Cortical morphology in patients with the deficit and non-deficit syndrome of schizophrenia: a worldwide meta- and mega-analyses
Language English Country England, Great Britain Media print-electronic
Document type Meta-Analysis, Journal Article
Grant support
P50 MH094268
NIMH NIH HHS - United States
R01 MH105660
NIMH NIH HHS - United States
R01 MH076989
NIMH NIH HHS - United States
R01 MH116147
NIMH NIH HHS - United States
IK6 CX002519
CSRD VA - United States
R01 MH092443
NIMH NIH HHS - United States
R01 MH121246
NIMH NIH HHS - United States
PubMed
37644174
PubMed Central
PMC10827665
DOI
10.1038/s41380-023-02221-w
PII: 10.1038/s41380-023-02221-w
Knihovny.cz E-resources
- MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Cerebral Cortex diagnostic imaging MeSH
- Neuroimaging MeSH
- Schizophrenia * genetics MeSH
- Syndrome MeSH
- Parietal Lobe MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Meta-Analysis MeSH
Converging evidence suggests that schizophrenia (SZ) with primary, enduring negative symptoms (i.e., Deficit SZ (DSZ)) represents a distinct entity within the SZ spectrum while the neurobiological underpinnings remain undetermined. In the largest dataset of DSZ and Non-Deficit (NDSZ), we conducted a meta-analysis of data from 1560 individuals (168 DSZ, 373 NDSZ, 1019 Healthy Controls (HC)) and a mega-analysis of a subsampled data from 944 individuals (115 DSZ, 254 NDSZ, 575 HC) collected across 9 worldwide research centers of the ENIGMA SZ Working Group (8 in the mega-analysis), to clarify whether they differ in terms of cortical morphology. In the meta-analysis, sites computed effect sizes for differences in cortical thickness and surface area between SZ and control groups using a harmonized pipeline. In the mega-analysis, cortical values of individuals with schizophrenia and control participants were analyzed across sites using mixed-model ANCOVAs. The meta-analysis of cortical thickness showed a converging pattern of widespread thinner cortex in fronto-parietal regions of the left hemisphere in both DSZ and NDSZ, when compared to HC. However, DSZ have more pronounced thickness abnormalities than NDSZ, mostly involving the right fronto-parietal cortices. As for surface area, NDSZ showed differences in fronto-parietal-temporo-occipital cortices as compared to HC, and in temporo-occipital cortices as compared to DSZ. Although DSZ and NDSZ show widespread overlapping regions of thinner cortex as compared to HC, cortical thinning seems to better typify DSZ, being more extensive and bilateral, while surface area alterations are more evident in NDSZ. Our findings demonstrate for the first time that DSZ and NDSZ are characterized by different neuroimaging phenotypes, supporting a nosological distinction between DSZ and NDSZ and point toward the separate disease hypothesis.
Biomedical Network Research Centre on Mental Health Instituto de Salud Carlos 3 Madrid Spain
CARE National Institute of Mental Health Klecany Czech Republic
Center for the Neurobiology of Learning and Memory University of California Irvine Irvine CA USA
Child and Adolescence Neuropsychiatry Unit Bambino Gesù Children's Hospital IRCCS Rome Italy
Department of Biomedical Engineering Johns Hopkins University School of Medicine Baltimore MD USA
Department of child and adolescent psychiatry TU Dresden Dresden Saxony Germany
Department of Mental Health Johns Hopkins Bloomberg School of Public Health Baltimore MD USA
