.009. PubMed DOI
Dresner M.A., Rose G.H., Rossman P.J., Muthupillai R., Manduca A., Ehman R.L. Magnetic resonance elastography of skeletal muscle. J. Magn. Reson. Imaging. 2001;13:269–276. doi: 10.1002/1522-2586(200102)13:2<269::AID-JMRI1039>3.0.CO;2-1. PubMed DOI
Papazoglou S., Braun J., Hamhaber U., Sack I. Two-dimensional waveform analysis in MR elastography of skeletal muscles. Phys. Med. Biol. 2005;50:1313–1325. doi: 10.1088/0031-9155/50/6/018. PubMed DOI
Papazoglou S., Rump J., Braun J., Sack I. Shear wave group velocity inversion in MR elastography of human skeletal muscle. Magn. Reson. Med. 2006;56:489–497. doi: 10.1002/mrm.20993. PubMed DOI
Klatt D., Papazoglou S., Braun J., Sack I. Viscoelasticity-based MR elastography of skeletal muscle. Phys. Med. Biol. 2010;55:6445–6459. doi: 10.1088/0031-9155/55/21/007. PubMed DOI
Low G., Kruse S.A., Lomas D.J. General review of magnetic resonance elastography. World J. Radiol. 2016;8:59–72. doi: 10.4329/wjr.v8.i1.59. PubMed DOI PMC
Schrank F., Warmuth C., Gorner S., Meyer T., Tzschatzsch H., Guo J., Uca Y.O., Elgeti T., Braun J., Sack I. Real-time MR elastography for viscoelasticity quantification in skeletal muscle during dynamic exercises. Magn. Reson. Med. 2020;84:103–114. doi: 10.1002/mrm.28095. PubMed DOI
Hong S.H., Hong S.J., Yoon J.S., Oh C.H., Cha J.G., Kim H.K., Bolster B., Jr. Magnetic resonance elastography (MRE) for measurement of muscle stiffness of the shoulder: Feasibility with a 3 T MRI system. Acta Radiol. 2016;57:1099–1106. doi: 10.1177/0284185115571987. PubMed DOI
Ito D., Numano T., Ueki T., Habe T., Maeno T., Takamoto K., Igarashi K., Maharjan S., Mizuhara K., Nishijo H. Magnetic resonance elastography of the supraspinatus muscle: A preliminary study on test-retest repeatability and wave quality with different frequencies and image filtering. Magn. Reson. Imaging. 2020;71:27–36. doi: 10.1016/j.mri.2020.04.009. PubMed DOI
Maršáková K., Nováková T. Objektivizace výskytu svalového hypertonu metodou termografie u dětí a dospívajících s bolestmi hlavy cervikogenního původu; Proceedings of the Sborník Příspěvků. Pohybové Aktivity Jako Prostředek Ovlivňování Člověka, Vědecká Konference FTVS UK; Praha, Czech Republic. 24 January 2003; pp. 179–182.
Botar-Jid C., Damian L., Dudea S.M., Vasilescu D., Rednic S., Badea R. The contribution of ultrasonography and sonoelastography in assessment of myositis. Med. Ultrason. 2010;12:120–126. PubMed
Domire Z.J., McCullough M.B., Chen Q., An K.N. Wave attenuation as a measure of muscle quality as measured by magnetic resonance elastography: Initial results. J. Biomech. 2009;42:537–540. doi: 10.1016/j.jbiomech.2008.11.034. PubMed DOI PMC
Nelissen J.L., Sinkus R., Nicolay K., Nederveen A.J., Oomens C.W.J., Strijkers G.J. Magnetic resonance elastography of skeletal muscle deep tissue injury. NMR Biomed. 2019;32:e4087. doi: 10.1002/nbm.4087. PubMed DOI PMC
Chen Q., Wang H.J., Gay R.E., Thompson J.M., Manduca A., An K.N., Ehman R.E., Basford J.R. Quantification of Myofascial Taut Bands. Arch. Phys. Med. Rehabil. 2016;97:67–73. doi: 10.1016/j.apmr.2015.09.019. PubMed DOI PMC
Jiménez-Sánchez C., Ortiz-Lucas M., Bravo-Esteban E., Mayoral-del Moral O., Herrero-Gállego P., Gómez-Soriano J. Myotonometry as a measure to detect myofascial trigger points: An inter-rater reliability study. Physiol. Meas. 2018;39:115004. doi: 10.1088/1361-6579/aae9aa. PubMed DOI
Marusiak J., Kisiel-Sajewicz K., Jaskolska A., Jaskolski A. Higher muscle passive stiffness in Parkinson’s disease patients than in controls measured by myotonometry. Arch. Phys. Med. Rehabil. 2010;91:800–802. doi: 10.1016/j.apmr.2010.01.012. PubMed DOI
Marusiak J., Jaskolska A., Budrewicz S., Koszewicz M., Jaskolski A. Increased muscle belly and tendon stiffness in patients with Parkinson’s disease, as measured by myotonometry. Mov. Disord. 2011;26:2119–2122. doi: 10.1002/mds.23841. PubMed DOI
Du L.J., He W., Cheng L.G., Li S., Pan Y.S., Gao J. Ultrasound shear wave elastography in assessment of muscle stiffness in patients with Parkinson’s disease: A primary observation. Clin. Imaging. 2016;40:1075–1080. doi: 10.1016/j.clinimag.2016.05.008. PubMed DOI
Gao J., Du L.J., He W., Li S., Cheng L.G. Ultrasound Strain Elastography in Assessment of Muscle Stiffness in Acute Levodopa Challenge Test: A Feasibility Study. Ultrasound. Med. Biol. 2016;42:1084–1089. doi: 10.1016/j.ultrasmedbio.2015.12.014. PubMed DOI
Gao J., He W., Du L.J., Li S., Cheng L.G., Shih G., Rubin J. Ultrasound strain elastography in assessment of resting biceps brachii muscle stiffness in patients with Parkinson’s disease: A primary observation. Clin. Imaging. 2016;40:440–444. doi: 10.1016/j.clinimag.2015.12.008. PubMed DOI
Vasilescu D., Vasilescu D., Dudea S., Botar-Jid C., Sfrangeu S., Cosma D. Sonoelastography contribution in cerebral palsy spasticity treatment assessment, preliminary report: A systematic review of the literature apropos of seven patients. Med. Ultrason. 2010;12:306–310. PubMed
Numano T., Habe T., Ito D., Onishi T., Takamoto K., Mizuhara K., Nishijo H., Igarashi K., Ueki T. A new technique for motion encoding gradient-less MR elastography of the psoas major muscle: A gradient-echo type multi-echo sequence. Magn. Reson. Imaging. 2019;63:85–92. doi: 10.1016/j.mri.2019.08.006. PubMed DOI
Alcaraz-Clariana S., Garcia-Luque L., Garrido-Castro J.L., Fernandez-de-Las-Penas C., Carmona-Perez C., Rodrigues-de-Souza D.P., Alburquerque-Sendin F. Paravertebral Muscle Mechanical Properties and Spinal Range of Motion in Patients with Acute Neck or Low Back Pain: A Case-Control Study. Diagnostics. 2021;11:352. doi: 10.3390/diagnostics11020352. PubMed DOI PMC
Lee J.-H., Kim H., Shin W.-S. Characteristics of shoulder pain, muscle tone and isokinetic muscle function according to the scapular position of elite boxers. Phys. Ther. Rehabil. Sci. 2020;9:98–104. doi: 10.14474/ptrs.2020.9.2.98. DOI
