Hypoxanthine-Guanine Phosphoribosyltransferase Is Dispensable for Mycobacterium smegmatis Viability

. 2020 Feb 11 ; 202 (5) : . [epub] 20200211

Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31818925

Purine metabolism plays a ubiquitous role in the physiology of Mycobacterium tuberculosis and other mycobacteria. The purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT) is essential for M. tuberculosis growth in vitro; however, its precise role in M. tuberculosis physiology is unclear. Membrane-permeable prodrugs of specifically designed HGPRT inhibitors arrest the growth of M. tuberculosis and represent potential new antituberculosis compounds. Here, we investigated the purine salvage pathway in the model organism Mycobacterium smegmatis Using genomic deletion analysis, we confirmed that HGPRT is the only guanine and hypoxanthine salvage enzyme in M. smegmatis but is not required for in vitro growth of this mycobacterium or survival under long-term stationary-phase conditions. We also found that prodrugs of M. tuberculosis HGPRT inhibitors displayed an unexpected antimicrobial activity against M. smegmatis that is independent of HGPRT. Our data point to a different mode of mechanism of action for these inhibitors than was originally proposed.IMPORTANCE Purine bases, released by the hydrolytic and phosphorolytic degradation of nucleic acids and nucleotides, can be salvaged and recycled. The hypoxanthine-guanine phosphoribosyltransferase (HGPRT), which catalyzes the formation of guanosine-5'-monophosphate from guanine and inosine-5'-monophosphate from hypoxanthine, represents a potential target for specific inhibitor development. Deletion of the HGPRT gene (Δhgprt) in the model organism Mycobacterium smegmatis confirmed that this enzyme is not essential for M. smegmatis growth. Prodrugs of acyclic nucleoside phosphonates (ANPs), originally designed against HGPRT from Mycobacterium tuberculosis, displayed anti-M. smegmatis activities comparable to those obtained for M. tuberculosis but also inhibited the ΔhgprtM. smegmatis strain. These results confirmed that ANPs act in M. smegmatis by a mechanism independent of HGPRT.

Zobrazit více v PubMed

World Health Organization. 2019. Global tuberculosis report 2019. World Health Organization, Geneva, Switzerland: https://www.who.int/tb/publications/global_report/en/.

Daley CL, Caminero JA. 2018. Management of multidrug-resistant tuberculosis. Semin Respir Crit Care Med 39:310–324. doi:10.1055/s-0038-1661383. PubMed DOI

Wheeler PR. 1987. Biosynthesis and scavenging of purines by pathogenic mycobacteria including Mycobacterium leprae. J Gen Microbiol 133:2999–3011. doi:10.1099/00221287-133-11-2999. PubMed DOI

Malathi VG, Ramakrishnan T. 1966. Biosynthesis of nucleic acid purines in Mycobacterium tuberculosis H37Rv. Biochem J 98:594–597. doi:10.1042/bj0980594. PubMed DOI PMC

Ducati RG, Breda A, Basso LA, Santos DS. 2011. Purine salvage pathway in Mycobacterium tuberculosis. Curr Med Chem 18:1258–1275. doi:10.2174/092986711795029627. PubMed DOI

Parker WB, Long MC. 2007. Purine metabolism in Mycobacterium tuberculosis as a target for drug development. Curr Pharm Des 13:599–608. doi:10.2174/138161207780162863. PubMed DOI

Makowska-Grzyska M, Kim Y, Gorla SK, Wei Y, Mandapati K, Zhang M, Maltseva N, Modi G, Boshoff HI, Gu M, Aldrich C, Cuny GD, Hedstrom L, Joachimiak A. 2015. Mycobacterium tuberculosis IMPDH in complexes with substrates, products and antitubercular compounds. PLoS One 10:e0138976. doi:10.1371/journal.pone.0138976. PubMed DOI PMC

Usha V, Gurcha SS, Lovering AL, Lloyd AJ, Papaemmanouil A, Reynolds RC, Besra GS. 2011. Identification of novel diphenyl urea inhibitors of Mt-GuaB2 active against Mycobacterium tuberculosis. Microbiology 157:290–299. doi:10.1099/mic.0.042549-0. PubMed DOI

Park Y, Pacitto A, Bayliss T, Cleghorn LAT, Wang Z, Hartman T, Arora K, Ioerger TR, Sacchettini J, Rizzi M, Donini S, Blundell TL, Ascher DB, Rhee K, Breda A, Zhou N, Dartois V, Jonnala SR, Via LE, Mizrahi V, Epemolu O, Stojanovski L, Simeons F, Osuna-Cabello M, Ellis L, MacKenzie CJ, Smith ARC, Davis SH, Murugesan D, Buchanan KI, Turner PA, Huggett M, Zuccotto F, Rebollo-Lopez MJ, Lafuente-Monasterio MJ, Sanz O, Diaz GS, Lelièvre J, Ballell L, Selenski C, Axtman M, Ghidelli-Disse S, Pflaumer H, Bösche M, Drewes G, Freiberg GM, Kurnick MD, Srikumaran M, Kempf DJ, Green SR, Ray PC, Read K, Wyatt P, Barry CE, Boshoff HI. 2017. Essential but not vulnerable: indazole sulfonamides targeting inosine monophosphate dehydrogenase as potential leads against Mycobacterium tuberculosis. ACS Infect Dis 3:18–33. doi:10.1021/acsinfecdis.6b00103. PubMed DOI PMC

Keough DT, Hockova D, Rejman D, Spacek P, Vrbkova S, Krecmerova M, Eng WS, Jans H, West NP, Naesens LMJ, de Jersey J, Guddat LW. 2013. Inhibition of the Escherichia coli 6-oxopurine phosphoribosyltransferases by nucleoside phosphonates: potential for new antibacterial agents. J Med Chem 56:6967–6984. doi:10.1021/jm400779n. PubMed DOI

