Comparative and population genomics of buckwheat species reveal key determinants of flavor and fertility

. 2023 Sep 04 ; 16 (9) : 1427-1444. [epub] 20230830

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37649255
Odkazy

PubMed 37649255
PubMed Central PMC10512774
DOI 10.1016/j.molp.2023.08.013
PII: S1674-2052(23)00248-4
Knihovny.cz E-zdroje

Common buckwheat (Fagopyrum esculentum) is an ancient crop with a world-wide distribution. Due to its excellent nutritional quality and high economic and ecological value, common buckwheat is becoming increasingly important throughout the world. The availability of a high-quality reference genome sequence and population genomic data will accelerate the breeding of common buckwheat, but the high heterozygosity due to the outcrossing nature has greatly hindered the genome assembly. Here we report the assembly of a chromosome-scale high-quality reference genome of F. esculentum var. homotropicum, a homozygous self-pollinating variant of common buckwheat. Comparative genomics revealed that two cultivated buckwheat species, common buckwheat (F. esculentum) and Tartary buckwheat (F. tataricum), underwent metabolomic divergence and ecotype differentiation. The expansion of several gene families in common buckwheat, including FhFAR genes, is associated with its wider distribution than Tartary buckwheat. Copy number variation of genes involved in the metabolism of flavonoids is associated with the difference of rutin content between common and Tartary buckwheat. Furthermore, we present a comprehensive atlas of genomic variation based on whole-genome resequencing of 572 accessions of common buckwheat. Population and evolutionary genomics reveal genetic variation associated with environmental adaptability and floral development between Chinese and non-Chinese cultivated groups. Genome-wide association analyses of multi-year agronomic traits with the content of flavonoids revealed that Fh05G014970 is a potential major regulator of flowering period, a key agronomic trait controlling the yield of outcrossing crops, and that Fh06G015130 is a crucial gene underlying flavor-associated flavonoids. Intriguingly, we found that the gene translocation and sequence variation of FhS-ELF3 contribute to the homomorphic self-compatibility of common buckwheat. Collectively, our results elucidate the genetic basis of speciation, ecological adaptation, fertility, and unique flavor of common buckwheat, and provide new resources for future genomics-assisted breeding of this economically important crop.

Agricultural Institute of Slovenia Hacquetova ulica Ljubljana Slovenia

Annoroad Gene Technology Co Ltd Beijing 100176 China

Biological Sciences University of Southampton Life Sciences Building 85 Highfield Campus Southampton SO17 1BJ UK

Biotechnical Faculty University of Ljubljana 1000 Ljubljana Slovenia

Biotechnical Faculty University of Ljubljana 1000 Ljubljana Slovenia; Nutrition Institute Tržaška 40 1000 Ljubljana Slovenia

College of Agriculture Institute of Agricultural Bioengineering Shanxi Agricultural University Taigu 030801 Shanxi China; Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding Shanxi Agricultural University Taiyuan 030031 Shanxi China

Gene Bank Crop Research Institute Drnovská 507 Prague 6 Czech Republic

Groupe de Recherche en Physiologie Végétale Université Catholique de Louvain Croix du Sud 4 5 boîte L7 07 13 B 1348 Louvain la Neuve Belgium

Institute of Crop Sciences Chinese Academy of Agricultural Sciences National Crop Genebank Building Zhongguancun South Street No 12 Haidian District Beijing 100081 China

Institute of Crop Sciences Chinese Academy of Agricultural Sciences National Crop Genebank Building Zhongguancun South Street No 12 Haidian District Beijing 100081 China; College of Agronomy Sichuan Agricultural University Chengdu 611130 China

Laboratory of Metabolomics Institute of Microbiology Bulgarian Academy of Sciences Plovdiv Bulgaria; Center of Plant Systems Biology and Biotechnology Plovdiv Bulgaria

Molecular Plant Breeding Institute of Agricultural Sciences ETH Zurich Universitaetstrasse 2 8092 Zurich Switzerland

Tongliao Institute Agricultural and Animal Husbandry Sciences Tongliao 028015 Inner Mongolia China

Zobrazit více v PubMed

Alexander D.H., Novembre J., Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–1664. PubMed PMC

Allen G.C., Flores-Vergara M.A., Krasynanski S., Kumar S., Thompson W.F. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat. Protoc. 2006;1:2320–2325. PubMed

Ashburner M., Ball C.A., Blake J.A., Botstein D., Butler H., Cherry J.M., Davis A.P., Dolinski K., Dwight S.S., Eppig J.T., et al. Gene ontology: tool for the unification of biology. Nat. Genet. 2000;25:25–29. PubMed PMC

Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27:573–580. PubMed PMC

Chen H., Patterson N., Reich D. Population differentiation as a test for selective sweeps. Genome Res. 2010;20:393–402. PubMed PMC

Dahro B., Wang Y., Khan M., Zhang Y., Fang T., Ming R., Li C., Liu J.H. Two AT-Hook proteins regulate A/NINV7 expression to modulate sucrose catabolism for cold tolerance in Poncirus trifoliata. New Phytol. 2022;235:2331–2349. PubMed

Dong S., Xiao Y., Kong H., Feng C., Harris A.J., Yan Y., Kang M. Nuclear loci developed from multiple transcriptomes yield high resolution in phylogeny of scaly tree ferns (Cyatheaceae) from China and Vietnam. Mol. Phylogenet. Evol. 2019;139 PubMed

Dudchenko O., Batra S.S., Omer A.D., Nyquist S.K., Hoeger M., Durand N.C., Shamim M.S., Machol I., Lander E.S., Aiden A.P., Aiden E.L. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 2017;356:92–95. PubMed PMC

Durand N.C., Shamim M.S., Machol I., Rao S.S.P., Huntley M.H., Lander E.S., Aiden E.L. Juicer provides a one-click System for analyzing loop-resolution Hi-C experiments. Cell Syst. 2016;3:95–98. PubMed PMC

Edgar R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. PubMed PMC

Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 2005;14:2611–2620. PubMed

Fernández-Calvo P., Iñigo S., Glauser G., Vanden Bossche R., Tang M., Li B., De Clercq R., Nagels Durand A., Eeckhout D., Gevaert K., et al. FRS7 and FRS12 recruit NINJA to regulate expression of glucosinolate biosynthesis genes. New Phytol. 2020;227:1124–1137. PubMed

Finn R.D., Clements J., Eddy S.R. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–W37. PubMed PMC

Fraga C.G., Clowers B.H., Moore R.J., Zink E.M. Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography-mass spectrometry, XCMS, and chemometrics. Anal. Chem. 2010;82:4165–4173. PubMed

Goel M., Sun H., Jiao W.B., Schneeberger K. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol. 2019;20:277. PubMed PMC

Gräfe K., Schmitt L. The ABC transporter G subfamily in Arabidopsis thaliana. J. Exp. Bot. 2021;72:92–106. PubMed

Guindon S., Dufayard J.F., Lefort V., Anisimova M., Hordijk W., Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 2010;59:307–321. PubMed

He M., He Y., Zhang K., Lu X., Zhang X., Gao B., Fan Y., Zhao H., Jha R., Huda M.N., et al. Comparison of buckwheat genomes reveals the genetic basis of metabolomic divergence and ecotype differentiation. New Phytol. 2022;235:1927–1943. PubMed

He Q., Ma D., Li W., Xing L., Zhang H., Wang Y., Du C., Li X., Jia Z., Li X., et al. High-quality Fagopyrum esculentum genome provides insights into the flavonoid accumulation among different tissues and self-incompatibility. J. Integr. Plant Biol. 2023;65:1423–1441. PubMed

Hou X., Zhou J., Liu C., Liu L., Shen L., Yu H. Nuclear factor Y-mediated H3K27me3 demethylation of the SOC1 locus orchestrates flowering responses of Arabidopsis. Nat. Commun. 2014;5:4601. PubMed

Hunt H.V., Shang X., Jones M.K. Buckwheat: a crop from outside the major Chinese domestication centres? A review of the archaeobotanical, palynological and genetic evidence. Veg. Hist. Archaeobotany. 2018;27:493–506. PubMed PMC

Hwang K., Susila H., Nasim Z., Jung J.Y., Ahn J.H. Arabidopsis ABF3 and ABF4 Transcription Factors Act with the NF-YC Complex to Regulate SOC1 Expression and Mediate Drought-Accelerated Flowering. Mol. Plant. 2019;12:489–505. PubMed

Joshi D.C., Zhang K., Wang C., Chandora R., Khurshid M., Li J., He M., Georgiev M.I., Zhou M. Strategic enhancement of genetic gain for nutraceutical development in buckwheat: A genomics-driven perspective. Biotechnol. Adv. 2020;39 PubMed

Kanehisa M., Goto S., Sato Y., Furumichi M., Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012;40:D109–D114. PubMed PMC

Kim D., Langmead B., Salzberg S.L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods. 2015;12:357–360. PubMed PMC

King G.J., Chanson A.H., McCallum E.J., Ohme-Takagi M., Byriel K., Hill J.M., Martin J.L., Mylne J.S. The Arabidopsis B3 domain protein VERNALIZATION1 (VRN1) is involved in processes essential for development, with structural and mutational studies revealing its DNA-binding surface. J. Biol. Chem. 2013;288:3198–3207. PubMed PMC

