Linker-Functionalized Phosphinate Metal-Organic Frameworks: Adsorbents for the Removal of Emerging Pollutants
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37682020
PubMed Central
PMC10523435
DOI
10.1021/acs.inorgchem.3c01810
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Metal-organic frameworks (MOFs) are attracting increasing attention as adsorbents of contaminants of emerging concern that are difficult to remove by conventional processes. This paper examines how functional groups covering the pore walls of phosphinate-based MOFs affect the adsorption of specific pharmaceutical pollutants (diclofenac, cephalexin, and sulfamethoxazole) and their hydrolytic stability. New structures, isoreticular to the phosphinate MOF ICR-7, are presented. The phenyl ring facing the pore wall of the presented MOFs is modified with dimethylamino groups (ICR-8) and ethyl carboxylate groups (ICR-14). These functionalized MOFs were obtained from two newly synthesized phosphinate linkers containing the respective functional groups. The presence of additional functional groups resulted in higher affinity toward the tested pollutants compared to ICR-7 or activated carbon. However, this modification also comes with a reduced adsorption capacity. Importantly, the introduction of the functional groups enhanced the hydrolytic stability of the MOFs.
Zobrazit více v PubMed
Geissen V.; Mol H.; Klumpp E.; Umlauf G.; Nadal M.; van der Ploeg M.; van de Zee S. E. A. T. M.; Ritsema C. J. Emerging pollutants in the environment: A challenge for water resource management. Int. Soil Water Conserv. Res. 2015, 3, 57–65. 10.1016/j.iswcr.2015.03.002. DOI
European Commission , Communication from the Commission to the European Parliament, the Council, and the European Economic and Social Committee, European Union Strategic Approach to Pharmaceuticals in the Environment. 2019, https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52019DC0128 (accessed Feb 8, 2023).
Peng Y.; Zhang Y.; Huang H.; Zhong C. Flexibility induced high-performance MOF-based adsorbent for nitroimidazole antibiotics capture. Chem. Eng. J. 2018, 333, 678–685. 10.1016/j.cej.2017.09.138. DOI
Rioja N.; Benguria P.; Peñas F. J.; Zorita S. Competitive removal of pharmaceuticals from environmental waters by adsorption and photocatalytic degradation. Environ. Sci. Pollut. Res. 2014, 21, 11168–11177. 10.1007/s11356-014-2593-5. PubMed DOI
Maurício R.; Dias R.; Ribeiro V.; Fernandes S.; Vicente A. C.; Pinto M. I.; Noronha J. P.; Amaral L.; Coelho P.; Mano A. P. 17α-Ethinylestradiol and 17β-estradiol removal from a secondary urban wastewater using an RBC treatment system. Environ. Monit. Assess. 2018, 190, 320.10.1007/s10661-018-6701-8. PubMed DOI
Al Sharabati M.; Abokwiek R.; Al-Othman A.; Tawalbeh M.; Karaman C.; Orooji Y.; Karimi F. Biodegradable polymers and their nano-composites for the removal of endocrine-disrupting chemicals (EDCs) from wastewater: A review. Environ. Res. 2021, 202, 111694.10.1016/j.envres.2021.111694. PubMed DOI
Cai K.; Phillips D. H.; Elliott C. T.; Muller M.; Scippo M.-L.; Connolly L. Removal of natural hormones in dairy farm wastewater using reactive and sorptive materials. Sci. Total Environ. 2013, 461–462, 1–9. 10.1016/j.scitotenv.2013.04.088. PubMed DOI
