Drought survival in conifer species is related to the time required to cross the stomatal safety margin
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
INTERREG SUDOE
PubMed
37681745
DOI
10.1093/jxb/erad352
PII: 7264137
Knihovny.cz E-zdroje
- Klíčová slova
- Drought tolerance, embolism resistance, residual transpiration, stomatal closure, stomatal safety margin, tree mortality,
- MeSH
- cévnaté rostliny * MeSH
- embolie * MeSH
- listy rostlin fyziologie MeSH
- období sucha MeSH
- průduchy rostlin fyziologie MeSH
- stromy fyziologie MeSH
- transpirace rostlin fyziologie MeSH
- voda fyziologie MeSH
- xylém fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- voda MeSH
The regulation of water loss and the spread of xylem embolism have mostly been considered separately. The development of an integrated approach taking into account the temporal dynamics and relative contributions of these mechanisms to plant drought responses is urgently needed. Do conifer species native to mesic and xeric environments display different hydraulic strategies and temporal sequences under drought? A dry-down experiment was performed on seedlings of four conifer species differing in embolism resistance, from drought-sensitive to extremely drought-resistant species. A set of traits related to drought survival was measured, including turgor loss point, stomatal closure, minimum leaf conductance, and xylem embolism resistance. All species reached full stomatal closure before the onset of embolism, with all but the most drought-sensitive species presenting large stomatal safety margins, demonstrating that highly drought-resistant species do not keep their stomata open under drought conditions. Plant dry-down time to death was significantly influenced by the xylem embolism threshold, stomatal safety margin, and minimum leaf conductance, and was best explained by the newly introduced stomatal margin retention index (SMRIΨ50) which reflects the time required to cross the stomatal safety margin. The SMRIΨ50 may become a key tool for the characterization of interspecific drought survival variability in trees.
BIOGECO University of Bordeaux INRAE F 33615 Pessac France
Département des Sciences de l'Environnement UQTR Trois Rivières Québec Canada
Karlsruhe Institute of Technology 82467 Garmisch Partenkirchen Germany
PIAF University of Clermont Auvergne INRAE 63000 Clermont Ferrand France
Citace poskytuje Crossref.org