Llurda-Almuzara L., Perez-Bellmunt A., Lopez-de-Celis C., Aiguade R., Seijas R., Casasayas-Cos O., Labata-Lezaun N., Alvarez P. Normative data and correlation between dynamic knee valgus and neuromuscular response among healthy active males: A cross-sectional study. Sci. Rep. 2020;10:17206. doi: 10.1038/s41598-020-74177-8. PubMed DOI PMC
Tennant L.M., Nelson-Wong E., Kuest J., Lawrence G., Levesque K., Owens D., Prisby J., Spivey S., Albin S.R., Jagger K., et al. A Comparison of Clinical Spinal Mobility Measures to Experimentally Derived Lumbar Spine Passive Stiffness. J. Appl. Biomech. 2020;36:397–407. doi: 10.1123/jab.2020-0030. PubMed DOI
Tan S., Kudas S., Ozcan A.S., Ipek A., Karaoglanoglu M., Arslan H., Bozkurt M. Real-time sonoelastography of the Achilles tendon: Pattern description in healthy subjects and patients with surgically repaired complete ruptures. Skeletal. Radiol. 2012;41:1067–1072. doi: 10.1007/s00256-011-1339-4. PubMed DOI
Serra-Ano P., Ingles M., Espi-Lopez G.V., Sempere-Rubio N., Aguilar-Rodriguez M. Biomechanical and viscoelastic properties of the ankle muscles in men with previous history of ankle sprain. J. Biomech. 2021;115:110191. doi: 10.1016/j.jbiomech.2020.110191. PubMed DOI
Song C., Yu Y.F., Ding W.L., Yu J.Y., Song L., Feng Y.N., Zhang Z.J. Quantification of the Masseter Muscle Hardness of Stroke Patients Using the MyotonPRO Apparatus: Intra- and Inter-Rater Reliability and Its Correlation with Masticatory Performance. Med. Sci. Monit. 2021;27:e928109. doi: 10.12659/MSM.928109. PubMed DOI PMC
Green M.A., Sinkus R., Gandevia S.C., Herbert R.D., Bilston L.E. Measuring changes in muscle stiffness after eccentric exercise using elastography. NMR Biomed. 2012;25:852–858. doi: 10.1002/nbm.1801. PubMed DOI
Kennedy P., Macgregor L.J., Barnhill E., Johnson C.L., Perrins M., Hunter A., Brown C., van Beek E.J.R., Roberts N. MR elastography measurement of the effect of passive warmup prior to eccentric exercise on thigh muscle mechanical properties. J. Magn. Reson. Imaging. 2017;46:1115–1127. doi: 10.1002/jmri.25642. PubMed DOI PMC
Ariji Y., Katsumata A., Hiraiwa Y., Izumi M., Iida Y., Goto M., Sakuma S., Ogi N., Kurita K., Ariji E. Use of sonographic elastography of the masseter muscles for optimizing massage pressure: A preliminary study. J. Oral Rehabil. 2009;36:627–635. doi: 10.1111/j.1365-2842.2009.01977.x. PubMed DOI
Kwon D.R., Park G.Y., Kwon J.G. The change of intrinsic stiffness in gastrocnemius after intensive rehabilitation with botulinum toxin a injection in spastic diplegic cerebral palsy. Ann. Rehabil. Med. 2012;36:400–403. doi: 10.5535/arm.2012.36.3.400. PubMed DOI PMC
Kablan N., Alaca N., Tatar Y. Comparison of the Immediate Effect of Petrissage Massage and Manual Lymph Drainage Following Exercise on Biomechanical and Viscoelastic Properties of the Rectus Femoris Muscle in Women. J. Sport Rehabil. 2021;30:725–730. doi: 10.1123/jsr.2020-0276. PubMed DOI
Perez-Bellmunt A., Simon M., Lopez-de-Celis C., Ortiz-Miguel S., Gonzalez-Rueda V., Fernandez-de-Las-Penas C. Effects on Neuromuscular Function after Ischemic Compression in Latent Trigger Points in the Gastrocnemius Muscles: A Randomized Within-Participant Clinical Trial. J. Manipulative Physiol. Ther. 2022;45:490–496. doi: 10.1016/j.jmpt.2020.07.015. PubMed DOI
Kim M.-J., Kim T.-H. Effect of neuro dynamic technique and instrument assisted soft tissue mobilization on lower extremity muscle tone, stiffness, static balance in stroke patients. J. Korean Phys. Ther. 2020;32:359–364. doi: 10.18857/jkpt.2020.32.6.359. DOI
Milerská I., Lhotská L. Investigation of Muscle Imbalance; Proceedings of the 8th European Medical and Biological Engineering Conference: Proceedings of the EMBEC 2020; Portorož, Slovenia. 29 November–3 December 2020; pp. 733–739.