Koren S., Walenz B.P., Berlin K., Miller J.R., Bergman N.H., Phillippy A.M. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–736. PubMed PMC

Kreft I., Zhou M., Golob A., Germ M., Likar M., Dziedzic K., Luthar Z. Breeding buckwheat for nutritional quality. Breed Sci. 2020;70:67–73. PubMed PMC

Lee D.G., Woo S., Choi J.S. ELSEVIER United Kingdom; 2016. Biochemical Properties of Common and Tartary Buckwheat: Centered with Buckwheat Proteomics in: Molecular Breeding and Nutritional Aspects of Buckwheat; pp. 239–259.

Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. PubMed PMC

Li J., Zhang K., Meng Y., Li Q., Ding M., Zhou M. FtMYB16 interacts with Ftimportin-alpha1 to regulate rutin biosynthesis in tartary buckwheat. Plant Biotechnol. J. 2019;17:1479–1481. PubMed PMC

Li L., Stoeckert C.J., Roos D.S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13:2178–2189. PubMed PMC

Li M.X., Yeung J.M.Y., Cherny S.S., Sham P.C. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum. Genet. 2012;131:747–756. PubMed PMC

Li X., Park N.I., Xu H., Woo S.H., Park C.H., Park S.U. Differential expression of flavonoid biosynthesis genes and accumulation of phenolic compounds in common buckwheat (Fagopyrum esculentum) J. Agric. Food Chem. 2010;58:12176–12181. PubMed

Liu Z., An C., Zhao Y., Xiao Y., Bao L., Gong C., Gao Y. Genome-wide identification and characterization of the CsFHY3/FAR1 gene family and expression analysis under biotic and abiotic stresses in tea plants (Camellia sinensis) Plants. 2021;10:570. PubMed PMC

Lowe T.M., Eddy S.R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–964. PubMed PMC

Ma L., Li G. Arabidopsis FAR-RED ELONGATED HYPOCOTYL3 negatively regulates carbon starvation responses. Plant Cell Environ. 2021;44:1816–1829. PubMed

Marçais G., Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 2011;27:764–770. PubMed PMC

Matsui K., Yasui Y. Genetic and genomic research for the development of an efficient breeding system in heterostylous self-incompatible common buckwheat (Fagopyrum esculentum) Theor. Appl. Genet. 2020;133:1641–1653. PubMed

Matsui K., Tetsuka T., Nishio T., Hara T. Heteromorphic incompatibility retained in self-compatible plants produced by a cross between common and wild buckwheat. New Phytol. 2003;159:701–708. PubMed

McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., Garimella K., Altshuler D., Gabriel S., Daly M., DePristo M.A. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–1303. PubMed PMC

Meinke D.W. Genome-wide identification of EMBRYO-DEFECTIVE (EMB) genes required for growth and development in Arabidopsis. New Phytol. 2020;226:306–325. PubMed

Motose H., Sugiyama M., Fukuda H. A proteoglycan mediates inductive interaction during plant vascular development. Nature. 2004;429:873–878. PubMed

Nattestad M., Schatz M.C. Assemblytics: a web analytics tool for the detection of variants from an assembly. Bioinformatics. 2016;32:3021–3023. PubMed PMC

Ohsako T., Li C. Classification and systematics of the Fagopyrum species. Breed Sci. 2020;70:93–100. PubMed PMC

Ou S., Jiang N. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 2018;176:1410–1422. PubMed PMC

Powell S., Szklarczyk D., Trachana K., Roth A., Kuhn M., Muller J., Arnold R., Rattei T., Letunic I., Doerks T., et al. eggNOG v3.0: orthologous groups covering 1133 organisms at 41 different taxonomic ranges. Nucleic Acids Res. 2012;40:D284–D289. PubMed PMC

Price A.L., Patterson N.J., Plenge R.M., Weinblatt M.E., Shadick N.A., Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006;38:904–909. PubMed

Sanderson M.J. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics. 2003;19:301–302. PubMed

Simão F.A., Waterhouse R.M., Ioannidis P., Kriventseva E.V., Zdobnov E.M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. PubMed

Solanke A.U., Sharma M.K., Tyagi A.K., Sharma A.K. Characterization and phylogenetic analysis of environmental stress-responsive SAP gene family encoding A20/AN1 zinc finger proteins in tomato. Mol. Genet. Genom. 2009;282:153–164. PubMed

Stanke M., Steinkamp R., Waack S., Morgenstern B. AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res. 2004;32:W309–W312. PubMed PMC

