Linking extreme seasonality and gene expression in Arctic marine protists
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37669980
PubMed Central
PMC10480425
DOI
10.1038/s41598-023-41204-3
PII: 10.1038/s41598-023-41204-3
Knihovny.cz E-zdroje
- MeSH
- ekosystém * MeSH
- estuár MeSH
- Eukaryota MeSH
- exprese genu MeSH
- klimatické změny * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
At high latitudes, strong seasonal differences in light availability affect marine organisms and regulate the timing of ecosystem processes. Marine protists are key players in Arctic aquatic ecosystems, yet little is known about their ecological roles over yearly cycles. This is especially true for the dark polar night period, which up until recently was assumed to be devoid of biological activity. A 12 million transcripts catalogue was built from 0.45 to 10 μm protist assemblages sampled over 13 months in a time series station in an Arctic fjord in Svalbard. Community gene expression was correlated with seasonality, with light as the main driving factor. Transcript diversity and evenness were higher during polar night compared to polar day. Light-dependent functions had higher relative expression during polar day, except phototransduction. 64% of the most expressed genes could not be functionally annotated, yet up to 78% were identified in Arctic samples from Tara Oceans, suggesting that Arctic marine assemblages are distinct from those from other oceans. Our study increases understanding of the links between extreme seasonality and biological processes in pico- and nanoplanktonic protists. Our results set the ground for future monitoring studies investigating the seasonal impact of climate change on the communities of microbial eukaryotes in the High Arctic.
Department of Arctic and Marine Biology UiT The Arctic University of Norway Tromsø Norway
Department of Arctic Biology The University Centre in Svalbard Longyearbyen Norway
Department of Natural Sciences University of Agder Kristiansand Norway
Institute of Marine Sciences CSIC Barcelona Catalonia Spain
Institute of Soil Biology and Biogeochemistry Biology Centre CAS České Budějovice Czechia
Zobrazit více v PubMed
Judson OP. The energy expansions of evolution. Nat. Ecol. Evol. 2017;1(6):0138. doi: 10.1038/s41559-017-0138. PubMed DOI
Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science. 1998;281(5374):237–240. doi: 10.1126/science.281.5374.237. PubMed DOI
Boyce DG, Petrie B, Frank KT, Worm B, Leggett WC. Environmental structuring of marine plankton phenology. Nat. Ecol. Evol. 2017;1(10):1484–1494. doi: 10.1038/s41559-017-0287-3. PubMed DOI
Berge J, et al. In the dark: A review of ecosystem processes during the Arctic polar night. Prog. Oceanogr. 2015;139:258–271. doi: 10.1016/j.pocean.2015.08.005. DOI
Berge J, et al. Unexpected levels of biological activity during the polar night offer new perspectives on a warming arctic. Curr. Biol. 2015;25(19):2555–2561. doi: 10.1016/j.cub.2015.08.024. PubMed DOI
Błachowiak-Samołyk K, Wiktor JM, Hegseth EN, Wold A, Falk-Petersen S, Kubiszyn AM. Winter Tales: The dark side of planktonic life. Polar Biol. 2015;38(1):23–36. doi: 10.1007/s00300-014-1597-4. DOI
Bunse C, Pinhassi J. Marine bacterioplankton seasonal succession dynamics. Trends Microbiol. 2017;25(6):494–505. doi: 10.1016/j.tim.2016.12.013. PubMed DOI
Moreira D, López-García P. Time series are critical to understand microbial plankton diversity and ecology. Mol. Ecol. 2019;28(5):920–922. doi: 10.1111/mec.15015. PubMed DOI PMC
