Allogeneic hematopoietic cell transplantation in patients with CALR-mutated myelofibrosis: a study of the Chronic Malignancies Working Party of EBMT

. 2023 Dec ; 58 (12) : 1357-1367. [epub] 20230907

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37679647
Odkazy

PubMed 37679647
DOI 10.1038/s41409-023-02094-1
PII: 10.1038/s41409-023-02094-1
Knihovny.cz E-zdroje

Allogeneic hematopoietic cell transplantation (allo-HCT) is curative for myelofibrosis (MF) but assessing risk-benefit in individual patients is challenging. This complexity is amplified in CALR-mutated MF patients, as they live longer with conventional treatments compared to other molecular subtypes. We analyzed outcomes of 346 CALR-mutated MF patients who underwent allo-HCT in 123 EBMT centers between 2005 and 2019. After a median follow-up of 40 months, the estimated overall survival (OS) rates at 1, 3, and 5 years were 81%, 71%, and 63%, respectively. Patients receiving busulfan-containing regimens achieved a 5-year OS rate of 71%. Non-relapse mortality (NRM) at 1, 3, and 5 years was 16%, 22%, and 26%, respectively, while the incidence of relapse/progression was 11%, 15%, and 17%, respectively. Multivariate analysis showed that older age correlated with worse OS, while primary MF and HLA mismatched transplants had a near-to-significant trend to decreased OS. Comparative analysis between CALR- and JAK2-mutated MF patients adjusting for confounding factors revealed better OS, lower NRM, lower relapse, and improved graft-versus-host disease-free and relapse-free survival (GRFS) in CALR-mutated patients. These findings confirm the improved prognosis associated with CALR mutation in allo-HCT and support molecular profiling in prognostic scoring systems to predict OS after transplantation in MF.

1st State Pavlov Medical University of St Petersburg St Petersburg Russian Federation

BMT Unit Internal Medicine 1 Medical University of Vienna Vienna Austria

Central Clinical Hospital The Medical University of Warsaw Warsaw Poland

Centre Hospitalier Lyon Sud Lyon France

CHU de Lille Univ Lille INSERM U1286 Infinite 59000 Lille France

EBMT Leiden Study Unit Leiden the Netherlands

EBMT Statistical Unit Leiden the Netherlands

Erasmus MC Cancer Institute Rotterdam the Netherlands

Hematology Department Federico 2 University of Naples Naples Italy

Hôpital Saint Louis APHP Université de Paris Cité Paris France

Hospital Clínico Universitario INCLIVA University of Valencia Valencia Spain

Institute of Hematology and Transfusion Medicine Warsaw Poland

Maria Skłodowska Curie National Research Institute of Oncology Gliwice Poland

Olomouc University Hospital Olomouc Czech Republic

Oslo University Hospital Hematology dep Stem cell transplantation and Institute for Clinical Medicine University of Oslo Oslo Norway

Radboud University Medical Centre Nijmegen the Netherlands

Sezione di Ematologia Dipartimento di Scienze Radiologiche ed Ematologiche Università Cattolica del Sacro Cuore Dipartamento di Diagnostica per Immagini Radioterapia Oncologica ed Ematologia Fondazione Policlinico A Gemelli IRCCS Rome Italy

Technical University of Munich School of Medicine Klinikum rechts der Isar Clinic and Policlinic for Internal Medicine 3 Munich Germany

Unit of Blood Diseases and Stem Cell Transplant ASST Spedali Civili University of Brescia Brescia Italy

University College London Hospitals NHS Trust London UK

University Hospital Eppendorf Hamburg Germany

University Medical Center Groningen University of Groningen Groningen the Netherlands

University Medical Center Utrecht the Netherlands

University of Freiburg and Medical Faculty Freiburg Germany

University of Milan and ASST Papa Giovanni XXIII Bergamo Italy

Komentář v

PubMed

Zobrazit více v PubMed

Tefferi A. Primary myelofibrosis: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol. 2023;98:801–21. PubMed DOI

Bewersdorf JP, Sheth AH, Vetsa S, Grimshaw A, Giri S, Podoltsev NA, et al. Outcomes of allogeneic hematopoietic cell transplantation in patients with myelofibrosis—a systematic review and meta-analysis. Transpl Cell Ther. 2021;27:873.e1–e13. DOI

McLornan D, Eikema DJ, Czerw T, Kroger N, Koster L, Reinhardt HC, et al. Trends in allogeneic haematopoietic cell transplantation for myelofibrosis in Europe between 1995 and 2018: a CMWP of EBMT retrospective analysis. Bone Marrow Transpl. 2021;56:2160–72. DOI

Rumi E, Pietra D, Pascutto C, Guglielmelli P, Martinez-Trillos A, Casetti I, et al. Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis. Blood. 2014;124:1062–9. PubMed DOI PMC

Passamonti F, Mora B, Giorgino T, Guglielmelli P, Cazzola M, Maffioli M, et al. Driver mutations’ effect in secondary myelofibrosis: an international multicenter study based on 781 patients. Leukemia. 2017;31:970–3. PubMed DOI

Cervantes F, Dupriez B, Pereira A, Passamonti F, Reilly JT, Morra E, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009;113:2895–901. PubMed DOI

Passamonti F, Cervantes F, Vannucchi AM, Morra E, Rumi E, Pereira A, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood. 2010;115:1703–8. PubMed DOI

Gangat N, Caramazza D, Vaidya R, George G, Begna K, Schwager S, et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011;29:392–7. PubMed DOI

Mosquera-Orgueira A, Perez-Encinas M, Hernandez-Sanchez A, Gonzalez-Martinez T, Arellano-Rodrigo E, Martinez-Elicegui J, et al. Machine learning improves risk stratification in myelofibrosis: an analysis of the Spanish registry of myelofibrosis. Hemasphere. 2023;7:e818. PubMed DOI

Guglielmelli P, Lasho TL, Rotunno G, Mudireddy M, Mannarelli C, Nicolosi M, et al. MIPSS70: mutation-enhanced international prognostic score system for transplantation-age patients with primary myelofibrosis. J Clin Oncol. 2018;36:310–8. PubMed DOI

Tefferi A, Guglielmelli P, Lasho TL, Gangat N, Ketterling RP, Pardanani A, et al. MIPSS70+ version 2.0: mutation and karyotype-enhanced international prognostic scoring system for primary myelofibrosis. J Clin Oncol. 2018;36:1769–70. PubMed DOI

Passamonti F, Giorgino T, Mora B, Guglielmelli P, Rumi E, Maffioli M, et al. A clinical-molecular prognostic model to predict survival in patients with post polycythemia vera and post essential thrombocythemia myelofibrosis. Leukemia. 2017;31:2726–31. PubMed DOI

Kroger NM, Deeg JH, Olavarria E, Niederwieser D, Bacigalupo A, Barbui T, et al. Indication and management of allogeneic stem cell transplantation in primary myelofibrosis: a consensus process by an EBMT/ELN international working group. Leukemia. 2015;29:2126–33. PubMed DOI

Gagelmann N, Ditschkowski M, Bogdanov R, Bredin S, Robin M, Cassinat B, et al. Comprehensive clinical-molecular transplant scoring system for myelofibrosis undergoing stem cell transplantation. Blood. 2019;133:2233–42. PubMed DOI

Tamari R, McLornan DP, Ahn KW, Estrada-Merly N, Hernandez-Boluda JC, Giralt SA, et al. A simple prognostic system in myelofibrosis patients undergoing allogeneic stem cell transplant: a CIBMTR/EBMT analysis. Blood Adv. 2023;7:3993–4002.

Kroger N, Panagiota V, Badbaran A, Zabelina T, Triviai I, Araujo Cruz MM, et al. Impact of molecular genetics on outcome in myelofibrosis patients after allogeneic stem cell transplantation. Biol Blood Marrow Transpl. 2017;23:1095–101. DOI

Gagelmann N, Salit RB, Schroeder T, Badbaran A, Rautenberg C, Panagiota V, et al. High molecular and cytogenetic risk in myelofibrosis does not benefit from higher intensity conditioning before hematopoietic cell transplantation: an international collaborative. Anal Hemasphere. 2022;6:e784. DOI

Panagiota V, Thol F, Markus B, Fehse B, Alchalby H, Badbaran A, et al. Prognostic effect of calreticulin mutations in patients with myelofibrosis after allogeneic hematopoietic stem cell transplantation. Leukemia. 2014;28:1552–5. PubMed DOI

