Magnetism, Mössbauer Spectroscopy, and Proton Conductivity of Coordination Polymers Based on Phosphonate and Phosphinate Linkers

. 2025 Sep 04 ; 129 (35) : 15850-15864. [epub] 20250820

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40927503

Coordination polymers (CPs) are versatile materials formed by metal ions and organic ligands, offering a broad range of structural and functional possibilities. Phosphonates and phosphinates are particularly attractive ligands for CPs due to their multiple binding sites, varied coordination geometries, and ability to form robust network structures. Phosphonates, considered harder ligands, form strong bonds with hard metals such as Fe3+, while phosphinates offer additional versatility due to the varied pendant groups on phosphorus. This study presents a series of six new coordination polymers, ICR-20 and ICR-21, incorporating Fe2+, Co2+, and Ni2+ metal centers, using phosphinate (H2PBP-(Me)) or phosphinate-phosphonate (H3PPP-(Me)) ligands in combination with 4,4'-bipyridine. The materials are isoreticular despite the incorporation of different functional groups, demonstrating the interchangeability of the phosphinate and phosphonate groups in their design. These polymers were characterized structurally and investigated for their magnetic properties. The combination of local insights from Mössbauer spectroscopy and bulk magnetic data provides complex information on crystal field parameters and magnetic interactions in Fe-based polymers. Additionally, their proton conductivity was evaluated, showing promising results.

Zobrazit více v PubMed

Loukopoulos E., Kostakis G. E.. Review: Recent Advances of One-Dimensional Coordination Polymers as Catalysts. J. Coord. Chem. 2018;71:371–410. doi: 10.1080/00958972.2018.1439163. DOI

Malinowski J., Zych D., Jacewicz D., Gawdzik B., Drzeżdżon J.. Application of Coordination Compounds with Transition Metal Ions in the Chemical IndustryA Review. Int. J. Mol. Sci. 2020;21:5443. doi: 10.3390/ijms21155443. PubMed DOI PMC

Imaz I., Rubio-Martínez M., García-Fernández L., García F., Ruiz-Molina D., Hernando J., Puntes V., Maspoch D.. Coordination Polymer Particles as Potential Drug Delivery Systems. Chem. Commun. 2010;46:4737–4739. doi: 10.1039/c003084h. PubMed DOI

Murphy J. N., Kobti J.-L., Dao M., Wear D., Okoko M., Pandey S., Vukotic V. N.. Therapeutic Coordination Polymers: Tailoring Drug Release through Metal–Ligand Interactions. Chem. Sci. 2024;15:7041–7050. doi: 10.1039/D4SC00732H. PubMed DOI PMC

Heine J., Müller-Buschbaum K.. Engineering Metal-Based Luminescence in Coordination Polymers and Metal–Organic Frameworks. Chem. Soc. Rev. 2013;42:9232–9242. doi: 10.1039/c3cs60232j. PubMed DOI

Kuznetsova A., Matveevskaya V., Pavlov D., Yakunenkov A., Potapov A.. Coordination Polymers Based on Highly Emissive Ligands: Synthesis and Functional Properties. Materials. 2020;13:2699. doi: 10.3390/ma13122699. PubMed DOI PMC

Journaux Y., Ferrando-Soria J., Pardo E., Ruiz-Garcia R., Julve M., Lloret F., Cano J., Li Y., Lisnard L., Yu P., Stumpf H., Pereira C. L. M.. Design of Magnetic Coordination Polymers Built from Polyoxalamide Ligands: A Thirty Year Story. Eur. J. Inorg. Chem. 2018;2018:228–247. doi: 10.1002/ejic.201700984. DOI

Saines P. J., Bristowe N. C.. Probing Magnetic Interactions in Metal–Organic Frameworks and Coordination Polymers Microscopically. Dalton Trans. 2018;47:13257–13280. doi: 10.1039/C8DT02411A. PubMed DOI

Coronado E.. Molecular Magnetism: From Chemical Design to Spin Control in Molecules, Materials and Devices. Nat. Rev. Mater. 2020;5:87–104. doi: 10.1038/s41578-019-0146-8. DOI