Buttigieg PL, Fadeev E, Bienhold C, Hehemann L, Offre P, Boetius A. Marine microbes in 4D—using time series observation to assess the dynamics of the ocean microbiome and its links to ocean health. Curr. Opin. Microbiol. 2018;43:169–185. doi: 10.1016/j.mib.2018.01.015. PubMed DOI
Marquardt M, Vader A, Stübner EI, Reigstad M, Gabrielsen TM. Strong seasonality of marine microbial eukaryotes in a high-Arctic Fjord (Isfjorden, in West Spitsbergen, Norway) Appl. Environ. Microbiol. 2016;82(6):1868–1880. doi: 10.1128/AEM.03208-15. PubMed DOI PMC
Marquardt M, et al. Vertical export of marine pelagic protists in an ice-free high-Arctic fjord (Adventfjorden, West Spitsbergen) throughout 2011–2012. Aquat. Microb. Ecol. 2019;83(1):65–82. doi: 10.3354/ame01904. DOI
Kubiszyn AM, Wiktor JM, Wiktor JM, Griffiths C, Kristiansen S, Gabrielsen TM. The annual planktonic protist community structure in an ice-free high Arctic fjord (Adventfjorden, West Spitsbergen) J. Mar. Syst. 2017;169:61–72. doi: 10.1016/j.jmarsys.2017.01.013. DOI
Kvernvik AC, et al. Fast reactivation of photosynthesis in arctic phytoplankton during the polar night. J. Phycol. 2018;54(4):461–470. doi: 10.1111/jpy.12750. PubMed DOI
Vader A, Marquardt M, Meshram AR, Gabrielsen TM. Key Arctic phototrophs are widespread in the polar night. Polar Biol. 2014;38(1):13–21. doi: 10.1007/s00300-014-1570-2. DOI
Metfies K, von Appen W-J, Kilias E, Nicolaus A, Nöthig E-M. Biogeography and photosynthetic biomass of Arctic marine pico-eukaroytes during summer of the record sea ice minimum 2012. PLOS ONE. 2016;11(2):e0148512. doi: 10.1371/journal.pone.0148512. PubMed DOI PMC
Sherr EB, Sherr BF, Wheeler PA, Thompson K. ‘Temporal and spatial variation in stocks of autotrophic and heterotrophic microbes in the upper water column of the central Arctic Ocean’, Deep Sea Res. Part Oceanogr. Res. Pap. 2003;50(5):557–571. doi: 10.1016/S0967-0637(03)00031-1. DOI
Schaub I, Wagner H, Graeve M, Karsten U. Effects of prolonged darkness and temperature on the lipid metabolism in the benthic diatom Navicula perminuta from the Arctic Adventfjorden, Svalbard. Polar Biol. 2017;40(7):1425–1439. doi: 10.1007/s00300-016-2067-y. DOI
Smayda TJ, Mitchell-Innes B. Dark survival of autotrophic, planktonic marine diatoms. Mar. Biol. 1974;25(3):195–202. doi: 10.1007/BF00394965. DOI
Toseland A, et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat. Clim. Change. 2013;3(11):979–984. doi: 10.1038/nclimate1989. DOI
McMinn A, Martin A. Dark survival in a warming world. Proc. R. Soc. B Biol. Sci. 2013;280(1755):20122909. doi: 10.1098/rspb.2012.2909. PubMed DOI PMC
McKie-Krisberg ZM, Sanders RW. Phagotrophy by the picoeukaryotic green alga Micromonas: implications for Arctic Oceans. ISME J. 2014;8(10):1953–1961. doi: 10.1038/ismej.2014.16. PubMed DOI PMC
Sanders RW, Gast RJ. Bacterivory by phototrophic picoplankton and nanoplankton in Arctic waters. FEMS Microbiol. Ecol. 2012;82(2):242–253. doi: 10.1111/j.1574-6941.2011.01253.x. PubMed DOI
Stoecker DK, Lavrentyev PJ. Mixotrophic plankton in the polar seas: A pan-arctic review. Front. Mar. Sci. 2018;5:292. doi: 10.3389/fmars.2018.00292. DOI
Caron DA, et al. Probing the evolution, ecology and physiology of marine protists using transcriptomics. Nat. Rev. Microbiol. 2017;15(1):6–20. doi: 10.1038/nrmicro.2016.160. PubMed DOI
de Vargas C, et al. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348(6237):1261605–1261605. doi: 10.1126/science.1261605. PubMed DOI
Worden AZ, Follows MJ, Giovannoni SJ, Wilken S, Zimmerman AE, Keeling PJ. Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes. Science. 2015;347(6223):1257594–1257594. doi: 10.1126/science.1257594. PubMed DOI