Holtan SG, DeFor TE, Lazaryan A, Bejanyan N, Arora M, Brunstein CG, et al. Composite end point of graft-versus-host disease-free, relapse-free survival after allogeneic hematopoietic cell transplantation. Blood. 2015;125:1333–8. PubMed DOI PMC

Copelan E, Casper JT, Carter SL, van Burik JA, Hurd D, Mendizabal AM, et al. A scheme for defining cause of death and its application in the T cell depletion trial. Biol Blood Marrow Transpl. 2007;13:1469–76. DOI

Hernandez-Boluda JC, Pereira A, Kroger N, Beelen D, Robin M, Bornhauser M, et al. Determinants of survival in myelofibrosis patients undergoing allogeneic hematopoietic cell transplantation. Leukemia. 2021;35:215–24. PubMed DOI

Hernandez-Boluda JC, Pereira A, Kroger N, Cornelissen JJ, Finke J, Beelen D, et al. Allogeneic hematopoietic cell transplantation in older myelofibrosis patients: a study of the chronic malignancies working party of EBMT and the Spanish Myelofibrosis Registry. Am J Hematol. 2021;96:1186–94. PubMed DOI

Ali H, Aldoss I, Yang D, Mokhtari S, Khaled S, Aribi A, et al. MIPSS70+ v2.0 predicts long-term survival in myelofibrosis after allogeneic HCT with the Flu/Mel conditioning regimen. Blood Adv. 2019;3:83–95. PubMed DOI PMC

Tamari R, Rapaport F, Zhang N, McNamara C, Kuykendall A, Sallman DA, et al. Impact of high-molecular-risk mutations on transplantation outcomes in patients with myelofibrosis. Biol Blood Marrow Transpl. 2019;25:1142–51. DOI

Murthy GSG, Kim S, Estrada-Merly N, Abid MB, Aljurf M, Assal A, et al. Association between the choice of the conditioning regimen and outcomes of allogeneic hematopoietic cell transplantation for myelofibrosis. Haematologica. 2023;108:1900–8.

Holmstrom MO, Riley CH, Svane IM, Hasselbalch HC, Andersen MH. The CALR exon 9 mutations are shared neoantigens in patients with CALR mutant chronic myeloproliferative neoplasms. Leukemia. 2016;30:2413–6. PubMed DOI

Tvorogov D, Thompson-Peach CAL, Fosselteder J, Dottore M, Stomski F, Onnesha SA, et al. Targeting human CALR-mutated MPN progenitors with a neoepitope-directed monoclonal antibody. EMBO Rep. 2022;23:e52904. PubMed DOI PMC

Handlos Grauslund J, Holmstrom MO, Jorgensen NG, Klausen U, Weis-Banke SE, El Fassi D, et al. Therapeutic cancer vaccination with a peptide derived from the calreticulin exon 9 mutations induces strong cellular immune responses in patients with CALR-mutant chronic myeloproliferative neoplasms. Front Oncol. 2021;11:637420. PubMed DOI PMC

Gigoux M, Holmstrom MO, Zappasodi R, Park JJ, Pourpe S, Bozkus CC, et al. Calreticulin mutant myeloproliferative neoplasms induce MHC-I skewing, which can be overcome by an optimized peptide cancer vaccine. Sci Transl Med. 2022;14:eaba4380. PubMed DOI

Plo I, Nakatake M, Malivert L, de Villartay JP, Giraudier S, Villeval JL, et al. JAK2 stimulates homologous recombination and genetic instability: potential implication in the heterogeneity of myeloproliferative disorders. Blood. 2008;112:1402–12. PubMed DOI

Marty C, Lacout C, Droin N, Le Couedic JP, Ribrag V, Solary E, et al. A role for reactive oxygen species in JAK2 V617F myeloproliferative neoplasm progression. Leukemia. 2013;27:2187–95. PubMed DOI

Tefferi A, Lasho TL, Finke CM, Knudson RA, Ketterling R, Hanson CH, et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia. 2014;28:1472–7. PubMed DOI

Christopeit M, Badbaran A, Zabelina T, Zeck G, Fehse B, Ayuk F, et al. Similar outcome of calreticulin type I and calreticulin type II mutations following RIC allogeneic haematopoietic stem cell transplantation for myelofibrosis. Bone Marrow Transpl. 2016;51:1391–3. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...