Ferreiro C.; Gómez-Motos I.; Lombraña J. I.; de Luis A.; Villota N.; Ros O.; Etxebarria N. Contaminants of emerging concern removal in an effluent of wastewater treatment plant under biological and continuous mode ultrafiltration treatment. Sustainability 2020, 12, 725.10.3390/su12020725. DOI
Montes-Grajales D.; Fennix-Agudelo M.; Miranda-Castro W. Occurrence of personal care products as emerging chemicals of concern in water resources: A review. Sci. Total Environ. 2017, 595, 601–614. 10.1016/j.scitotenv.2017.03.286. PubMed DOI
Sullivan G. L.; Prigmore R. M.; Knight P.; Godfrey A. R. Activated carbon biochar from municipal waste as a sorptive agent for the removal of polyaromatic hydrocarbons (PAHs), phenols and petroleum based compounds in contaminated liquids. J. Environ. Manage. 2019, 251, 109551.10.1016/j.jenvman.2019.109551. PubMed DOI
Pivokonský M.; Čermáková L.; Novotná K.; Peer P.; Cajthaml T.; Janda V. Occurrence of microplastics in raw and treated drinking water. Sci. Total Environ. 2018, 643, 1644–1651. 10.1016/j.scitotenv.2018.08.102. PubMed DOI
Parsai T.; Figueiredo N.; Dalvi V.; Martins M.; Malik A.; Kumar A. Implication of microplastic toxicity on functioning of microalgae in aquatic system. Environ. Pollut. 2022, 308, 119626.10.1016/j.envpol.2022.119626. PubMed DOI
Jain M.; Khan S. A.; Pandey A.; Pant K. K.; Ziora Z. M.; Blaskovich M. A. T. Instructive analysis of engineered carbon materials for potential application in water and wastewater treatment. Sci. Total Environ. 2021, 793, 148583.10.1016/j.scitotenv.2021.148583. PubMed DOI
Hosseini Hashemi M. S.; Eslami F.; Karimzadeh R. Organic contaminants removal from industrial wastewater by CTAB treated synthetic zeolite Y. J. Environ. Manage. 2019, 233, 785–792. 10.1016/j.jenvman.2018.10.003. PubMed DOI
Satouh S.; Martín J.; Orta M. d. M.; Medina-Carrasco S.; Messikh N.; Bougdah N.; Santos J. L.; Aparicio I.; Alonso E. Adsorption of polycyclic aromatic hydrocarbons by natural, synthetic and modified clays. Environments 2021, 8, 124.10.3390/environments8110124. DOI
Wilkinson J.; Hooda P. S.; Barker J.; Barton S.; Swinden J. Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field. Environ. Pollut. 2017, 231, 954–970. 10.1016/j.envpol.2017.08.032. PubMed DOI
Deblonde T.; Cossu-Leguille C.; Hartemann P. Emerging pollutants in wastewater: A review of the literature. Int. J. Hyg. Environ. Health 2011, 214, 442–448. 10.1016/j.ijheh.2011.08.002. PubMed DOI
Ibrahim A. O.; Adegoke K. A.; Adegoke R. O.; AbdulWahab Y. A.; Oyelami V. B.; Adesina M. O. Adsorptive removal of different pollutants using metal-organic framework adsorbents. J. Mol. Liq. 2021, 333, 115593.10.1016/j.molliq.2021.115593. DOI
Sarker M.; Song J. Y.; Jhung S. H. Carboxylic-acid-functionalized UiO-66-NH2: A promising adsorbent for both aqueous- and non-aqueous-phase adsorptions. Chem. Eng. J. 2018, 331, 124–131. 10.1016/j.cej.2017.08.017. DOI
Gomes Silva C.; Luz I.; Llabrés i Xamena F. X.; Corma A.; García H.; García H. Water Stable Zr–Benzenedicarboxylate Metal–Organic Frameworks as Photocatalysts for Hydrogen Generation. Chem.—Eur. J. 2010, 16, 11133–11138. 10.1002/chem.200903526. PubMed DOI
Rojas S.; Horcajada P. Metal-Organic Frameworks for the Removal of Emerging Organic Contaminants in Water. Chem. Rev. 2020, 120, 8378–8415. 10.1021/acs.chemrev.9b00797. PubMed DOI
Yohannes A.; Su Y.; Yao S.. Emerging Applications of Metal-Organic Frameworks for Environmental Remediation; American Chemical Society: Washington, DC, 2021.ACS Symposium Series
Drout R. J.; Robison L.; Chen Z.; Islamoglu T.; Farha O. K. Zirconium Metal-Organic Frameworks for Organic Pollutant Adsorption. Trends Chem. 2019, 1, 304–317. 10.1016/j.trechm.2019.03.010. DOI
Küsgens P.; Rose M.; Senkovska I.; Fröde H.; Henschel A.; Siegle S.; Kaskel S. Characterization of metal-organic frameworks by water adsorption. Microporous Mesoporous Mater. 2009, 120, 325–330. 10.1016/j.micromeso.2008.11.020. DOI
Safy M. E. A.; Amin M.; Haikal R. R.; Elshazly B.; Wang J.; Wang Y.; Wöll C.; Alkordi M. H. Probing the Water Stability Limits and Degradation Pathways of Metal–Organic Frameworks. Chem.—Eur. J. 2020, 26, 7109–7117. 10.1002/chem.202000207. PubMed DOI
Shearan S. J. I.; Stock N.; Emmerling F.; Demel J.; Wright P. A.; Demadis K. D.; Vassaki M.; Costantino F.; Vivani R.; Sallard S.; Ruiz Salcedo I.; Cabeza A.; Taddei M. New Directions in Metal Phosphonate and Phosphinate Chemistry. Crystals 2019, 9, 270.10.3390/cryst9050270. DOI
Kloda M.; Ondrušová S.; Lang K.; Demel J. Phosphinic acids as building units in materials chemistry. Coord. Chem. Rev. 2021, 433, 213748.10.1016/j.ccr.2020.213748. DOI
Hynek J.; Brázda P.; Rohlíček J.; Londesborough M. G. S.; Demel J. Phosphinic Acid Based Linkers: Building Blocks in Metal–Organic Framework Chemistry. Angew. Chem., Int. Ed. 2018, 57, 5016–5019. 10.1002/anie.201800884. PubMed DOI
Kloda M.; Plecháček T.; Ondrušová S.; Brázda P.; Chalupský P.; Rohlíček J.; Demel J.; Hynek J. Phosphinate MOFs Formed from Tetratopic Ligands as Proton-Conductive Materials. Inorg. Chem. 2022, 61, 7506–7512. 10.1021/acs.inorgchem.2c00194. PubMed DOI
Bůžek D.; Ondrušová S.; Hynek J.; Kovář P.; Lang K.; Rohlíček J.; Demel J. Robust Aluminum and Iron Phosphinate Metal–Organic Frameworks for Efficient Removal of Bisphenol A. Inorg. Chem. 2020, 59, 5538–5545. 10.1021/acs.inorgchem.0c00201. PubMed DOI
Bůžek D.; Škoch K.; Ondrušová S.; Kloda M.; Bavol D.; Mahun A.; Kobera L.; Lang K.; Londesborough M. G. S.; Demel J. Activated Borane” – A Porous Borane Cluster Network as an Effective Adsorbent for Removing Organic Pollutants. Chem.—Eur. J. 2022, 28, e20220188510.1002/chem.202201885. PubMed DOI
Bůžek D.; Demel J.; Lang K. Zirconium Metal-Organic Framework UiO-66: Stability in an Aqueous Environment and Its Relevance for Organophosphate Degradation. Inorg. Chem. 2018, 57, 14290–14297. 10.1021/acs.inorgchem.8b02360. PubMed DOI
Bůžek D.; Adamec S.; Lang K.; Demel J. Metal-organic frameworks vs. buffers: Case study of UiO-66 stability. Inorg. Chem. Front. 2021, 8, 720–734. 10.1039/D0QI00973C. DOI
Jansen H.; Samuels M. C.; Couzijn E. P. A.; Slootweg J. C.; Ehlers A. W.; Chen P.; Lammertsma K. Reactive Intermediates: A Transient Electrophilic Phosphinidene Caught in the Act. Chem.—Eur. J. 2010, 16, 1454–1458. 10.1002/chem.200902715. PubMed DOI
Tholen P.; Zorlu Y.; Beckmann J.; Yücesan G. Probing Isoreticular Expansions in Phosphonate MOFs and Their Applications. Eur. J. Inorg. Chem. 2020, 2020, 1542–1554. 10.1002/ejic.201901291. DOI
Weng S.-S.; Chen F.-K.; Ke C.-S. Direct Esterification of Carboxylic Acids with Alcohols Catalyzed by Iron(III) Acetylacetonate Complex. Synth. Commun. 2013, 43, 2615–2621. 10.1080/00397911.2012.725265. DOI
Kiss N. Z.; Keglevich G. Direct esterification of phosphinic and phosphonic acids enhanced by ionic liquid additives. Pure Appl. Chem. 2019, 91, 59–65. 10.1515/pac-2018-1008. DOI
Sarkisov L.; Harrison A. Computational Structure Characterisation Tools in Application to Ordered and Disordered Porous Materials. Mol. Simul. 2011, 37, 1248–1257. 10.1080/08927022.2011.592832.2. DOI
Shearer G. C.; Chavan S.; Bordiga S.; Svelle S.; Olsbye U.; Lillerud K. P. Defect Engineering: Tuning the Porosity and Composition of the Metal–Organic Framework UiO-66 via Modulated Synthesis. Chem. Mater. 2016, 28, 3749–3761. 10.1021/acs.chemmater.6b00602. DOI
Muangsin N.; Prajaubsook M.; Chaichit N.; Siritaedmukul K.; Hannongbua S. Crystal Structure of a Unique Sodium Distorted Linkage in Diclofenac Sodium Pentahydrate. Anal. Sci. 2002, 18, 967–968. 10.2116/analsci.18.967. PubMed DOI
Kennedy A. R.; Okoth M. O.; Sheen D. B.; Sherwood J. N.; Teat S. J.; Vrcelj R. M. Cephalexin: a channel hydrate. Acta Crystallogr. 2003, 59, o650–o652. 10.1107/S0108270103022649. PubMed DOI
Nakai H.; Takasuka M.; Shiro M. X-Ray and infrared spectral studies of the ionic structure of trimethoprim–sulfamethoxazole 1 : 1 molecular complex. J. Chem. Soc., Perkin Trans. 1 1984, 2, 1459–1464. 10.1039/p29840001459. DOI
Simonin J.-P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 2016, 300, 254–263. 10.1016/j.cej.2016.04.079. DOI
Hasan Z.; Khan N. A.; Jhung S. H. Adsorptive removal of diclofenac sodium from water with Zr-based metal-organic frameworks. Chem. Eng. J. 2016, 284, 1406–1413. 10.1016/j.cej.2015.08.087. DOI
Álvarez S.; Ribeiro R. S.; Gomes H. T.; Sotelo J. L.; García J. Synthesis of carbon xerogels and their application in adsorption studies of caffeine and diclofenac as emerging contaminants. Chem. Eng. Res. Des. 2015, 95, 229–238. 10.1016/j.cherd.2014.11.001. DOI
Jauris I. M.; Matos C. F.; Saucier C.; Lima E. C.; Zarbin A. J. G.; Fagan S. B.; Machado F. M.; Zanella I. Adsorption of sodium diclofenac on graphene: a combined experimental and theoretical study. Phys. Chem. Chem. Phys. 2016, 18, 1526–1536. 10.1039/c5cp05940b. PubMed DOI
Wei H.; Deng S.; Huang Q.; Nie Y.; Wang B.; Huang J.; Yu G. Regenerable granular carbon nanotubes/alumina hybrid adsorbents for diclofenac sodium and carbamazepine removal from aqueous solution. Water Res. 2013, 47, 4139–4147. 10.1016/j.watres.2012.11.062. PubMed DOI
Giles C. H.; Smith D.; Huitson A. A general treatment and classification of the solute adsorption isotherm. I. Theoretical. J. Colloid Interface Sci. 1974, 47, 755–765. 10.1016/0021-9797(74)90252-5. DOI
Al-Ghouti M. A.; Da’ana D. A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383.10.1016/j.jhazmat.2020.122383. PubMed DOI
Zhao Y.; Zhao H.; Zhao X.; Qu Y.; Liu D. Synergistic effect of electrostatic and coordination interactions for adsorption removal of cephalexin from water using a zirconium-based metal-organic framework. J. Colloid Interface Sci. 2020, 580, 256–263. 10.1016/j.jcis.2020.07.013. PubMed DOI
Liu H.; Liu W.; Zhang J.; Zhang C.; Ren L.; Li Y. Removal of cephalexin from aqueous solutions by original and Cu(II)/Fe(III) impregnated activated carbons developed from lotus stalks Kinetics and equilibrium studies. J. Hazard. Mater. 2011, 185, 1528–1535. 10.1016/j.jhazmat.2010.10.081. PubMed DOI
Mohseni-Bandpi A.; Al-Musawi T.; Ghahramani E.; Zarrabi M.; Mohebi S.; Vahed S. A. Improvement of zeolite adsorption capacity for cephalexin by coating with magnetic Fe3O4 nanoparticles. J. Mol. Liq. 2016, 218, 615–624. 10.1016/j.molliq.2016.02.092. DOI
Samarghandi M. R.; Al-Musawi T. J.; Mohseni-Bandpi A.; Zarrabi M. Adsorption of cephalexin from aqueous solution using natural zeolite and zeolite coated with manganese oxide nanoparticles. J. Mol. Liq. 2015, 211, 431–441. 10.1016/j.molliq.2015.06.067. DOI
Ng K. C.; Burhan M.; Shahzad M. W.; Ismail A. B. A Universal Isotherm Model to Capture Adsorption Uptake and Energy Distribution of Porous Heterogeneous Surface. Sci. Rep. 2017, 7, 10634.10.1038/s41598-017-11156-6. PubMed DOI PMC
Limousin G.; Gaudet J.-P.; Charlet L.; Szenknect S.; Barthès V.; Krimissa M. Sorption isotherms: A review on physical bases, modeling and measurement. Appl. Geochem. 2007, 22, 249–275. 10.1016/j.apgeochem.2006.09.010. DOI
Jiang N.; Erdős M.; Moultos O. A.; Shang R.; Vlugt T. J. H.; Heijman S. G. J.; Rietveld L. C. The adsorption mechanisms of organic micropollutants on high-silica zeolites causing S-shaped adsorption isotherms: An experimental and Monte Carlo simulation study. Chem. Eng. J. 2020, 389, 123968.10.1016/j.cej.2019.123968. DOI
Donohue M. D.; Aranovich G. L. Classification of Gibbs adsorption isotherms. Adv. Colloid Interface Sci. 1998, 76–77, 137–152. 10.1016/S0001-8686(98)00044-X. DOI
Wibowo A.; Marsudi M. A.; Pramono E.; Belva J.; Parmita A. W. Y. P.; Patah A.; Eddy D. R.; Aimon A. H.; Ramelan A. Recent improvement strategies on metal-organic frameworks as adsorbent, catalyst, and membrane for wastewater treatment. Molecules 2021, 26, 5261.10.3390/molecules26175261. PubMed DOI PMC
Hasan Z.; Jhung S. H. Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions. J. Hazard. Mater. 2015, 283, 329–339. 10.1016/j.jhazmat.2014.09.046. PubMed DOI
Inglezakis V. J.; Poulopoulos S. G.; Kazemian H. Insights into the S-shaped sorption isotherms and their dimensionless forms. Microporous Mesoporous Mater. 2018, 272, 166–176. 10.1016/j.micromeso.2018.06.026. DOI
Lu Z.; Duan J.; Du L.; Liu Q.; Schweitzer N. M.; Hupp J. T. Incorporation of free halide ions stabilizes metal-organic frameworks (MOFs) against pore collapse and renders large-pore Zr-MOFs functional for water harvesting. J. Mater. Chem. A 2022, 10, 6442–6447. 10.1039/D1TA10217F. DOI
Hynek J.; Ondrušová S.; Bůžek D.; Kovář P.; Rathouský J.; Demel J. Postsynthetic modification of a zirconium metal-organic framework at the inorganic secondary building unit with diphenylphosphinic acid for increased photosensitizing properties and stability. Chem. Commun. 2017, 53, 8557–8560. 10.1039/C7CC05068B. PubMed DOI
Hynek J.; Ondrušová S.; Bůžek D.; Kloda M.; Rohlíček J.; Pospíšil M.; Janoš P.; Demel J.. Linker functionalised phosphinate metal-organic frameworks: Adsorbents for the removal of emerging pollutants. 2023, chemrxiv-2023-90vhh (accessed Jan 30, 2023). PubMed PMC