Shearan S. J. I., Stock N., Emmerling F., Demel J., Wright P. A., Demadis K. D., Vassaki M., Costantino F., Vivani R., Sallard S., Salcedo I. R., Cabeza A., Taddei M.. New Directions in Metal Phosphonate and Phosphinate Chemistry. Crystals. 2019;9:270. doi: 10.3390/cryst9050270. DOI

Pearson R. G.. Hard and Soft Acids and Bases. J. Am. Chem. Soc. 1963;85:3533–3539. doi: 10.1021/ja00905a001. DOI

Taddei M., Costantino F., Vivani R.. Robust Metal-Organic Frameworks Based on Tritopic Phosphonoaromatic Ligands. Eur. J. Inorg. Chem. 2016;2016:4300–4309. doi: 10.1002/ejic.201600207. DOI

Bůžek D., Ondrušová S., Hynek J., Kovář P., Lang K., Rohlíček J., Demel J.. Robust Aluminum and Iron Phosphinate Metal–Organic Frameworks for Efficient Removal of Bisphenol A. Inorg. Chem. 2020;59:5538–5545. doi: 10.1021/acs.inorgchem.0c00201. PubMed DOI

Hynek J., Ondrušová S., Bůžek D., Kloda M., Rohlíček J., Pospíšil M., Janoš P., Demel J.. Linker Functionalised Phosphinate Metal-Organic Frameworks: Adsorbents for the Removal of Emerging Pollutants. Inorg. Chem. 2023;62(38):15479–15489. doi: 10.1021/acs.inorgchem.3c01810. PubMed DOI PMC

Ondrušová S., Kloda M., Rohlíček J., Taddei M., Zaręba J. K., Demel J.. Exploring the Isoreticular Continuum between Phosphonate- and Phosphinate-Based Metal–Organic Frameworks. Inorg. Chem. 2022;61(47):18990–18997. doi: 10.1021/acs.inorgchem.2c03271. PubMed DOI PMC

Kloda M., Ondrušová S., Lang K., Demel J.. Phosphinic Acids as Building Units in Materials Chemistry. Coord. Chem. Rev. 2021;433:213748. doi: 10.1016/j.ccr.2020.213748. DOI

She S., Gong L., Wang B., Yang Y., Lei Q., Liu B., Su G.. Slow Magnetic Relaxation in a Two-Dimensional Dysprosium­(III) Coordination Polymer. Inorg. Chem. Commun. 2016;70:18–21. doi: 10.1016/j.inoche.2016.05.004. DOI

Shao D., Wan Y., Zhang Y.-L., Zhang Q., Yang S.-Y.. Cobalt­(II) Coordination Polymers with Single-Ion Magnet Property. CrystEngComm. 2024;26:3771–3782. doi: 10.1039/D4CE00512K. DOI

Manson J. L., Conner M. M., Schlueter J. A., Lancaster T., Blundell S. J., Brooks M. L., Pratt F. L., Papageorgiou T., Bianchi A. D., Wosnitza J., Whangbo M. H.. [Cu­(HF2)­(Pyz)2]­BF4 (Pyz = Pyrazine): Long-Range Magnetic Ordering in a Pseudo-Cubic Coordination Polymer Comprised of Bridging HF2? And Pyrazine Ligands. Chem. Commun. 2006:4894–4896. doi: 10.1039/b608791d. PubMed DOI

Scatena R., Montisci F., Lanza A., Casati N. P. M., Macchi P.. Magnetic Network on Demand: Pressure Tunes Square Lattice Coordination Polymers Based on {[Cu­(Pyrazine)­2]­2+}­n. Inorg. Chem. 2020;59:10091–10098. doi: 10.1021/acs.inorgchem.0c01229. PubMed DOI PMC

Lee K., Park J., Song I., Yoon S. M.. The Magnetism of Metal–Organic Frameworks for Spintronics. Bull. Korean Chem. Soc. 2021;42:1170–1183. doi: 10.1002/bkcs.12362. DOI

Sun S.-J., Menšík M., Toman P.. Analyzing Trade-off Issues in Synthesis of Magnetic Polymer Compounds through Theoretical Investigation. J. Magn. Magn. Mater. 2024;603:172275. doi: 10.1016/j.jmmm.2024.172275. DOI

Midollini S., Orlandini A., Rosa P., Sorace L.. Structure and Magnetism of a New Hydrogen-Bonded Layered Cobalt­(II) Network, Constructed by the Unprecedented Carboxylate–Phosphinate Ligand [O2(C6H5)­PCH2CO2]2 . Inorg. Chem. 2005;44:2060–2066. doi: 10.1021/ic048602x. PubMed DOI

Du J.-L., Rettig S. J., Thompson R. C., Trotter J.. Synthesis, structure, and magnetic properties of diphenylphosphinates of cobalt­(II) and manganese­(II). The crystal and molecular structures of the γ forms of poly-bis­(μ-diphenylphosphinato)­cobalt­(II) and manganese­(II) Can. J. Chem. 1991;69:277–285. doi: 10.1139/v91-043. DOI

Du J.-L., Rettig S. J., Thompson R. C., Trotter J., Betz P., Bino A.. Structure and magnetic properties of monophenylphosphinate bridged chain polymers of manganese­(II), [MnL2(HPhPO2)2]x (where L = HPhPO2H, CH3CONH2, H2O, HCONH­(CH3), and C5H5N) Can. J. Chem. 1992;70:732–741. doi: 10.1139/v92-098. DOI

Mendes R. F., Barbosa P., Domingues E. M., Silva P., Figueiredo F., Almeida Paz F. A.. Enhanced Proton Conductivity in a Layered Coordination Polymer. Chem. Sci. 2020;11:6305–6311. doi: 10.1039/D0SC01762K. PubMed DOI PMC

Kolokolov D. I., Lim D., Kitagawa H.. Characterization of Proton Dynamics for the Understanding of Conduction Mechanism in Proton Conductive Metal-Organic Frameworks. Chem. Rec. 2020;20:1297–1313. doi: 10.1002/tcr.202000072. PubMed DOI

Develioglu A., Resines-Urien E., Poloni R., Martín-Pérez L., Costa J. S., Burzurí E.. Tunable Proton Conductivity and Color in a Nonporous Coordination Polymer via Lattice Accommodation to Small Molecules. Adv. Sci. 2021;8:2102619. doi: 10.1002/advs.202102619. PubMed DOI PMC

Inukai M., Horike S., Itakura T., Shinozaki R., Ogiwara N., Umeyama D., Nagarkar S., Nishiyama Y., Malon M., Hayashi A.. et al. Encapsulating Mobile Proton Carriers into Structural Defects in Coordination Polymer Crystals: High Anhydrous Proton Conduction and Fuel Cell Application. J. Am. Chem. Soc. 2016;138:8505–8511. doi: 10.1021/jacs.6b03625. PubMed DOI

Stankiewicz J., Tomás M., Dobrinovitch I. T., Forcén-Vázquez E., Falvello L. R.. Proton Conduction in a Nonporous One Dimensional Coordination Polymer. Chem. Mater. 2014;26:5282–5287. doi: 10.1021/cm502142a. DOI

Rautenberg M., Bhattacharya B., Das C., Emmerling F.. Mechanochemical Synthesis of Phosphonate-Based Proton Conducting Metal–Organic Frameworks. Inorg. Chem. 2022;61:10801–10809. doi: 10.1021/acs.inorgchem.2c01023. PubMed DOI

Afrin U., Mian M. R., Otake K., Drout R. J., Redfern L. R., Horike S., Islamoglu T., Farha O. K.. Proton Conductivity via Trapped Water in Phosphonate-Based Metal–Organic Frameworks Synthesized in Aqueous Media. Inorg. Chem. 2021;60:1086–1091. doi: 10.1021/acs.inorgchem.0c03206. PubMed DOI

Salcedo I. R., Colodrero R. M. P., Bazaga-García M., López-González M., del Río C., Xanthopoulos K., Demadis K. D., Hix G. B., Furasova A. D., Choquesillo-Lazarte D.. et al. Phase Transformation Dynamics in Sulfate-Loaded Lanthanide Triphosphonates. Proton Conductivity and Application as Fillers in PEMFCs. ACS Appl. Mater. Interfaces. 2021;13:15279–15291. doi: 10.1021/acsami.1c01441. PubMed DOI PMC

Hynek J., Brázda P., Rohlíček J., Londesborough M. G. S., Demel J.. Phosphinic Acid Based Linkers: Building Blocks in Metal–Organic Framework Chemistry. Angew. Chem. Int. Ed. 2018;57(18):5016–5019. doi: 10.1002/anie.201800884. PubMed DOI

CrysAlisPRO, Version 1.0.43; Oxford Diffraction/Agilent Technologies UK Ltd: Yarnton, U.K., 2020.

Sheldrick G. M.. SHELXT– Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr., Sect. A:Found. Adv. 2015;71(1):3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC

Sheldrick G. M.. Crystal Structure Refinement withSHELXL. Acta Crystallogr., Sect. C:Struct. Chem. 2015;71(1):3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC

Dolomanov O. V., Bourhis L. J., Gildea R. J., Howard J. A. K., Puschmann H.. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009;42(2):339–341. doi: 10.1107/S0021889808042726. DOI

Chilton N. F., Anderson R. P., Turner L. D., Soncini A., Murray K. S.. PHI: A Powerful New Program for the Analysis of Anisotropic Monomeric and Exchange-coupled Polynuclear d- and f-block Complexes. J. Comput. Chem. 2013;34:1164–1175. doi: 10.1002/jcc.23234. PubMed DOI

Žák T., Jirásková Y.. CONFIT: Mössbauer Spectra Fitting Program. Surf. Interface Anal. 2006;38:710–714. doi: 10.1002/sia.2285. DOI

Abragam, A. ; Bleaney, B. . Electron Paramagnetic Resonance of Transition Ions Oxford: Dover, New York, 1986. 978–0486651064.

ZSimpWin, EChem Software, B. Yeum; AMETEK Scientific Instruments: Ann Arbor (USA), 1999–2013.

Barsoukov, E. ; Macdonald, J. R. . Impedance Spectroscopy; John Wiley & Sons Inc.: NJ, 2018.

Luschtinetz R., Seifert G., Jaehne E., Adler H. P.. Infrared Spectra of Alkylphosphonic Acid Bound to Aluminium Surfaces. Macromol. Symp. 2007;254:248–253. doi: 10.1002/masy.200750837. DOI

Groves J. A., Miller S. R., Warrender S. J., Mellot-Draznieks C., Lightfoot P., Wright P. A.. The First Route to Large Pore Metal Phosphonates. Chem. Commun. 2006:3305–3307. doi: 10.1039/b605400e. PubMed DOI

Blackmore W. J. A., Brambleby J., Lancaster T., Clark S. J., Johnson R. D., Singleton J., Ozarowski A., Schlueter J. A., Chen Y.-S., Arif A. M.. et al. Determining the Anisotropy and Exchange Parameters of Polycrystalline Spin-1 Magnets. New J. Phys. 2019;21:093025. doi: 10.1088/1367-2630/ab3dba. DOI

Mugiraneza S., Hallas A. M.. Tutorial: A Beginner’s Guide to Interpreting Magnetic Susceptibility Data with the Curie-Weiss Law. Commun. Phys. 2022;5(1):95. doi: 10.1038/s42005-022-00853-y. DOI

Amorós P., Beltrán A., Beltrán D.. Superexchange Pathways in Oxovanadium­(IV) Phosphates. J. Alloys Compd. 1992;188:123–127. doi: 10.1016/0925-8388(92)90658-V. DOI

Juráková J., Šalitroš I.. Co­(II) Single-Ion Magnets: Synthesis, Structure, and Magnetic Properties. Monatsh. Chem. 2022;153:1001–1036. doi: 10.1007/s00706-022-02920-0. PubMed DOI PMC

Wu Y., Tian D., Ferrando-Soria J., Cano J., Yin L., Ouyang Z., Wang Z., Luo S., Liu X., Pardo E.. Modulation of the Magnetic Anisotropy of Octahedral Cobalt­(II) Single-Ion Magnets by Fine-Tuning the Axial Coordination Microenvironment. Inorg. Chem. Front. 2019;6:848–856. doi: 10.1039/c8qi01373j. DOI

Menil F.. Systematic Trends of the 57Fe Mössbauer Isomer Shifts in (FeOn) and (FeFn) Polyhedra. Evidence of a New Correlation between the Isomer Shift and the Inductive Effect of the Competing Bond T-X (→ Fe) (Where X Is O or F and T Any Element with a Formal Positive Charge) J. Phys. Chem. Solids. 1985;46:763–789. doi: 10.1016/0022-3697(85)90001-0. DOI

Gütlich, P. ; Bill, E. ; Trautwein, A. X. . Mössbauer Spectroscopy and Transition Metal Chemistry; Springer-Verlag Berlin Heidelberg, 2011. 978–3-540–88427–9.

Kmječ T., Kohout J., Dopita M., Veverka M., Kuriplach J.. Mössbauer Spectroscopy of Triphylite (LiFePO4) at Low Temperatures. Condens. Matter. 2019;4:86. doi: 10.3390/condmat4040086. DOI

Sanselme M., Grenèche J.-M., Riou-Cavellec M., Férey G.. The First Ferric Carboxylate with a Three-Dimensional Hydrid Open-Framework (MIL-82): Its Synthesis, Structure, Magnetic Behavior and Study of Its Dehydration by Mössbauer Spectroscopy. Solid State Sci. 2004;6:853–858. doi: 10.1016/j.solidstatesciences.2004.04.001. DOI

Gonser U., Grant R. W.. Determination of Spin Directions and Electric Field Gradient Axes in Vivianite by Polarized Recoil-Free γ-Rays. Phys. Status Solidi B. 1967;21:331–342. doi: 10.1002/pssb.19670210134. DOI

Ingalls R.. Electric-Field Gradient Tensor in Ferrous Compounds. Phys. Rev. 1964;133:A787–A795. doi: 10.1103/PhysRev.133.A787. DOI

Price D. C., Srivastava K. K. P.. Paramagnetic Hyperfine Structure and Electronic Relaxation of Fe2+ in CaCO3 and CdCO3 . Le J. de Phys. Colloq. 1976;37:C6–123–C6–127. doi: 10.1051/jphyscol:1976629. DOI

Eeckhout S. G., De Grave E., Vochten R., Blaton N. M.. Mössbauer Effect Study of Anapaite, Ca2Fe2+(PO4)2·4H2O, and of Its Oxidation Products. Phys. Chem. Miner. 1999;26:506–512. doi: 10.1007/s002690050213. DOI

Johnson C. E.. Hyperfine Interactions in Ferrous Fluosilicate. Proc. Phys. Soc. 1967;92:748–757. doi: 10.1088/0370-1328/92/3/326. DOI

Slichter, C. P. Principles of Magnetic Resonance; Springer Berlin Heidelberg, 1990. 10.1007/978-3-662-09441-9. DOI

Boča R.. Mean and Differential Magnetic Susceptibilities in Metal Complexes. Coord. Chem. Rev. 1998;173(1):167–283. doi: 10.1016/S0010-8545(98)00139-8. DOI

Boča R.. Zero-Field Splitting in Metal Complexes. Coord. Chem. Rev. 2004;248(9–10):757–815. doi: 10.1016/j.ccr.2004.03.001. DOI

Kahn, O. Molecular Magnetism; VCH Publishers, Inc.: Cambridge, 1993. 1–56081–566–3.

Klencsár Z., Kuzmann E., Vértes A.. User-Friendly Software for Mössbauer Spectrum Analysis. J. Radioanal. Nucl. Chem. Art. 1996;210:105–118. doi: 10.1007/BF02055410. DOI

Sawatzky G. A., van der Woude F.. Covalency Effects in Hyperfine Interactions. Le J. de Phys. Colloq. 1974;35:C6–47–C6–60. doi: 10.1051/jphyscol:1974605. DOI

Colodrero R. M. P., Angeli G. K., Bazaga-Garcia M., Olivera-Pastor P., Villemin D., Losilla E. R., Martos E. Q., Hix G. B., Aranda M. A. G., Demadis K. D., Cabeza A.. Structural Variability in Multifunctional Metal Xylenediaminetetraphosphonate Hybrids. Inorg. Chem. 2013;52:8770–8783. doi: 10.1021/ic400951s. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...