Keeling PJ, et al. The marine microbial eukaryote transcriptome sequencing project (MMETSP): Illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 2014;12(6):e1001889. doi: 10.1371/journal.pbio.1001889. PubMed DOI PMC
Acar M, Mettetal JT, van Oudenaarden A. Stochastic switching as a survival strategy in fluctuating environments. Nat. Genet. 2008;40(4):471–475. doi: 10.1038/ng.110. PubMed DOI
Coles VJ, et al. Ocean biogeochemistry modeled with emergent trait-based genomics. Science. 2017;358(6367):1149–1154. doi: 10.1126/science.aan5712. PubMed DOI
van der Poll WH, Abdullah E, Visser RJW, Fischer P, Buma AGJ. Taxon-specific dark survival of diatoms and flagellates affects Arctic phytoplankton composition during the polar night and early spring. Limnol. Oceanogr. 2020;65(5):903–914. doi: 10.1002/lno.11355. DOI
Andrews, S. ‘FastQC: A quality control tool for high throughput sequence data’. 2010. [Online]. Available: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Bushnell, B. ‘BBMap’. 2017. [Online]. Available: sourceforge.net/projects/bbmap/
Zhao W, He X, Hoadley KA, Parker JS, Hayes D, Perou CM. Comparison of RNA-Seq by poly (A) capture, ribosomal RNA depletion, and DNA microarray for expression profiling. BMC Genomics. 2014;15(1):419. doi: 10.1186/1471-2164-15-419. PubMed DOI PMC
Kopylova E, Noé L, Touzet H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28(24):3211–3217. doi: 10.1093/bioinformatics/bts611. PubMed DOI
Haas BJ, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013;8(8):1494–1512. doi: 10.1038/nprot.2013.084. PubMed DOI PMC
Grabherr MG, et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 2011;29(7):644–652. doi: 10.1038/nbt.1883. PubMed DOI PMC
Li B, Dewey CN. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12(1):323. doi: 10.1186/1471-2105-12-323. PubMed DOI PMC
Conesa A, et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17(1):13. doi: 10.1186/s13059-016-0881-8. PubMed DOI PMC
Bryant DM, et al. A tissue-mapped axolotl De Novo transcriptome enables identification of limb regeneration factors. Cell Rep. 2017;18(3):762–776. doi: 10.1016/j.celrep.2016.12.063. PubMed DOI PMC
The UniProt Consortium, ‘UniProt: the universal protein knowledgebase’,Nucleic Acids Res., vol. 45, no. D1, pp. D158–D169, 2017, doi:10.1093/nar/gkw1099. PubMed PMC
Camacho C, et al. BLAST+: architecture and applications. BMC Bioinform. 2009;10(1):421. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC
Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 2013;41(12):e121–e121. doi: 10.1093/nar/gkt263. PubMed DOI PMC
Finn RD, et al. The Pfam protein families database: Towards a more sustainable future. Nucleic Acids Res. 2016;44(D1):D279–D285. doi: 10.1093/nar/gkv1344. PubMed DOI PMC
Powell S, et al. eggNOG v3.0: Orthologous groups covering 1133 organisms at 41 different taxonomic ranges. Nucleic Acids Res. 2012;40(D1):D284–D289. doi: 10.1093/nar/gkr1060. PubMed DOI PMC
Ashburner M, et al. Gene ontology: Tool for the unification of biology. Nat. Genet. 2000;25(1):25–29. doi: 10.1038/75556. PubMed DOI PMC
Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. doi: 10.1093/nar/28.1.27. PubMed DOI PMC
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44(D1):D457–D462. doi: 10.1093/nar/gkv1070. PubMed DOI PMC
Beisser D, Graupner N, Grossmann L, Timm H, Boenigk J, Rahmann S. TaxMapper: An analysis tool, reference database and workflow for metatranscriptome analysis of eukaryotic microorganisms. BMC Genomics. 2017;18(1):787. doi: 10.1186/s12864-017-4168-6. PubMed DOI PMC
Carradec Q, et al. A global ocean atlas of eukaryotic genes. Nat. Commun. 2018;9(1):373. doi: 10.1038/s41467-017-02342-1. PubMed DOI PMC