Sugiyama A., Shitan N., Sato S., Nakamura Y., Tabata S., Yazaki K. Genome-wide analysis of ATP-binding cassette (ABC) proteins in a model legume plant, Lotus japonicus: comparison with Arabidopsis ABC protein family. DNA Res. 2006;13:205–228. PubMed

Tang W., Ji Q., Huang Y., Jiang Z., Bao M., Wang H., Lin R. FAR-RED ELONGATED HYPOCOTYL3 and FAR-RED IMPAIRED RESPONSE1 transcription factors integrate light and abscisic acid signaling in Arabidopsis. Plant Physiol. 2013;163:857–866. PubMed PMC

Vij S., Tyagi A.K. Genome-wide analysis of the stress associated protein (SAP) gene family containing A20/AN1 zinc-finger(s) in rice and their phylogenetic relationship with Arabidopsis. Mol. Genet. Genom. 2006;276:565–575. PubMed

Vom Endt D., Soares e Silva M., Kijne J.W., Pasquali G., Memelink J. Identification of a bipartite jasmonate-responsive promoter element in the Catharanthus roseus ORCA3 transcription factor gene that interacts specifically with AT-Hook DNA-binding proteins. Plant Physiol. 2007;144:1680–1689. PubMed PMC

Vurture G.W., Sedlazeck F.J., Nattestad M., Underwood C.J., Fang H., Gurtowski J., Schatz M.C. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics. 2017;33:2202–2204. PubMed PMC

Wang K., Li M., Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164. PubMed PMC

Wang T., Ren L., Li C., Zhang D., Zhang X., Zhou G., Gao D., Chen R., Chen Y., Wang Z., et al. The genome of a wild Medicago species provides insights into the tolerant mechanisms of legume forage to environmental stress. BMC Biol. 2021;19:96. PubMed PMC

Wang Y., Tang H., Debarry J.D., Tan X., Li J., Wang X., Lee T.H., Jin H., Marler B., Guo H., et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40:e49. PubMed PMC

Wohlbach D.J., Quirino B.F., Sussman M.R. Analysis of the Arabidopsis histidine kinase ATHK1 reveals a connection between vegetative osmotic stress sensing and seed maturation. Plant Cell. 2008;20:1101–1117. PubMed PMC

Xie Y., Zhou Q., Zhao Y., Li Q., Liu Y., Ma M., Wang B., Shen R., Zheng Z., Wang H. FHY3 and FAR1 integrate light signals with the miR156-SPL module-mediated aging pathway to regulate Arabidopsis flowering. Mol. Plant. 2020;13:483–498. PubMed

Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007;24:1586–1591. PubMed

Yasui Y., Mori M., Aii J., Abe T., Matsumoto D., Sato S., Hayashi Y., Ohnishi O., Ota T. S-LOCUS EARLY FLOWERING 3 is exclusively present in the genomes of short-styled buckwheat plants that exhibit heteromorphic self-incompatibility. PLoS One. 2012;7 PubMed PMC

Yasui Y., Wang Y., Ohnishi O., Campbell C.G. Amplified fragment length polymorphism linkage analysis of common buckwheat (Fagopyrum esculentum) and its wild self-pollinated relative Fagopyrum homotropicum. Genome. 2004;47:345–351. PubMed

Yin L., Zhang H., Tang Z., Xu J., Yin D., Zhang Z., Yuan X., Zhu M., Zhao S., Li X., Liu X. rMVP: a memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Dev. Reprod. Biol. 2021;19:619–628. PubMed PMC

Yu Y., Qiao L., Chen J., Rong Y., Zhao Y., Cui X., Xu J., Hou X., Dong C.H. Arabidopsis REM16 acts as a B3 domain transcription factor to promote flowering time via directly binding to the promoters of SOC1 and FT. Plant J. 2020;103:1386–1398. PubMed

Zhang K., He M., Fan Y., Zhao H., Gao B., Yang K., Li F., Tang Y., Gao Q., Lin T., et al. Resequencing of global Tartary buckwheat accessions reveals multiple domestication events and key loci associated with agronomic traits. Genome Biol. 2021;22:23. PubMed PMC

Zhang L., Li X., Ma B., Gao Q., Du H., Han Y., Li Y., Cao Y., Qi M., Zhu Y., et al. The Tartary buckwheat genome provides insights into rutin biosynthesis and abiotic stress tolerance. Mol. Plant. 2017;10:1224–1237. PubMed

Zhou M., Memelink J. Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnol. Adv. 2016;34:441–449. PubMed

Zhou X., Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 2012;44:821–824. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace