Linker-Functionalized Phosphinate Metal-Organic Frameworks: Adsorbents for the Removal of Emerging Pollutants

. 2023 Sep 25 ; 62 (38) : 15479-15489. [epub] 20230908

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37682020

Metal-organic frameworks (MOFs) are attracting increasing attention as adsorbents of contaminants of emerging concern that are difficult to remove by conventional processes. This paper examines how functional groups covering the pore walls of phosphinate-based MOFs affect the adsorption of specific pharmaceutical pollutants (diclofenac, cephalexin, and sulfamethoxazole) and their hydrolytic stability. New structures, isoreticular to the phosphinate MOF ICR-7, are presented. The phenyl ring facing the pore wall of the presented MOFs is modified with dimethylamino groups (ICR-8) and ethyl carboxylate groups (ICR-14). These functionalized MOFs were obtained from two newly synthesized phosphinate linkers containing the respective functional groups. The presence of additional functional groups resulted in higher affinity toward the tested pollutants compared to ICR-7 or activated carbon. However, this modification also comes with a reduced adsorption capacity. Importantly, the introduction of the functional groups enhanced the hydrolytic stability of the MOFs.

Zobrazit více v PubMed

Geissen V.; Mol H.; Klumpp E.; Umlauf G.; Nadal M.; van der Ploeg M.; van de Zee S. E. A. T. M.; Ritsema C. J. Emerging pollutants in the environment: A challenge for water resource management. Int. Soil Water Conserv. Res. 2015, 3, 57–65. 10.1016/j.iswcr.2015.03.002. DOI

European Commission , Communication from the Commission to the European Parliament, the Council, and the European Economic and Social Committee, European Union Strategic Approach to Pharmaceuticals in the Environment. 2019, https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52019DC0128 (accessed Feb 8, 2023).

Peng Y.; Zhang Y.; Huang H.; Zhong C. Flexibility induced high-performance MOF-based adsorbent for nitroimidazole antibiotics capture. Chem. Eng. J. 2018, 333, 678–685. 10.1016/j.cej.2017.09.138. DOI

Rioja N.; Benguria P.; Peñas F. J.; Zorita S. Competitive removal of pharmaceuticals from environmental waters by adsorption and photocatalytic degradation. Environ. Sci. Pollut. Res. 2014, 21, 11168–11177. 10.1007/s11356-014-2593-5. PubMed DOI

Maurício R.; Dias R.; Ribeiro V.; Fernandes S.; Vicente A. C.; Pinto M. I.; Noronha J. P.; Amaral L.; Coelho P.; Mano A. P. 17α-Ethinylestradiol and 17β-estradiol removal from a secondary urban wastewater using an RBC treatment system. Environ. Monit. Assess. 2018, 190, 320.10.1007/s10661-018-6701-8. PubMed DOI

Al Sharabati M.; Abokwiek R.; Al-Othman A.; Tawalbeh M.; Karaman C.; Orooji Y.; Karimi F. Biodegradable polymers and their nano-composites for the removal of endocrine-disrupting chemicals (EDCs) from wastewater: A review. Environ. Res. 2021, 202, 111694.10.1016/j.envres.2021.111694. PubMed DOI

Cai K.; Phillips D. H.; Elliott C. T.; Muller M.; Scippo M.-L.; Connolly L. Removal of natural hormones in dairy farm wastewater using reactive and sorptive materials. Sci. Total Environ. 2013, 461–462, 1–9. 10.1016/j.scitotenv.2013.04.088. PubMed DOI

Ferreiro C.; Gómez-Motos I.; Lombraña J. I.; de Luis A.; Villota N.; Ros O.; Etxebarria N. Contaminants of emerging concern removal in an effluent of wastewater treatment plant under biological and continuous mode ultrafiltration treatment. Sustainability 2020, 12, 725.10.3390/su12020725. DOI

Montes-Grajales D.; Fennix-Agudelo M.; Miranda-Castro W. Occurrence of personal care products as emerging chemicals of concern in water resources: A review. Sci. Total Environ. 2017, 595, 601–614. 10.1016/j.scitotenv.2017.03.286. PubMed DOI

Sullivan G. L.; Prigmore R. M.; Knight P.; Godfrey A. R. Activated carbon biochar from municipal waste as a sorptive agent for the removal of polyaromatic hydrocarbons (PAHs), phenols and petroleum based compounds in contaminated liquids. J. Environ. Manage. 2019, 251, 109551.10.1016/j.jenvman.2019.109551. PubMed DOI

Pivokonský M.; Čermáková L.; Novotná K.; Peer P.; Cajthaml T.; Janda V. Occurrence of microplastics in raw and treated drinking water. Sci. Total Environ. 2018, 643, 1644–1651. 10.1016/j.scitotenv.2018.08.102. PubMed DOI

Parsai T.; Figueiredo N.; Dalvi V.; Martins M.; Malik A.; Kumar A. Implication of microplastic toxicity on functioning of microalgae in aquatic system. Environ. Pollut. 2022, 308, 119626.10.1016/j.envpol.2022.119626. PubMed DOI

Jain M.; Khan S. A.; Pandey A.; Pant K. K.; Ziora Z. M.; Blaskovich M. A. T. Instructive analysis of engineered carbon materials for potential application in water and wastewater treatment. Sci. Total Environ. 2021, 793, 148583.10.1016/j.scitotenv.2021.148583. PubMed DOI

Hosseini Hashemi M. S.; Eslami F.; Karimzadeh R. Organic contaminants removal from industrial wastewater by CTAB treated synthetic zeolite Y. J. Environ. Manage. 2019, 233, 785–792. 10.1016/j.jenvman.2018.10.003. PubMed DOI

Satouh S.; Martín J.; Orta M. d. M.; Medina-Carrasco S.; Messikh N.; Bougdah N.; Santos J. L.; Aparicio I.; Alonso E. Adsorption of polycyclic aromatic hydrocarbons by natural, synthetic and modified clays. Environments 2021, 8, 124.10.3390/environments8110124. DOI

Wilkinson J.; Hooda P. S.; Barker J.; Barton S.; Swinden J. Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field. Environ. Pollut. 2017, 231, 954–970. 10.1016/j.envpol.2017.08.032. PubMed DOI

Deblonde T.; Cossu-Leguille C.; Hartemann P. Emerging pollutants in wastewater: A review of the literature. Int. J. Hyg. Environ. Health 2011, 214, 442–448. 10.1016/j.ijheh.2011.08.002. PubMed DOI

Ibrahim A. O.; Adegoke K. A.; Adegoke R. O.; AbdulWahab Y. A.; Oyelami V. B.; Adesina M. O. Adsorptive removal of different pollutants using metal-organic framework adsorbents. J. Mol. Liq. 2021, 333, 115593.10.1016/j.molliq.2021.115593. DOI

Sarker M.; Song J. Y.; Jhung S. H. Carboxylic-acid-functionalized UiO-66-NH2: A promising adsorbent for both aqueous- and non-aqueous-phase adsorptions. Chem. Eng. J. 2018, 331, 124–131. 10.1016/j.cej.2017.08.017. DOI

Gomes Silva C.; Luz I.; Llabrés i Xamena F. X.; Corma A.; García H.; García H. Water Stable Zr–Benzenedicarboxylate Metal–Organic Frameworks as Photocatalysts for Hydrogen Generation. Chem.—Eur. J. 2010, 16, 11133–11138. 10.1002/chem.200903526. PubMed DOI

Rojas S.; Horcajada P. Metal-Organic Frameworks for the Removal of Emerging Organic Contaminants in Water. Chem. Rev. 2020, 120, 8378–8415. 10.1021/acs.chemrev.9b00797. PubMed DOI

Yohannes A.; Su Y.; Yao S.. Emerging Applications of Metal-Organic Frameworks for Environmental Remediation; American Chemical Society: Washington, DC, 2021.ACS Symposium Series

Drout R. J.; Robison L.; Chen Z.; Islamoglu T.; Farha O. K. Zirconium Metal-Organic Frameworks for Organic Pollutant Adsorption. Trends Chem. 2019, 1, 304–317. 10.1016/j.trechm.2019.03.010. DOI

Küsgens P.; Rose M.; Senkovska I.; Fröde H.; Henschel A.; Siegle S.; Kaskel S. Characterization of metal-organic frameworks by water adsorption. Microporous Mesoporous Mater. 2009, 120, 325–330. 10.1016/j.micromeso.2008.11.020. DOI

Safy M. E. A.; Amin M.; Haikal R. R.; Elshazly B.; Wang J.; Wang Y.; Wöll C.; Alkordi M. H. Probing the Water Stability Limits and Degradation Pathways of Metal–Organic Frameworks. Chem.—Eur. J. 2020, 26, 7109–7117. 10.1002/chem.202000207. PubMed DOI

Shearan S. J. I.; Stock N.; Emmerling F.; Demel J.; Wright P. A.; Demadis K. D.; Vassaki M.; Costantino F.; Vivani R.; Sallard S.; Ruiz Salcedo I.; Cabeza A.; Taddei M. New Directions in Metal Phosphonate and Phosphinate Chemistry. Crystals 2019, 9, 270.10.3390/cryst9050270. DOI

Kloda M.; Ondrušová S.; Lang K.; Demel J. Phosphinic acids as building units in materials chemistry. Coord. Chem. Rev. 2021, 433, 213748.10.1016/j.ccr.2020.213748. DOI

Hynek J.; Brázda P.; Rohlíček J.; Londesborough M. G. S.; Demel J. Phosphinic Acid Based Linkers: Building Blocks in Metal–Organic Framework Chemistry. Angew. Chem., Int. Ed. 2018, 57, 5016–5019. 10.1002/anie.201800884. PubMed DOI

Kloda M.; Plecháček T.; Ondrušová S.; Brázda P.; Chalupský P.; Rohlíček J.; Demel J.; Hynek J. Phosphinate MOFs Formed from Tetratopic Ligands as Proton-Conductive Materials. Inorg. Chem. 2022, 61, 7506–7512. 10.1021/acs.inorgchem.2c00194. PubMed DOI

Bůžek D.; Ondrušová S.; Hynek J.; Kovář P.; Lang K.; Rohlíček J.; Demel J. Robust Aluminum and Iron Phosphinate Metal–Organic Frameworks for Efficient Removal of Bisphenol A. Inorg. Chem. 2020, 59, 5538–5545. 10.1021/acs.inorgchem.0c00201. PubMed DOI

Bůžek D.; Škoch K.; Ondrušová S.; Kloda M.; Bavol D.; Mahun A.; Kobera L.; Lang K.; Londesborough M. G. S.; Demel J. Activated Borane” – A Porous Borane Cluster Network as an Effective Adsorbent for Removing Organic Pollutants. Chem.—Eur. J. 2022, 28, e20220188510.1002/chem.202201885. PubMed DOI

Bůžek D.; Demel J.; Lang K. Zirconium Metal-Organic Framework UiO-66: Stability in an Aqueous Environment and Its Relevance for Organophosphate Degradation. Inorg. Chem. 2018, 57, 14290–14297. 10.1021/acs.inorgchem.8b02360. PubMed DOI

Bůžek D.; Adamec S.; Lang K.; Demel J. Metal-organic frameworks vs. buffers: Case study of UiO-66 stability. Inorg. Chem. Front. 2021, 8, 720–734. 10.1039/D0QI00973C. DOI

Jansen H.; Samuels M. C.; Couzijn E. P. A.; Slootweg J. C.; Ehlers A. W.; Chen P.; Lammertsma K. Reactive Intermediates: A Transient Electrophilic Phosphinidene Caught in the Act. Chem.—Eur. J. 2010, 16, 1454–1458. 10.1002/chem.200902715. PubMed DOI

Tholen P.; Zorlu Y.; Beckmann J.; Yücesan G. Probing Isoreticular Expansions in Phosphonate MOFs and Their Applications. Eur. J. Inorg. Chem. 2020, 2020, 1542–1554. 10.1002/ejic.201901291. DOI

Weng S.-S.; Chen F.-K.; Ke C.-S. Direct Esterification of Carboxylic Acids with Alcohols Catalyzed by Iron(III) Acetylacetonate Complex. Synth. Commun. 2013, 43, 2615–2621. 10.1080/00397911.2012.725265. DOI