Barassi G., Giannuzzo G., De Santis R., Dragonetti A. Adaptive neuromodulation in the treatment of spasticity. J. Adv. Health Care. 2020:2. doi: 10.36017/JAHC2010-003. DOI
Albin S.R., Koppenhaver S.L., MacDonald C.W., Capoccia S., Ngo D., Phippen S., Pineda R., Wendlandt A., Hoffman L.R. The effect of dry needling on gastrocnemius muscle stiffness and strength in participants with latent trigger points. J. Electromyogr. Kinesiol. 2020;55:102479. doi: 10.1016/j.jelekin.2020.102479. PubMed DOI
Megna M., Marvulli R., Fari G., Gallo G., Dicuonzo F., Fiore P., Ianieri G. Pain and Muscles Properties Modifications after Botulinum Toxin Type A (BTX-A) and Radial Extracorporeal Shock Wave (rESWT) Combined Treatment. Endocr. Metab. Immune Disord. Drug Targets. 2019;19:1127–1133. doi: 10.2174/1871530319666190306101322. PubMed DOI
Park S.J., Kim S.H., Kim S.H. Effects of Thoracic Mobilization and Extension Exercise on Thoracic Alignment and Shoulder Function in Patients with Subacromial Impingement Syndrome: A Randomized Controlled Pilot Study. Healthcare. 2020;8:316. doi: 10.3390/healthcare8030316. PubMed DOI PMC
Wang J., Park S., Kim J. Effect of Walking with Combat Boots on the Muscle Tone and Stiffness of Lower Extremity. J. Int. Acad. Phys. Ther. Res. 2020;11:2221–2228. doi: 10.20540/jiaptr.2020.11.4.2221. DOI
Wang J.S., Seo D.W., Cha J.Y. Mouthguard-effect of high-intensity weight training on masticatory muscle tone and stiffness in taekwondo athletes. J. Exerc. Rehabil. 2020;16:510–515. doi: 10.12965/jer.2040698.349. PubMed DOI PMC
Garcia-Bernal M.I., Heredia-Rizo A.M., Gonzalez-Garcia P., Cortes-Vega M.D., Casuso-Holgado M.J. Validity and reliability of myotonometry for assessing muscle viscoelastic properties in patients with stroke: A systematic review and meta-analysis. Sci. Rep. 2021;11:5062. doi: 10.1038/s41598-021-84656-1. PubMed DOI PMC
Oha K., Viljasoo V., Merisalu E. Prevalence of musculoskeletal disorders, assessment of parameters of muscle tone and health status among office workers. J. Agron. Res. 2010;8:192–200.