Li, H. ‘Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM’, ArXiv13033997 Q-Bio, May 2013, Accessed 14 May 2020. [Online]. Available: http://arxiv.org/abs/1303.3997
R Core Team, ‘R: A Language and Environment for Statistical Computing’. R Foundation for Statistical Computing, Vienna, Austria, 2018. [Online]. Available: https://www.R-project.org/
Wickham, H. ‘tidyverse: Easily Install and Load the “Tidyverse”’. Nov. 21, 2019. Accessed: May 14, 2020. [Online]. Available: https://CRAN.R-project.org/package=tidyverse
Oksanen, J. et al. ‘vegan: Community Ecology Package’. Sep. 01, 2019. Accessed: May 14, 2020. [Online]. Available: https://CRAN.R-project.org/package=vegan
Suzuki R, Shimodaira H. Pvclust: An R package for assessing the uncertainty in hierarchical clustering. Bioinformatics. 2006;22(12):1540–1542. doi: 10.1093/bioinformatics/btl117. PubMed DOI
Kruskal JB. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika. 1964;29(1):1–27. doi: 10.1007/BF02289565. DOI
Svendsen H, et al. The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res. 2002;21(1):133–166. doi: 10.1111/j.1751-8369.2002.tb00072.x. DOI
Nilsen F, Cottier F, Skogseth R, Mattsson S. Fjord–shelf exchanges controlled by ice and brine production: The interannual variation of Atlantic Water in Isfjorden, Svalbard. Cont. Shelf Res. 2008;28(14):1838–1853. doi: 10.1016/j.csr.2008.04.015. DOI
Brandner MM, Stübner E, Reed AJ, Gabrielsen TM, Thatje S. Seasonality of bivalve larvae within a high Arctic fjord. Polar Biol. 2017;40(2):263–276. doi: 10.1007/s00300-016-1950-x. DOI
Stübner EI, Søreide JE, Reigstad M, Marquardt M, Blachowiak-Samolyk K. Year-round meroplankton dynamics in high-Arctic Svalbard. J. Plankton Res. 2016;38(3):522–536. doi: 10.1093/plankt/fbv124. DOI
Cantoni GL. Biological methylation: Selected aspects. Annu. Rev. Biochem. 1975;44(1):435–451. doi: 10.1146/annurev.bi.44.070175.002251. PubMed DOI
Fontecave M, Atta M, Mulliez E. S-adenosylmethionine: Nothing goes to waste. Trends Biochem. Sci. 2004;29(5):243–249. doi: 10.1016/j.tibs.2004.03.007. PubMed DOI
De La Haba G, Cantoni GL. The enzymatic synthesis of S-adenosyl-L-homocysteine from adenosine and homocysteine. J. Biol. Chem. 1959;234(3):603–608. doi: 10.1016/S0021-9258(18)70253-6. PubMed DOI
Hildebrand M, Higgins DR, Busser K, Volcani BE. Silicon-responsive cDNA clones isolated from the marine diatom Cylindrotheca fusiformis. Gene. 1993;132(2):213–218. doi: 10.1016/0378-1119(93)90198-C. PubMed DOI
Alexander H, Rouco M, Haley ST, Wilson ST, Karl DM, Dyhrman ST. Functional group-specific traits drive phytoplankton dynamics in the oligotrophic ocean. Proc. Natl. Acad. Sci. 2015;112(44):E5972–E5979. doi: 10.1073/pnas.1518165112. PubMed DOI PMC
Michalak M, Corbett EF, Mesaeli N, Nakamura K, Opas M. Calreticulin: one protein, one gene, many functions. Biochem. J. 1999;344(Pt 2):281–292. doi: 10.1042/bj3440281. PubMed DOI PMC
Reichard U, et al. Sedolisins, a new class of secreted proteases from Aspergillus fumigatus with Endoprotease or tripeptidyl-peptidase activity at acidic pHs. Appl. Environ. Microbiol. 2006;72(3):1739–1748. doi: 10.1128/AEM.72.3.1739-1748.2006. PubMed DOI PMC
Satisbury JL. Centrin, centrosomes, and mitotic spindle poles. Curr. Opin. Cell Biol. 1995;7(1):39–45. doi: 10.1016/0955-0674(95)80043-3. PubMed DOI
Gießl A, Trojan P, Rausch S, Pulvermüller A, Wolfrum U. Centrins, gatekeepers for the light-dependent translocation of transducin through the photoreceptor cell connecting cilium. Vision Res. 2006;46(27):4502–4509. doi: 10.1016/j.visres.2006.07.029. PubMed DOI