Department of Neuroscience Johns Hopkins University School of Medicine Baltimore MD USA
Department of Pharmacology Johns Hopkins University School of Medicine Baltimore MD USA
Department of Psychiatry and Behavioral Sciences University of California San Francisco CA USA
Department of Psychiatry Johns Hopkins University School of Medicine Baltimore MD USA
Department of Psychiatry University of California Irvine Newfoundland NJ NJ 07435 USA
Department of Psychiatry University of Toronto Temerty Faculty of Medicine Toronto ON Canada
Department of Psychiatry University of Toronto Toronto ON Canada
Division of Psychiatry University of Edinburgh Edinburg EH10 5HF UK
FIMDAG Sisters Hospitallers Research Foundation Barcelona Spain
Hospital Benito Menni CASM Barcelona Spain
Imaging of mood and anxiety related disorders Barcelona 08036 Spain
Kimel Family Lab Centre for Addiction and Mental Health Toronto ON Canada
Medicina University of Barcelona Barcelona 08036 Spain
Menninger Department of Psychiatry and Behavioral Sciences Baylor College of Medicine Houston TX USA
Psichiatry and Neuroscience University of New Mexico Albuquerque NM USA
Psychiatry and Human Behavior University of California Irvine Orange CA 92868 USA
Psychosis Studies Institute of Psychiatry Psychology and Neurology King's College London London UK
San Francisco VA Health Care System San Francisco CA USA
West Region Institute of Mental Health National Healthcare Group Singapore Singapore
Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
See more in PubMed
Kirkpatrick B, Buchanan RW, Ross DE, Carpenter WT., Jr A separate disease within the syndrome of schizophrenia. Arch Gen Psychiatry. 2001;58:165–71. doi: 10.1001/archpsyc.58.2.165. PubMed DOI
Carpenter WT, Jr, Heinrichs DW, Wagman AM. Deficit and nondeficit forms of schizophrenia: the concept. Am J Psychiatry. 1988;145:578–83. doi: 10.1176/ajp.145.5.578. PubMed DOI
Kirkpatrick B, Mucci A, Galderisi S. Primary, Enduring Negative Symptoms: An Update on Research. Schizophr Bull. 2017;43:730–6. doi: 10.1093/schbul/sbx064. PubMed DOI PMC
Voineskos AN, Foussias G, Lerch J, Felsky D, Remington G, Rajji TK, et al. Neuroimaging evidence for the deficit subtype of schizophrenia. JAMA Psychiatry. 2013;70:472–80. doi: 10.1001/jamapsychiatry.2013.786. PubMed DOI
López-Díaz Á, Lara I, Lahera G. Is the Prevalence of the Deficit Syndrome in Schizophrenia Higher than Estimated? Results of a Meta-Analysis. Psychiatry Investig. 2018;15:94–8. doi: 10.4306/pi.2018.15.1.94. PubMed DOI PMC
Strauss GP, Harrow M, Grossman LS, Rosen C. Periods of recovery in deficit syndrome schizophrenia: a 20-year multi-follow-up longitudinal study. Schizophr Bull. 2010;36:788–99. doi: 10.1093/schbul/sbn167. PubMed DOI PMC
Albayrak Y, Akyol ES, Beyazyüz M, Baykal S, Kuloglu M. Neurological soft signs might be endophenotype candidates for patients with deficit syndrome schizophrenia. Neuropsychiatr Dis Treat. 2015;11:2825–31. doi: 10.2147/NDT.S91170. PubMed DOI PMC
Bora E, Binnur Akdede B, Alptekin K. Neurocognitive impairment in deficit and non-deficit schizophrenia: a meta-analysis. Psychol Med. 2017;47:2401–13. doi: 10.1017/S0033291717000952. PubMed DOI
Boutros NN, Mucci A, Vignapiano A, Galderisi S. Electrophysiological aberrations associated with negative symptoms in schizophrenia. Curr Top Behav Neurosci. 2014;21:129–56. doi: 10.1007/7854_2014_303. PubMed DOI
Goldsmith DR, Haroon E, Miller AH, Strauss GP, Buckley PF, Miller BJ. TNF-α and IL-6 are associated with the deficit syndrome and negative symptoms in patients with chronic schizophrenia. Schizophr Res. 2018;199:281–4. doi: 10.1016/j.schres.2018.02.048. PubMed DOI PMC
Mucci A, Merlotti E, Üçok A, Aleman A, Galderisi S. Primary and persistent negative symptoms: Concepts, assessments and neurobiological bases. Schizophr Res. 2017;186:19–28. doi: 10.1016/j.schres.2016.05.014. PubMed DOI
Wheeler AL, Wessa M, Szeszko PR, Foussias G, Chakravarty MM, Lerch JP, et al. Further neuroimaging evidence for the deficit subtype of schizophrenia: a cortical connectomics analysis. JAMA Psychiatry. 2015;72:446–55. doi: 10.1001/jamapsychiatry.2014.3020. PubMed DOI
Downs J, Dean H, Lechler S, Sears N, Patel R, Shetty H, et al. Negative Symptoms in Early-Onset Psychosis and Their Association With Antipsychotic Treatment Failure. Schizophr Bull. 2019;45:69–79. doi: 10.1093/schbul/sbx197. PubMed DOI PMC
Peralta V, Moreno-Izco L, Sanchez-Torres A, García de Jalón E, Campos MS, Cuesta MJ. Characterization of the deficit syndrome in drug-naive schizophrenia patients: the role of spontaneous movement disorders and neurological soft signs. Schizophr Bull. 2014;40:214–24. doi: 10.1093/schbul/sbs152. PubMed DOI PMC
Arango C, Buchanan RW, Kirkpatrick B, Carpenter WT. The deficit syndrome in schizophrenia: implications for the treatment of negative symptoms. Eur Psychiatry. 2004;19:21–6. doi: 10.1016/j.eurpsy.2003.10.004. PubMed DOI
Miyamoto S, Miyake N, Jarskog LF, Fleischhacker WW, Lieberman JA. Pharmacological treatment of schizophrenia: a critical review of the pharmacology and clinical effects of current and future therapeutic agents. Mol Psychiatry. 2012;17:1206–27. doi: 10.1038/mp.2012.47. PubMed DOI
Kirkpatrick B, Gürbüz Oflezer Ö, Delice Arslan M, Hack G, Fernandez-Egea E. An Early Developmental Marker of Deficit versus Nondeficit Schizophrenia. Schizophr Bull. 2019;45:1331–5. doi: 10.1093/schbul/sbz024. PubMed DOI PMC
Kirkpatrick B, Galderisi S. Deficit schizophrenia: an update. World Psychiatry. 2008;7:143–7. doi: 10.1002/j.2051-5545.2008.tb00181.x. PubMed DOI PMC
López-Díaz Á, Menéndez-Sampil C, Pérez-Romero A, Palermo-Zeballos FJ, Valdés-Florido MJ. Characterization of deficit schizophrenia and reliability of the bidimensional model of its negative symptomatology. Nord J Psychiatry. 2020;74:400–6. doi: 10.1080/08039488.2020.1736151. PubMed DOI
Ahmed AO, Strauss GP, Buchanan RW, Kirkpatrick B, Carpenter WT. Schizophrenia heterogeneity revisited: Clinical, cognitive, and psychosocial correlates of statistically-derived negative symptoms subgroups. J Psychiatr Res. 2018;97:8–15. doi: 10.1016/j.jpsychires.2017.11.004. PubMed DOI
Cohen AS, Docherty NM. Deficit versus negative syndrome in schizophrenia: prediction of attentional impairment. Schizophr Bull. 2004;30:827–35. doi: 10.1093/oxfordjournals.schbul.a007135. PubMed DOI
Cascella NG, Testa SM, Meyer SM, Rao VA, Diaz-Asper CM, Pearlson GD, et al. Neuropsychological impairment in deficit vs. non-deficit schizophrenia. J Psychiatr Res. 2008;42:930–7. doi: 10.1016/j.jpsychires.2007.10.002. PubMed DOI
Farkas M, Polgár P, Kelemen O, Réthelyi J, Bitter I, Myers CE, et al. Associative learning in deficit and nondeficit schizophrenia. Neuroreport. 2008;19:55–8. doi: 10.1097/WNR.0b013e3282f2dff6. PubMed DOI
Polgár P, Réthelyi JM, Bálint S, Komlósi S, Czobor P, Bitter I. Executive function in deficit schizophrenia: what do the dimensions of the Wisconsin Card Sorting Test tell us? Schizophr Res. 2010;122:85–93. doi: 10.1016/j.schres.2010.06.007. PubMed DOI
Spalletta G, Pasini A, De Angelis F, Troisi A. Patients with deficit, nondeficit, and negative symptom schizophrenia: do they differ during episodes of acute psychotic decompensation? Schizophr Res. 1997;24:341–8. doi: 10.1016/S0920-9964(96)00124-7. PubMed DOI
Yu M, Tang X, Wang X, Zhang X, Zhang X, Sha W, et al. Neurocognitive Impairments in Deficit and Non-Deficit Schizophrenia and Their Relationships with Symptom Dimensions and Other Clinical Variables. PLoS ONE. 2015;10:e0138357. doi: 10.1371/journal.pone.0138357. PubMed DOI PMC
Takayanagi Y, Sasabayashi D, Takahashi T, Komori Y, Furuichi A, Kido M, et al. Altered brain gyrification in deficit and non-deficit schizophrenia. Psychol Med. 2019;49:573–80. doi: 10.1017/S0033291718001228. PubMed DOI
Spalletta G, De Rossi P, Piras F, Iorio M, Dacquino C, Scanu F, et al. Brain white matter microstructure in deficit and non-deficit subtypes of schizophrenia. Psychiatry Res. 2015;231:252–61. doi: 10.1016/j.pscychresns.2014.12.006. PubMed DOI
Cascella NG, Fieldstone SC, Rao VA, Pearlson GD, Sawa A, Schretlen DJ. Gray-matter abnormalities in deficit schizophrenia. Schizophr Res. 2010;120:63–70. doi: 10.1016/j.schres.2010.03.039. PubMed DOI
Fischer BA, Keller WR, Arango C, Pearlson GD, McMahon RP, Meyer WA, et al. Cortical structural abnormalities in deficit versus nondeficit schizophrenia. Schizophr Res. 2012;136:51–4. doi: 10.1016/j.schres.2012.01.030. PubMed DOI PMC
Takayanagi M, Wentz J, Takayanagi Y, Schretlen DJ, Ceyhan E, Wang L, et al. Reduced anterior cingulate gray matter volume and thickness in subjects with deficit schizophrenia. Schizophr Res. 2013;150:484–90. doi: 10.1016/j.schres.2013.07.036. PubMed DOI PMC
De Rossi P, Dacquino C, Piras F, Caltagirone C, Spalletta G. Left nucleus accumbens atrophy in deficit schizophrenia: A preliminary study. Psychiatry Res Neuroimaging. 2016;254:48–55. doi: 10.1016/j.pscychresns.2016.06.004. PubMed DOI
Galderisi S, Quarantelli M, Volpe U, Mucci A, Cassano GB, Invernizzi G, et al. Patterns of structural MRI abnormalities in deficit and nondeficit schizophrenia. Schizophr Bull. 2008;34:393–401. doi: 10.1093/schbul/sbm097. PubMed DOI PMC
Quarantelli M, Larobina M, Volpe U, Amati G, Tedeschi E, Ciarmiello A, et al. Stereotaxy-based regional brain volumetry applied to segmented MRI: validation and results in deficit and nondeficit schizophrenia. Neuroimage. 2002;17:373–84. doi: 10.1006/nimg.2002.1157. PubMed DOI
Chen CH, Fiecas M, Gutiérrez ED, Panizzon MS, Eyler LT, Vuoksimaa E, et al. Genetic topography of brain morphology. Proc Natl Acad Sci USA. 2013;110:17089–94. doi: 10.1073/pnas.1308091110. PubMed DOI PMC
Rakic P. Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci. 2009;10:724–35. doi: 10.1038/nrn2719. PubMed DOI PMC
Panizzon MS, Fennema-Notestine C, Eyler LT, Jernigan TL, Prom-Wormley E, Neale M, et al. Distinct genetic influences on cortical surface area and cortical thickness. Cereb Cortex. 2009;19:2728–35. doi: 10.1093/cercor/bhp026. PubMed DOI PMC
Winkler AM, Kochunov P, Blangero J, Almasy L, Zilles K, Fox PT, et al. Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage. 2010;53:1135–46. doi: 10.1016/j.neuroimage.2009.12.028. PubMed DOI PMC