Eng WS, Rejman D, Pohl R, West NP, Woods K, Naesens LMJ, Keough DT, Guddat LW. 2018. Pyrrolidine nucleoside bisphosphonates as antituberculosis agents targeting hypoxanthine-guanine phosphoribosyltransferase. Eur J Med Chem 159:10–22. doi:10.1016/j.ejmech.2018.09.039. PubMed DOI

Eng WS, Hockova D, Spacek P, Janeba Z, West NP, Woods K, Naesens LMJ, Keough DT, Guddat LW. 2015. First crystal structures of Mycobacterium tuberculosis 6-oxopurine phosphoribosyltransferase: complexes with GMP and pyrophosphate and with acyclic nucleoside phosphonates whose prodrugs have antituberculosis activity. J Med Chem 58:4822–4838. doi:10.1021/acs.jmedchem.5b00611. PubMed DOI

Griffin JE, Gawronski JD, DeJesus MA, Ioerger TR, Akerley BJ, Sassetti CM. 2011. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog 7:e1002251. doi:10.1371/journal.ppat.1002251. PubMed DOI PMC

DeJesus MA, Gerrick ER, Xu WZ, Park SW, Long JE, Boutte CC, Rubin EJ, Schnappinger D, Ehrt S, Fortune SM, Sassetti CM, Ioerger TR. 2017. Comprehensive essentiality analysis of the Mycobacterium tuberculosis genome via saturating transposon mutagenesis. mBio 8:e02133-16. doi:10.1128/mBio.02133-16. PubMed DOI PMC

Eng WS, Keough DT, Hockova D, Winzor DJ, Guddat LW. 2017. Oligomeric state of hypoxanthine-guanine phosphoribosyltransferase from Mycobacterium tuberculosis. Biochimie 135:6–14. doi:10.1016/j.biochi.2016.12.020. PubMed DOI

Patta PC, Martinelli LKB, Rotta M, Abbadi BL, Santos DS, Basso LA. 2015. Mode of action of recombinant hypoxanthine-guanine phosphoribosyltransferase from Mycobacterium tuberculosis. RSC Adv 5:74671–74683. doi:10.1039/C5RA14918E. DOI

Keough DT, Hockova D, Holy A, Naesens LMJ, Skinner-Adams TS, de Jersey J, Guddat LW. 2009. Inhibition of hypoxanthine-guanine phosphoribosyltransferase by acyclic nucleoside phosphonates: a new class of antimalarial therapeutics. J Med Chem 52:4391–4399. doi:10.1021/jm900267n. PubMed DOI

Tyagi JS, Sharma D. 2002. Mycobacterium smegmatis and tuberculosis. Trends Microbiol 10:68–69. doi:10.1016/s0966-842x(01)02296-x. PubMed DOI

Shenkerman Y, Elharar Y, Vishkautzan M, Gur E. 2014. Efficient and simple generation of unmarked gene deletions in Mycobacterium smegmatis. Gene 533:374–378. doi:10.1016/j.gene.2013.09.082. PubMed DOI

Keer J, Smeulders MJ, Williams HD. 2001. A purF mutant of Mycobacterium smegmatis has impaired survival during oxygen-starved stationary phase. Microbiology 147:473–481. doi:10.1099/00221287-147-2-473. PubMed DOI

Knejzlik Z, Herkommerova K, Pichova I. 2019. Catabolism of 8-oxo-purines is mainly routed via the guanine to xanthine interconversion pathway in Mycobacterium smegmatis. Tuberculosis (Edinb) 119:101879. doi:10.1016/j.tube.2019.101879. PubMed DOI

Hockova D, Janeba Z, Naesens L, Edstein MD, Chavchich M, Keough DT, Guddat LW. 2015. Antimalarial activity of prodrugs of N-branched acyclic nucleoside phosphonate inhibitors of 6-oxopurine phosphoribosyltransferases. Bioorg Med Chem 23:5502–5510. doi:10.1016/j.bmc.2015.07.038. PubMed DOI

Banuls A-L, Sanou A, Anh NTV, Godreuil S. 2015. Mycobacterium tuberculosis: ecology and evolution of a human bacterium. J Med Microbiol 64:1261–1269. doi:10.1099/jmm.0.000171. PubMed DOI

Goude R, Roberts DM, Parish T. 2015. Electroporation of mycobacteria. Methods Mol Biol 1285:117–130. doi:10.1007/978-1-4939-2450-9_7. PubMed DOI

Blanco-Ruano D, Roberts DM, Gonzalez-Del-Rio R, Álvarez D, Rebollo MJ, Pérez-Herrán E, Mendoza A. 2015. Antimicrobial susceptibility testing for Mycobacterium sp. Methods Mol Biol 1285:257–268. doi:10.1007/978-1-4939-2450-9_15. PubMed DOI

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. 2004. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. doi:10.1002/jcc.20084. PubMed DOI

Šali A, Blundell TL. 1993. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815. doi:10.1006/jmbi.1993.1626. PubMed DOI

Berney M, Weimar MR, Heikal A, Cook GM. 2012. Regulation of proline metabolism in mycobacteria and its role in carbon metabolism under hypoxia. Mol Microbiol 84:664–681. doi:10.1111/j.1365-2958.2012.08053.x. PubMed DOI

Snapper SB, Melton RE, Mustafa S, Kieser T, Jacobs WR Jr.. 1990. Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol 4:1911–1919. doi:10.1111/j.1365-2958.1990.tb02040.x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...