Tielens AGM, Van Hellemond JJ. The electron transport chain in anaerobically functioning eukaryotes. Biochim. Biophys. Acta BBA - Bioenerg. 1998;1365(1–2):71–78. doi: 10.1016/S0005-2728(98)00045-0. PubMed DOI
Bhatia SK, Swers JS, Camphausen RT, Wittrup KD, Hammer DA. Rolling adhesion kinematics of yeast engineered to express selectins. Biotechnol. Prog. 2003;19(3):1033–1037. doi: 10.1021/bp025756b. PubMed DOI
Hiscox JA. The nucleolus: A gateway to viral infection? Arch. Virol. 2002;147(6):1077–1089. doi: 10.1007/s00705-001-0792-0. PubMed DOI PMC
Winkler U, Säftel W, Stabenau H. A new type of a multifunctional β-oxidation enzyme in Euglena. Plant Physiol. 2003;131(2):753–762. doi: 10.1104/pp.013151. PubMed DOI PMC
Klose J, Kronstad JW. The multifunctional β-oxidation enzyme is required for full symptom development by the biotrophic maize pathogen ustilago maydis. Eukaryot. Cell. 2006;5(12):2047–2061. doi: 10.1128/EC.00231-06. PubMed DOI PMC
Wassmann P, Duarte CM, Agustí S, Sejr MK. Footprints of climate change in the Arctic marine ecosystem: FOOTPRINTS of climate change. Glob. Change Biol. 2011;17(2):1235–1249. doi: 10.1111/j.1365-2486.2010.02311.x. DOI
Murphy EJ, et al. Understanding the structure and functioning of polar pelagic ecosystems to predict the impacts of change. Proc. R. Soc. B Biol. Sci. 2016;283(1844):20161646. doi: 10.1098/rspb.2016.1646. PubMed DOI PMC
Randelhoff A, et al. Arctic mid-winter phytoplankton growth revealed by autonomous profilers. Sci. Adv. 2020;6(39):eabc2678. doi: 10.1126/sciadv.abc2678. PubMed DOI PMC
Onda DFL, Medrinal E, Comeau AM, Thaler M, Babin M, Lovejoy C. Seasonal and interannual changes in ciliate and Dinoflagellate species assemblages in the Arctic Ocean (Amundsen Gulf, Beaufort Sea, Canada) Front. Mar. Sci. 2017 doi: 10.3389/fmars.2017.00016. DOI
Ladau J, et al. Global marine bacterial diversity peaks at high latitudes in winter. ISME J. 2013;7(9):1669–1677. doi: 10.1038/ismej.2013.37. PubMed DOI PMC
Rokkan Iversen K, Seuthe L. Seasonal microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): I. Heterotrophic bacteria, picoplankton and nanoflagellates. Polar Biol. 2011;34(5):731–749. doi: 10.1007/s00300-010-0929-2. DOI
Seuthe L, Rokkan Iversen K, Narcy F. Microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): II. Ciliates and dinoflagellates. Polar Biol. 2011;34(5):751–766. doi: 10.1007/s00300-010-0930-9. DOI
Weslawski JM, Kwasniewski S, Wiktor J. Winter in a Svalbard fiord ecosystem. Arctic. 1991;44(2):115–123. doi: 10.14430/arctic1527. DOI
Esposti MD, De Vries S, Crimi M, Ghelli A, Patarnello T, Meyer A. Mitochondrial cytochrome b: Evolution and structure of the protein. Biochim. Biophys. Acta BBA - Bioenerg. 1993;1143(3):243–271. doi: 10.1016/0005-2728(93)90197-N. PubMed DOI
Belevich I, Verkhovsky MI, Wikström M. Proton-coupled electron transfer drives the proton pump of cytochrome c oxidase. Nature. 2006;440(7085):829–832. doi: 10.1038/nature04619. PubMed DOI
Michel H. Cytochrome c oxidase: Catalytic cycle and mechanisms of proton pumping-A discussion. Biochemistry. 1999;38(46):15129–15140. doi: 10.1021/bi9910934. PubMed DOI
Chaput H, Wang Y, Morse D. Polyadenylated transcripts containing random gene fragments are expressed in dinoflagellate mitochondria. Protist. 2002;153(2):111–122. doi: 10.1078/1434-4610-00090. PubMed DOI
Gillespie DE, Salazar NA, Rehkopf DH, Feagin JE. The fragmented mitochondrial ribosomal RNAs of Plasmodium falciparum have short A tails. Nucleic Acids Res. 1999;27(11):2416–2422. doi: 10.1093/nar/27.11.2416. PubMed DOI PMC
Hoppe, C. J. M. ‘Always ready? Primary production of Arctic phytoplankton at the end of the polar night’, Limnol. Oceanogr. Lett., p. lol2.10222, 2021. 10.1002/lol2.10222.
Gómez-Consarnau L, et al. Microbial rhodopsins are major contributors to the solar energy captured in the sea. Sci. Adv. 2019;5(8):eaaw8855. doi: 10.1126/sciadv.aaw8855. PubMed DOI PMC
Slamovits CH, Okamoto N, Burri L, James ER, Keeling PJ. A bacterial proteorhodopsin proton pump in marine eukaryotes. Nat. Commun. 2011;2(1):183. doi: 10.1038/ncomms1188. PubMed DOI
Mojib N, Kubanek J. Comparative transcriptomics supports the presence of G protein-coupled receptor-based signaling in unicellular marine eukaryotes. Limnol. Oceanogr. 2020;65(4):762–774. doi: 10.1002/lno.11345. DOI
Yoshizawa S, et al. Proton-pumping rhodopsins in marine diatoms. Microbiology. 2022 doi: 10.1101/2022.01.18.476826. DOI
Prado F, Jimeno-González S, Reyes JC. Histone availability as a strategy to control gene expression. RNA Biol. 2017;14(3):281–286. doi: 10.1080/15476286.2016.1189071. PubMed DOI PMC
Salomé PA, Merchant SS. A series of fortunate events: Introducing chlamydomonas as a reference organism. Plant Cell. 2019;31(8):1682–1707. doi: 10.1105/tpc.18.00952. PubMed DOI PMC
Parkhitko AA, Jouandin P, Mohr SE, Perrimon N. Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species. Aging Cell. 2019;18(6):55. doi: 10.1111/acel.13034. PubMed DOI PMC
Frydman J. Folding of newly translated proteins in vivo: The role of molecular chaperones. Annu. Rev. Biochem. 2001;70(1):603–647. doi: 10.1146/annurev.biochem.70.1.603. PubMed DOI
Balchin D, Hayer-Hartl M, Hartl FU. In vivo aspects of protein folding and quality control. Science. 2016;353(6294):aac4354. doi: 10.1126/science.aac4354. PubMed DOI
Verbeke P. Heat shock response and ageing: Mechanisms and applications. Cell Biol. Int. 2001;25(9):845–857. doi: 10.1006/cbir.2001.0789. PubMed DOI
Jiang Y, Xiong X, Danska J, Parkinson J. Metatranscriptomic analysis of diverse microbial communities reveals core metabolic pathways and microbiome-specific functionality. Microbiome. 2016;4(1):2. doi: 10.1186/s40168-015-0146-x. PubMed DOI PMC
Celaj A, Markle J, Danska J, Parkinson J. Comparison of assembly algorithms for improving rate of metatranscriptomic functional annotation. Microbiome. 2014;2(1):39. doi: 10.1186/2049-2618-2-39. PubMed DOI PMC
Chaffron S, et al. Environmental vulnerability of the global ocean epipelagic plankton community interactome. Sci. Adv. 2021;7(35):eabg1921. doi: 10.1126/sciadv.abg1921. PubMed DOI PMC
Gregory AC, et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell. 2019;177(5):1109–1123.e14. doi: 10.1016/j.cell.2019.03.040. PubMed DOI PMC
Koonin EV. Viruses and mobile elements as drivers of evolutionary transitions. Philos. Trans. R. Soc. B Biol. Sci. 2016;371(1701):20150442. doi: 10.1098/rstb.2015.0442. PubMed DOI PMC
Anesio AM, Bellas CM. Are low temperature habitats hot spots of microbial evolution driven by viruses? Trends Microbiol. 2011;19(2):52–57. doi: 10.1016/j.tim.2010.11.002. PubMed DOI