Grasby KL, Jahanshad N, Painter JN, Colodro-Conde L, Bralten J, Hibar DP, et al. The genetic architecture of the human cerebral cortex. Science. 2020;367:eaay6690. doi: 10.1126/science.aay6690. PubMed DOI PMC
Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry. 1987;44:660–9. doi: 10.1001/archpsyc.1987.01800190080012. PubMed DOI
Rimol LM, Nesvåg R, Hagler DJ, Jr, Bergmann O, Fennema-Notestine C, Hartberg CB, et al. Cortical volume, surface area, and thickness in schizophrenia and bipolar disorder. Biol Psychiatry. 2012;71:552–60. doi: 10.1016/j.biopsych.2011.11.026. PubMed DOI
van Erp TGM, Walton E, Hibar DP, Schmaal L, Jiang W, Glahn DC, et al. Cortical Brain Abnormalities in 4474 Individuals With Schizophrenia and 5098 Control Subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium. Biol Psychiatry. 2018;84:644–54. doi: 10.1016/j.biopsych.2018.04.023. PubMed DOI PMC
Xie T, Zhang X, Tang X, Zhang H, Yu M, Gong G, et al. Mapping Convergent and Divergent Cortical Thinning Patterns in Patients With Deficit and Nondeficit Schizophrenia. Schizophr Bull. 2019;45:211–21. doi: 10.1093/schbul/sbx178. PubMed DOI PMC
Burke DL, Ensor J, Riley RD. Meta-analysis using individual participant data: one-stage and two-stage approaches, and why they may differ. Stat Med. 2017;36:855–75. doi: 10.1002/sim.7141. PubMed DOI PMC
Stewart LA, Tierney JF. To IPD or not to IPD? Advantages and disadvantages of systematic reviews using individual patient data. Eval Health Prof. 2002;25:76–97. doi: 10.1177/0163278702025001006. PubMed DOI
Zugman A, Harrewijn A, Cardinale EM, Zwiebel H, Freitag GF, Werwath KE, et al. Mega-analysis methods in ENIGMA: The experience of the generalized anxiety disorder working group. Hum Brain Mapp. 2022;43:255–77. doi: 10.1002/hbm.25096. PubMed DOI PMC
Boedhoe PS, Schmaal L, Abe Y, Ameis SH, Arnold PD, Batistuzzo MC, et al. Distinct Subcortical Volume Alterations in Pediatric and Adult OCD: A Worldwide Meta- and Mega-Analysis. Am J Psychiatry. 2017;174:60–9. doi: 10.1176/appi.ajp.2016.16020201. PubMed DOI PMC
Boedhoe PSW, Schmaal L, Abe Y, Alonso P, Ameis SH, Anticevic A, et al. Cortical Abnormalities Associated With Pediatric and Adult Obsessive-Compulsive Disorder: Findings From the ENIGMA Obsessive-Compulsive Disorder Working Group. Am J Psychiatry. 2018;175:453–62. doi: 10.1176/appi.ajp.2017.17050485. PubMed DOI PMC
Radua J, Vieta E, Shinohara R, Kochunov P, Quidé Y, Green MJ, et al. Increased power by harmonizing structural MRI site differences with the ComBat batch adjustment method in ENIGMA. Neuroimage. 2020;218:116956. doi: 10.1016/j.neuroimage.2020.116956. PubMed DOI PMC
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 4th ed., text rev. Washington, DC: American Psychiatric Association; 2000.
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Arlington, VA: American Psychiatric Publishing; 2013.
World Health Organization. ICD-10: international statistical classification of diseases and related health problems: tenth revision, 2nd ed., World Health Organization; 2004.
First MB, Spitzer RL, Gibbon M, & Williams JBW. Structured clinical interview for DSM-IV-TR axis I disorders, research version, patient edition. (SCID-I/P) New York: Biometrics Research, New York State Psychiatric Institute; 2002.
First M, Williams J, Karg R, Spitzer R. Structured Clinical Interview for DSM‐5 (SCID-5 for DSM-5) Arlington. American Psychiatric Association; 2017.
Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull. 1987;13:261–76. doi: 10.1093/schbul/13.2.261. PubMed DOI
Sivera R, Delingette H, Lorenzi M, Pennec X, Ayache N. A model of brain morphological changes related to aging and Alzheimer’s disease from cross-sectional assessments. Neuroimage. 2019;198:255–70. doi: 10.1016/j.neuroimage.2019.05.040. PubMed DOI
Kirkpatrick B, Buchanan RW, Breier A, Carpenter WT., Jr Case identification and stability of the deficit syndrome of schizophrenia. Psychiatry Res. 1993;47:47–56. doi: 10.1016/0165-1781(93)90054-K. PubMed DOI
Goetz RR, Corcoran C, Yale S, Stanford AD, Kimhy D, Amador X, et al. Validity of a ‘proxy’ for the deficit syndrome derived from the Positive And Negative Syndrome Scale (PANSS) Schizophr Res. 2007;93:169–77. doi: 10.1016/j.schres.2007.02.018. PubMed DOI PMC
Kirkpatrick B, Tek C, Allardyce J, Morrison G, McCreadie RG. Summer birth and deficit schizophrenia in Dumfries and Galloway, southwestern Scotland. Am J Psychiatry. 2002;159:1382–7. doi: 10.1176/appi.ajp.159.8.1382. PubMed DOI
Subotnik KL, Nuechterlein KH, Ventura J, Green MF, Hwang SS. Prediction of the deficit syndrome from initial deficit symptoms in the early course of schizophrenia. Psychiatry Res. 1998;80:53–9. doi: 10.1016/S0165-1781(98)00052-3. PubMed DOI
Kirkpatrick B, Amador XF, Flaum M, Yale SA, Gorman JM, Carpenter WT, Jr, et al. The deficit syndrome in the DSM-IV Field Trial: I. Alcohol and other drug abuse. Schizophr Res. 1996;20:69–77. doi: 10.1016/0920-9964(95)00102-6. PubMed DOI
Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–80. doi: 10.1016/j.neuroimage.2006.01.021. PubMed DOI
van Erp TG, Hibar DP, Rasmussen JM, Glahn DC, Pearlson GD, Andreassen OA, et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry. 2016;21:547–53. doi: 10.1038/mp.2015.63. PubMed DOI PMC
Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW. Mapping cortical change across the human life span. Nat Neurosci. 2003;6:309–15. doi: 10.1038/nn1008. PubMed DOI
Borenstein M. Software for Publication Bias. In: Publication Bias in Meta‐Analysis: Prevention, Assessment and Adjustments. 2005:193–220.
Rakic P. A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci. 1995;18:383–8. doi: 10.1016/0166-2236(95)93934-P. PubMed DOI
Wierenga LM, Langen M, Oranje B, Durston S. Unique developmental trajectories of cortical thickness and surface area. Neuroimage. 2014;87:120–6. doi: 10.1016/j.neuroimage.2013.11.010. PubMed DOI
Pontious A, Kowalczyk T, Englund C, Hevner RF. Role of intermediate progenitor cells in cerebral cortex development. Dev Neurosci. 2008;30:24–32. doi: 10.1159/000109848. PubMed DOI
Birnbaum R, Weinberger DR. Genetic insights into the neurodevelopmental origins of schizophrenia. Nat Rev Neurosci. 2017;18:727–40. doi: 10.1038/nrn.2017.125. PubMed DOI
Yildiz M, Borgwardt SJ, Berger GE. Parietal lobes in schizophrenia: do they matter? Schizophr Res Treat. 2011;2011:581686. PubMed PMC
Spence SA, Brooks DJ, Hirsch SR, Liddle PF, Meehan J, Grasby PM. A PET study of voluntary movement in schizophrenic patients experiencing passivity phenomena (delusions of alien control) Brain. 1997;120:1997–2011. doi: 10.1093/brain/120.11.1997. PubMed DOI
Yang YL, Joshi AA, Joshi SH, Baker LA, Narr KL, Raine A, et al. Genetic and environmental influences on cortical thickness among 14-year-old twins. Neuroreport. 2012;23:702–6. doi: 10.1097/WNR.0b013e328355a62a. PubMed DOI PMC
Antonova E, Sharma T, Morris R, Kumari V. The relationship between brain structure and neurocognition in schizophrenia: a selective review. Schizophr Res. 2004;70:117–45. doi: 10.1016/j.schres.2003.12.002. PubMed DOI
Jonides J, Schumacher EH, Smith EE, Koeppe RA, Awh E, Reuter-Lorenz PA, et al. The role of parietal cortex in verbal working memory. J Neurosci. 1998;18:5026–34. doi: 10.1523/JNEUROSCI.18-13-05026.1998. PubMed DOI PMC
Rushworth MFS, Ellison A, Walsh V. Complementary localization and lateralization of orienting and motor attention (vol 4, pg 656, 2001) Nat Neurosci. 2001;4:959–959. doi: 10.1038/88492. PubMed DOI
Thoenissen D, Zilles K, Toni I. Differential involvement of parietal and precentral regions in movement preparation and motor intention. J Neurosci. 2002;22:9024–34. doi: 10.1523/JNEUROSCI.22-20-09024.2002. PubMed DOI PMC
Gottlieb J. From thought to action: the parietal cortex as a bridge between perception, action, and cognition. Neuron. 2007;53:9–16. doi: 10.1016/j.neuron.2006.12.009. PubMed DOI
Buckner RL, Wheeler ME. The cognitive neuroscience of remembering. Nat Rev Neurosci. 2001;2:624–34. doi: 10.1038/35090048. PubMed DOI
Bor D, Seth AK. Consciousness and the prefrontal parietal network: insights from attention, working memory, and chunking. Front Psychol. 2012;3:63. doi: 10.3389/fpsyg.2012.00063. PubMed DOI PMC
Lou HC, Changeux JP, Rosenstand A. Towards a cognitive neuroscience of self-awareness. Neurosci Biobehav Rev. 2017;83:765–73. doi: 10.1016/j.neubiorev.2016.04.004. PubMed DOI
Cuffel BJ, Alford J, Fischer EP, Owen RR. Awareness of illness in schizophrenia and outpatient treatment adherence. J Nerv Ment Dis. 1996;184:653–9. doi: 10.1097/00005053-199611000-00001. PubMed DOI
Fett AK, Viechtbauer W, Dominguez MD, Penn DL, van Os J, Krabbendam L. The relationship between neurocognition and social cognition with functional outcomes in schizophrenia: a meta-analysis. Neurosci Biobehav Rev. 2011;35:573–88. doi: 10.1016/j.neubiorev.2010.07.001. PubMed DOI
Green MF, Olivier B, Crawley JN, Penn DL, Silverstein S. Social cognition in schizophrenia: recommendations from the measurement and treatment research to improve cognition in schizophrenia new approaches conference. Schizophr Bull. 2005;31:882–7. doi: 10.1093/schbul/sbi049. PubMed DOI
Schwartz RC. The relationship between insight, illness and treatment outcome in schizophrenia. Psychiatr Q. 1998;69:1–22. doi: 10.1023/A:1022141322657. PubMed DOI
Hartikainen KM. Emotion-Attention Interaction in the Right Hemisphere. Brain Sci. 2021;11:1006. doi: 10.3390/brainsci11081006. PubMed DOI PMC
Mitchell RL, Crow TJ. Right hemisphere language functions and schizophrenia: the forgotten hemisphere? Brain. 2005;128:963–78. doi: 10.1093/brain/awh466. PubMed DOI
Blom SSAH, Aarts H, Semin GR. Lateralization of facial emotion processing and facial mimicry. Laterality. 2020;25:259–74. doi: 10.1080/1357650X.2019.1657127. PubMed DOI
Parola A, Brasso C, Morese R, Rocca P, Bosco FM. Understanding communicative intentions in schizophrenia using an error analysis approach (vol 7, 12, 2021) Npj Schizophr. 2021;7:12. doi: 10.1038/s41537-021-00142-7. PubMed DOI PMC
Snelleksz M, Rossell SL, Gibbons A, Nithianantharajah J, Dean B. Evidence that the frontal pole has a significant role in the pathophysiology of schizophrenia. Psychiat Res. 2022;317:114850. doi: 10.1016/j.psychres.2022.114850. PubMed DOI
Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore ET. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex. 2005;15:1332–42. doi: 10.1093/cercor/bhi016. PubMed DOI
Hunter R, Barry S. Negative symptoms and psychosocial functioning in schizophrenia: Neglected but important targets for treatment. Eur Psychiat. 2012;27:432–6. doi: 10.1016/j.eurpsy.2011.02.015. PubMed DOI
Allen P, Moore H, Corcoran CM, Gilleen J, Kozhuharova P, Reichenberg A, et al. Emerging Temporal Lobe Dysfunction in People at Clinical High Risk for Psychosis. Front Psychiatry. 2019;10:298. doi: 10.3389/fpsyt.2019.00298. PubMed DOI PMC
Borgwardt SJ, McGuire PK, Aston J, Gschwandtner U, Pflüger MO, Stieglitz RD, et al. Reductions in frontal, temporal and parietal volume associated with the onset of psychosis. Schizophr Res. 2008;106:108–14. doi: 10.1016/j.schres.2008.08.007. PubMed DOI
Tohid H, Faizan M, Faizan U. Alterations of the occipital lobe in schizophrenia. Neurosci (Riyadh) 2015;20:213–24. PubMed PMC
Vanes LD, Mouchlianitis E, Patel K, Barry E, Wong K, Thomas M, et al. Neural correlates of positive and negative symptoms through the illness course: an fMRI study in early psychosis and chronic schizophrenia. Sci Rep. 2019;9:14444. doi: 10.1038/s41598-019-51023-0. PubMed DOI PMC
Hogstrom LJ, Westlye LT, Walhovd KB, Fjell AM. The structure of the cerebral cortex across adult life: age-related patterns of surface area, thickness, and gyrification. Cereb Cortex. 2013;23:2521–30. doi: 10.1093/cercor/bhs231. PubMed DOI
Bush G, Luu P, Posner MI. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci. 2000;4:215–22. doi: 10.1016/S1364-6613(00)01483-2. PubMed DOI
Davis KD, Taylor KS, Hutchison WD, Dostrovsky JO, McAndrews MP, Richter EO, et al. Human anterior cingulate cortex neurons encode cognitive and emotional demands. J Neurosci. 2005;25:8402–6. doi: 10.1523/JNEUROSCI.2315-05.2005. PubMed DOI PMC
Horne CM, Sahni A, Pang SW, Vanes LD, Szentgyorgyi T, Averbeck B, et al. The role of cognitive control in the positive symptoms of psychosis. Neuroimage Clin. 2022;34:103004. doi: 10.1016/j.nicl.2022.103004. PubMed DOI PMC
Kirkpatrick B, Buchanan RW, McKenney PD, Alphs LD, Carpenter WT., Jr The Schedule for the Deficit syndrome: an instrument for research in schizophrenia. Psychiatry Res. 1989;30:119–23. doi: 10.1016/0165-1781(89)90153-4. PubMed DOI
Fervaha G, Agid O, Foussias G, Siddiqui I, Takeuchi H, Remington G. Neurocognitive impairment in the deficit subtype of schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2016;266:397–407. doi: 10.1007/s00406-015-0629-6. PubMed DOI
Messias E, Kirkpatrick B, Bromet E, Ross D, Buchanan RW, Carpenter WT, Jr, et al. Summer birth and deficit schizophrenia: a pooled analysis from 6 countries. Arch Gen Psychiatry. 2004;61:985–9. doi: 10.1001/archpsyc.61.10.985. PubMed DOI
Schmaal L, Hibar DP, Sämann PG, Hall GB, Baune BT, Jahanshad N, et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol Psychiatry. 2017;22:900–9. doi: 10.1038/mp.2016.60. PubMed DOI PMC