Roja Z., Kalkis V., Vain A., Kalkis H., Eglite M. Assessment of skeletal muscle fatigue of road maintenance workers based on heart rate monitoring and myotonometry. J. Occup. Med. Toxicol. 2006;1:20. doi: 10.1186/1745-6673-1-20. PubMed DOI PMC
Schneider S., Peipsi A., Stokes M., Knicker A., Abeln V. Feasibility of monitoring muscle health in microgravity environments using Myoton technology. Med. Biol. Eng. Comput. 2015;53:57–66. doi: 10.1007/s11517-014-1211-5. PubMed DOI
Chan V., Duffield R., Watsford M. The effects of compression garments on performance of prolonged manual-labour exercise and recovery. Appl. Physiol. Nutr. Metab. 2016;41:125–132. doi: 10.1139/apnm-2015-0335. PubMed DOI
Geregei A., Shitova E., Malakhova I., Shuporin E., Bondaruk E., Efimov A., Takh V.K. Up-to-date techniques for examining safety and physiological efficiency of industrial exoskeletons. Health Risk Anal. 2020:147–158. doi: 10.21668/health.risk/2020.3.18.eng. DOI
Villanueva A., Rabal-Pelay J., Berzosa C., Gutierrez H., Cimarras-Otal C., Lacarcel-Tejero B., Bataller-Cervero A.V. Effect of a Long Exercise Program in the Reduction of Musculoskeletal Discomfort in Office Workers. Int. J. Environ. Res. Public Health. 2020;17:9042. doi: 10.3390/ijerph17239042. PubMed DOI PMC
Klich S., Ficek K., Krymski I., Klimek A., Kawczynski A., Madeleine P., Fernandez-de-Las-Penas C. Quadriceps and Patellar Tendon Thickness and Stiffness in Elite Track Cyclists: An Ultrasonographic and Myotonometric Evaluation. Front. Physiol. 2020;11:607208. doi: 10.3389/fphys.2020.607208. PubMed DOI PMC
Klich S., Krymski I., Kawczyński A. Viscoelastic properties of lower extremity muscles after elite track cycling sprint events: A case report. Cent. Eur. J. Sport Sci. Med. 2020;29:5–10. doi: 10.18276/cej.2020.1-01. DOI
Lin W.C., Lee C.L., Chang N.J. Acute Effects of Dynamic Stretching Followed by Vibration Foam Rolling on Sports Performance of Badminton Athletes. J. Sports Sci. Med. 2020;19:420–428. PubMed PMC
Saldiran T.C., Atici E., Rezaei D.A., Ozturk O., Uslu B., Ozcan B.A., Okudan B. The Acute Effects of Different Intensity Whole-Body Vibration Exposure on Muscle Tone and Strength of the Lower Legs, and Hamstring Flexibility: A Pilot Study. J. Sport Rehabil. 2020;30:235–241. doi: 10.1123/jsr.2019-0408. PubMed DOI
Uysal O., Delioglu K., Firat T. The effects of hamstring training methods on muscle viscoelastic properties in healthy young individuals. Scand. J. Med. Sci. Sports. 2021;31:371–379. doi: 10.1111/sms.13856. PubMed DOI
Chang T.-T., Li Z., Wang X.-Q., Zhang Z.-J.J. Stiffness of the gastrocnemius–Achilles tendon complex between amateur basketball players and the non-athletic general population. Front Physiol. 2020;11:606706. doi: 10.3389/fphys.2020.606706. PubMed DOI PMC
Bravo-Sanchez A., Abian P., Sousa F., Jimenez F., Abian-Vicen J. Influence of Badminton Practice on Age-Related Changes in Patellar and Achilles Tendons. J. Aging Phys. Act. 2021;29:382–390. doi: 10.1123/japa.2020-0215. PubMed DOI
Hong J.-H., Lee D.-H., Kim S.-E., Seo D.-K. Correlation between contraction ratio, endurance, and muscle tone of cervical muscles. Phys. Ther. Rehabil. Sci. 2020;9:302–308. doi: 10.14474/ptrs.2020.9.4.302. DOI
Colomar J., Baiget E., Corbi F. Influence of Strength, Power, and Muscular Stiffness on Stroke Velocity in Junior Tennis Players. Front. Physiol. 2020;11:196. doi: 10.3389/fphys.2020.00196. PubMed DOI PMC
Hara K., Namiki C., Yamaguchi K., Kobayashi K., Saito T., Nakagawa K., Ishii M., Okumura T., Tohara H. Association between myotonometric measurement of masseter muscle stiffness and maximum bite force in healthy elders. J. Oral Rehabil. 2020;47:750–756. doi: 10.1111/joor.12968. PubMed DOI
Berzosa C., Gutierrez H., Bascuas P.J., Arbones I., Bataller-Cervero A.V. Muscle Tone and Body Weight Predict Uphill Race Time in Amateur Trail Runners. Int. J. Environ. Res. Public Health. 2021;18:2040. doi: 10.3390/ijerph18042040. PubMed DOI PMC
Basti A., Yalcin M., Herms D., Hesse J., Aboumanify O., Li Y., Aretz Z., Garmshausen J., El-Athman R., Hastermann M., et al. Diurnal variations in the expression of core-clock genes correlate with resting muscle properties and predict fluctuations in exercise performance across the day. BMJ Open Sport Exerc. Med. 2021;7:e000876. doi: 10.1136/bmjsem-2020-000876. PubMed DOI PMC
Ho C.S., Lee M.C., Chang C.Y., Chen W.C., Huang W.C. Beneficial effects of a negative ion patch on eccentric exercise-induced muscle damage, inflammation, and exercise performance in badminton athletes. Chin. J. Physiol. 2020;63:35–42. doi: 10.4103/CJP.CJP_33_19. PubMed DOI
Arda K., Ciledag N., Aktas E., Aribas B.K., Kose K. Quantitative assessment of normal soft-tissue elasticity using shear-wave ultrasound elastography. AJR Am. J. Roentgenol. 2011;197:532–536. doi: 10.2214/AJR.10.5449. PubMed DOI
Domire Z.J., McCullough M.B., Chen Q., An K.N. Feasibility of using magnetic resonance elastography to study the effect of aging on shear modulus of skeletal muscle. J. Appl. Biomech. 2009;25:93–97. doi: 10.1123/jab.25.1.93. PubMed DOI PMC
Debernard L., Robert L., Charleux F., Bensamoun S.F. Analysis of thigh muscle stiffness from childhood to adulthood using magnetic resonance elastography (MRE) technique. Clin. Biomech. 2011;26:836–840. doi: 10.1016/j.clinbiomech.2011.04.004. PubMed DOI
Kennedy P., Barnhill E., Gray C., Brown C., van Beek E.J.R., Roberts N., Greig C.A. Magnetic resonance elastography (MRE) shows significant reduction of thigh muscle stiffness in healthy older adults. Geroscience. 2020;42:311–321. doi: 10.1007/s11357-019-00147-2. PubMed DOI PMC
Taş S., Aktaş D. Menstrual Cycle does not Affect the Mechanical Properties of Muscle and Tendon. Muscles Ligaments Tendons J. 2020;10:11–16. doi: 10.32098/mltj.01.2020.02. DOI
Khowailed I.A., Lee H. Neuromuscular Control of Ankle-stabilizing Muscles-specific Effects of Sex and Menstrual Cycle. Int. J. Sports Med. 2021;42:270–276. doi: 10.1055/a-1236-3654. PubMed DOI
Bensamoun S.F., Ringleb S.I., Chen Q., Ehman R.L., An K.N., Brennan M. Thigh muscle stiffness assessed with magnetic resonance elastography in hyperthyroid patients before and after medical treatment. J. Magn. Reson. Imaging. 2007;26:708–713. doi: 10.1002/jmri.21073. PubMed DOI
McCullough M.B., Domire Z.J., Reed A.M., Amin S., Ytterberg S.R., Chen Q., An K.N. Evaluation of muscles affected by myositis using magnetic resonance elastography. Muscle Nerve. 2011;43:585–590. doi: 10.1002/mus.21923. PubMed DOI PMC
Basford J.R., Jenkyn T.R., An K.N., Ehman R.L., Heers G., Kaufman K.R. Evaluation of healthy and diseased muscle with magnetic resonance elastography. Arch. Phys. Med. Rehabil. 2002;83:1530–1536. doi: 10.1053/apmr.2002.35472. PubMed DOI
Drakonaki E.E., Allen G.M. Magnetic resonance imaging, ultrasound and real-time ultrasound elastography of the thigh muscles in congenital muscle dystrophy. Skeletal. Radiol. 2010;39:391–396. doi: 10.1007/s00256-009-0861-0. PubMed DOI
Kim Y., An S.Y., Park W., Hwang J.H. Detection of early changes in the muscle properties of the pectoralis major in breast cancer patients treated with radiotherapy using a handheld myotonometer. Support Care Cancer. 2021;29:2581–2590. doi: 10.1007/s00520-020-05751-z. PubMed DOI
Lewit K. Manipulative Therapy: Musculoskeletal Medicine. Elsevier Health Sciences; Amsterdam, The Netherlands: 2009.