Kiss N. Z.; Keglevich G. Direct esterification of phosphinic and phosphonic acids enhanced by ionic liquid additives. Pure Appl. Chem. 2019, 91, 59–65. 10.1515/pac-2018-1008. DOI

Sarkisov L.; Harrison A. Computational Structure Characterisation Tools in Application to Ordered and Disordered Porous Materials. Mol. Simul. 2011, 37, 1248–1257. 10.1080/08927022.2011.592832.2. DOI

Shearer G. C.; Chavan S.; Bordiga S.; Svelle S.; Olsbye U.; Lillerud K. P. Defect Engineering: Tuning the Porosity and Composition of the Metal–Organic Framework UiO-66 via Modulated Synthesis. Chem. Mater. 2016, 28, 3749–3761. 10.1021/acs.chemmater.6b00602. DOI

Muangsin N.; Prajaubsook M.; Chaichit N.; Siritaedmukul K.; Hannongbua S. Crystal Structure of a Unique Sodium Distorted Linkage in Diclofenac Sodium Pentahydrate. Anal. Sci. 2002, 18, 967–968. 10.2116/analsci.18.967. PubMed DOI

Kennedy A. R.; Okoth M. O.; Sheen D. B.; Sherwood J. N.; Teat S. J.; Vrcelj R. M. Cephalexin: a channel hydrate. Acta Crystallogr. 2003, 59, o650–o652. 10.1107/S0108270103022649. PubMed DOI

Nakai H.; Takasuka M.; Shiro M. X-Ray and infrared spectral studies of the ionic structure of trimethoprim–sulfamethoxazole 1 : 1 molecular complex. J. Chem. Soc., Perkin Trans. 1 1984, 2, 1459–1464. 10.1039/p29840001459. DOI

Simonin J.-P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 2016, 300, 254–263. 10.1016/j.cej.2016.04.079. DOI

Hasan Z.; Khan N. A.; Jhung S. H. Adsorptive removal of diclofenac sodium from water with Zr-based metal-organic frameworks. Chem. Eng. J. 2016, 284, 1406–1413. 10.1016/j.cej.2015.08.087. DOI

Álvarez S.; Ribeiro R. S.; Gomes H. T.; Sotelo J. L.; García J. Synthesis of carbon xerogels and their application in adsorption studies of caffeine and diclofenac as emerging contaminants. Chem. Eng. Res. Des. 2015, 95, 229–238. 10.1016/j.cherd.2014.11.001. DOI

Jauris I. M.; Matos C. F.; Saucier C.; Lima E. C.; Zarbin A. J. G.; Fagan S. B.; Machado F. M.; Zanella I. Adsorption of sodium diclofenac on graphene: a combined experimental and theoretical study. Phys. Chem. Chem. Phys. 2016, 18, 1526–1536. 10.1039/c5cp05940b. PubMed DOI

Wei H.; Deng S.; Huang Q.; Nie Y.; Wang B.; Huang J.; Yu G. Regenerable granular carbon nanotubes/alumina hybrid adsorbents for diclofenac sodium and carbamazepine removal from aqueous solution. Water Res. 2013, 47, 4139–4147. 10.1016/j.watres.2012.11.062. PubMed DOI

Giles C. H.; Smith D.; Huitson A. A general treatment and classification of the solute adsorption isotherm. I. Theoretical. J. Colloid Interface Sci. 1974, 47, 755–765. 10.1016/0021-9797(74)90252-5. DOI

Al-Ghouti M. A.; Da’ana D. A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383.10.1016/j.jhazmat.2020.122383. PubMed DOI

Zhao Y.; Zhao H.; Zhao X.; Qu Y.; Liu D. Synergistic effect of electrostatic and coordination interactions for adsorption removal of cephalexin from water using a zirconium-based metal-organic framework. J. Colloid Interface Sci. 2020, 580, 256–263. 10.1016/j.jcis.2020.07.013. PubMed DOI

Liu H.; Liu W.; Zhang J.; Zhang C.; Ren L.; Li Y. Removal of cephalexin from aqueous solutions by original and Cu(II)/Fe(III) impregnated activated carbons developed from lotus stalks Kinetics and equilibrium studies. J. Hazard. Mater. 2011, 185, 1528–1535. 10.1016/j.jhazmat.2010.10.081. PubMed DOI

Mohseni-Bandpi A.; Al-Musawi T.; Ghahramani E.; Zarrabi M.; Mohebi S.; Vahed S. A. Improvement of zeolite adsorption capacity for cephalexin by coating with magnetic Fe3O4 nanoparticles. J. Mol. Liq. 2016, 218, 615–624. 10.1016/j.molliq.2016.02.092. DOI

Samarghandi M. R.; Al-Musawi T. J.; Mohseni-Bandpi A.; Zarrabi M. Adsorption of cephalexin from aqueous solution using natural zeolite and zeolite coated with manganese oxide nanoparticles. J. Mol. Liq. 2015, 211, 431–441. 10.1016/j.molliq.2015.06.067. DOI

Ng K. C.; Burhan M.; Shahzad M. W.; Ismail A. B. A Universal Isotherm Model to Capture Adsorption Uptake and Energy Distribution of Porous Heterogeneous Surface. Sci. Rep. 2017, 7, 10634.10.1038/s41598-017-11156-6. PubMed DOI PMC

Limousin G.; Gaudet J.-P.; Charlet L.; Szenknect S.; Barthès V.; Krimissa M. Sorption isotherms: A review on physical bases, modeling and measurement. Appl. Geochem. 2007, 22, 249–275. 10.1016/j.apgeochem.2006.09.010. DOI

Jiang N.; Erdős M.; Moultos O. A.; Shang R.; Vlugt T. J. H.; Heijman S. G. J.; Rietveld L. C. The adsorption mechanisms of organic micropollutants on high-silica zeolites causing S-shaped adsorption isotherms: An experimental and Monte Carlo simulation study. Chem. Eng. J. 2020, 389, 123968.10.1016/j.cej.2019.123968. DOI

Donohue M. D.; Aranovich G. L. Classification of Gibbs adsorption isotherms. Adv. Colloid Interface Sci. 1998, 76–77, 137–152. 10.1016/S0001-8686(98)00044-X. DOI

Wibowo A.; Marsudi M. A.; Pramono E.; Belva J.; Parmita A. W. Y. P.; Patah A.; Eddy D. R.; Aimon A. H.; Ramelan A. Recent improvement strategies on metal-organic frameworks as adsorbent, catalyst, and membrane for wastewater treatment. Molecules 2021, 26, 5261.10.3390/molecules26175261. PubMed DOI PMC

Hasan Z.; Jhung S. H. Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions. J. Hazard. Mater. 2015, 283, 329–339. 10.1016/j.jhazmat.2014.09.046. PubMed DOI

Inglezakis V. J.; Poulopoulos S. G.; Kazemian H. Insights into the S-shaped sorption isotherms and their dimensionless forms. Microporous Mesoporous Mater. 2018, 272, 166–176. 10.1016/j.micromeso.2018.06.026. DOI

Lu Z.; Duan J.; Du L.; Liu Q.; Schweitzer N. M.; Hupp J. T. Incorporation of free halide ions stabilizes metal-organic frameworks (MOFs) against pore collapse and renders large-pore Zr-MOFs functional for water harvesting. J. Mater. Chem. A 2022, 10, 6442–6447. 10.1039/D1TA10217F. DOI

Hynek J.; Ondrušová S.; Bůžek D.; Kovář P.; Rathouský J.; Demel J. Postsynthetic modification of a zirconium metal-organic framework at the inorganic secondary building unit with diphenylphosphinic acid for increased photosensitizing properties and stability. Chem. Commun. 2017, 53, 8557–8560. 10.1039/C7CC05068B. PubMed DOI

Hynek J.; Ondrušová S.; Bůžek D.; Kloda M.; Rohlíček J.; Pospíšil M.; Janoš P.; Demel J.. Linker functionalised phosphinate metal-organic frameworks: Adsorbents for the removal of emerging pollutants. 2023, chemrxiv-2023-90vhh (accessed Jan 30, 2023). PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Linker-Functionalized Phosphinate Metal-Organic Frameworks: Adsorbents for the Removal of Emerging Pollutants

. 2023 Sep 25 ; 62 (38) : 15479-15489. [epub] 20230908

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace