Magnetism, Mössbauer Spectroscopy, and Proton Conductivity of Coordination Polymers Based on Phosphonate and Phosphinate Linkers
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40927503
PubMed Central
PMC12415879
DOI
10.1021/acs.jpcc.5c04260
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Coordination polymers (CPs) are versatile materials formed by metal ions and organic ligands, offering a broad range of structural and functional possibilities. Phosphonates and phosphinates are particularly attractive ligands for CPs due to their multiple binding sites, varied coordination geometries, and ability to form robust network structures. Phosphonates, considered harder ligands, form strong bonds with hard metals such as Fe3+, while phosphinates offer additional versatility due to the varied pendant groups on phosphorus. This study presents a series of six new coordination polymers, ICR-20 and ICR-21, incorporating Fe2+, Co2+, and Ni2+ metal centers, using phosphinate (H2PBP-(Me)) or phosphinate-phosphonate (H3PPP-(Me)) ligands in combination with 4,4'-bipyridine. The materials are isoreticular despite the incorporation of different functional groups, demonstrating the interchangeability of the phosphinate and phosphonate groups in their design. These polymers were characterized structurally and investigated for their magnetic properties. The combination of local insights from Mössbauer spectroscopy and bulk magnetic data provides complex information on crystal field parameters and magnetic interactions in Fe-based polymers. Additionally, their proton conductivity was evaluated, showing promising results.
Faculty of Mathematics and Physics Charles University 5 Holešovičkách 2 180 00 Prague Czech Republic
Zobrazit více v PubMed
Loukopoulos E., Kostakis G. E.. Review: Recent Advances of One-Dimensional Coordination Polymers as Catalysts. J. Coord. Chem. 2018;71:371–410. doi: 10.1080/00958972.2018.1439163. DOI
Malinowski J., Zych D., Jacewicz D., Gawdzik B., Drzeżdżon J.. Application of Coordination Compounds with Transition Metal Ions in the Chemical IndustryA Review. Int. J. Mol. Sci. 2020;21:5443. doi: 10.3390/ijms21155443. PubMed DOI PMC
Imaz I., Rubio-Martínez M., García-Fernández L., García F., Ruiz-Molina D., Hernando J., Puntes V., Maspoch D.. Coordination Polymer Particles as Potential Drug Delivery Systems. Chem. Commun. 2010;46:4737–4739. doi: 10.1039/c003084h. PubMed DOI
Murphy J. N., Kobti J.-L., Dao M., Wear D., Okoko M., Pandey S., Vukotic V. N.. Therapeutic Coordination Polymers: Tailoring Drug Release through Metal–Ligand Interactions. Chem. Sci. 2024;15:7041–7050. doi: 10.1039/D4SC00732H. PubMed DOI PMC
Heine J., Müller-Buschbaum K.. Engineering Metal-Based Luminescence in Coordination Polymers and Metal–Organic Frameworks. Chem. Soc. Rev. 2013;42:9232–9242. doi: 10.1039/c3cs60232j. PubMed DOI
Kuznetsova A., Matveevskaya V., Pavlov D., Yakunenkov A., Potapov A.. Coordination Polymers Based on Highly Emissive Ligands: Synthesis and Functional Properties. Materials. 2020;13:2699. doi: 10.3390/ma13122699. PubMed DOI PMC
Journaux Y., Ferrando-Soria J., Pardo E., Ruiz-Garcia R., Julve M., Lloret F., Cano J., Li Y., Lisnard L., Yu P., Stumpf H., Pereira C. L. M.. Design of Magnetic Coordination Polymers Built from Polyoxalamide Ligands: A Thirty Year Story. Eur. J. Inorg. Chem. 2018;2018:228–247. doi: 10.1002/ejic.201700984. DOI
Saines P. J., Bristowe N. C.. Probing Magnetic Interactions in Metal–Organic Frameworks and Coordination Polymers Microscopically. Dalton Trans. 2018;47:13257–13280. doi: 10.1039/C8DT02411A. PubMed DOI
Coronado E.. Molecular Magnetism: From Chemical Design to Spin Control in Molecules, Materials and Devices. Nat. Rev. Mater. 2020;5:87–104. doi: 10.1038/s41578-019-0146-8. DOI
Shearan S. J. I., Stock N., Emmerling F., Demel J., Wright P. A., Demadis K. D., Vassaki M., Costantino F., Vivani R., Sallard S., Salcedo I. R., Cabeza A., Taddei M.. New Directions in Metal Phosphonate and Phosphinate Chemistry. Crystals. 2019;9:270. doi: 10.3390/cryst9050270. DOI
Pearson R. G.. Hard and Soft Acids and Bases. J. Am. Chem. Soc. 1963;85:3533–3539. doi: 10.1021/ja00905a001. DOI
Taddei M., Costantino F., Vivani R.. Robust Metal-Organic Frameworks Based on Tritopic Phosphonoaromatic Ligands. Eur. J. Inorg. Chem. 2016;2016:4300–4309. doi: 10.1002/ejic.201600207. DOI
Bůžek D., Ondrušová S., Hynek J., Kovář P., Lang K., Rohlíček J., Demel J.. Robust Aluminum and Iron Phosphinate Metal–Organic Frameworks for Efficient Removal of Bisphenol A. Inorg. Chem. 2020;59:5538–5545. doi: 10.1021/acs.inorgchem.0c00201. PubMed DOI
Hynek J., Ondrušová S., Bůžek D., Kloda M., Rohlíček J., Pospíšil M., Janoš P., Demel J.. Linker Functionalised Phosphinate Metal-Organic Frameworks: Adsorbents for the Removal of Emerging Pollutants. Inorg. Chem. 2023;62(38):15479–15489. doi: 10.1021/acs.inorgchem.3c01810. PubMed DOI PMC
Ondrušová S., Kloda M., Rohlíček J., Taddei M., Zaręba J. K., Demel J.. Exploring the Isoreticular Continuum between Phosphonate- and Phosphinate-Based Metal–Organic Frameworks. Inorg. Chem. 2022;61(47):18990–18997. doi: 10.1021/acs.inorgchem.2c03271. PubMed DOI PMC
Kloda M., Ondrušová S., Lang K., Demel J.. Phosphinic Acids as Building Units in Materials Chemistry. Coord. Chem. Rev. 2021;433:213748. doi: 10.1016/j.ccr.2020.213748. DOI
She S., Gong L., Wang B., Yang Y., Lei Q., Liu B., Su G.. Slow Magnetic Relaxation in a Two-Dimensional Dysprosium(III) Coordination Polymer. Inorg. Chem. Commun. 2016;70:18–21. doi: 10.1016/j.inoche.2016.05.004. DOI
Shao D., Wan Y., Zhang Y.-L., Zhang Q., Yang S.-Y.. Cobalt(II) Coordination Polymers with Single-Ion Magnet Property. CrystEngComm. 2024;26:3771–3782. doi: 10.1039/D4CE00512K. DOI
Manson J. L., Conner M. M., Schlueter J. A., Lancaster T., Blundell S. J., Brooks M. L., Pratt F. L., Papageorgiou T., Bianchi A. D., Wosnitza J., Whangbo M. H.. [Cu(HF2)(Pyz)2]BF4 (Pyz = Pyrazine): Long-Range Magnetic Ordering in a Pseudo-Cubic Coordination Polymer Comprised of Bridging HF2? And Pyrazine Ligands. Chem. Commun. 2006:4894–4896. doi: 10.1039/b608791d. PubMed DOI
Scatena R., Montisci F., Lanza A., Casati N. P. M., Macchi P.. Magnetic Network on Demand: Pressure Tunes Square Lattice Coordination Polymers Based on {[Cu(Pyrazine)2]2+}n. Inorg. Chem. 2020;59:10091–10098. doi: 10.1021/acs.inorgchem.0c01229. PubMed DOI PMC
Lee K., Park J., Song I., Yoon S. M.. The Magnetism of Metal–Organic Frameworks for Spintronics. Bull. Korean Chem. Soc. 2021;42:1170–1183. doi: 10.1002/bkcs.12362. DOI
Sun S.-J., Menšík M., Toman P.. Analyzing Trade-off Issues in Synthesis of Magnetic Polymer Compounds through Theoretical Investigation. J. Magn. Magn. Mater. 2024;603:172275. doi: 10.1016/j.jmmm.2024.172275. DOI
Midollini S., Orlandini A., Rosa P., Sorace L.. Structure and Magnetism of a New Hydrogen-Bonded Layered Cobalt(II) Network, Constructed by the Unprecedented Carboxylate–Phosphinate Ligand [O2(C6H5)PCH2CO2]2 . Inorg. Chem. 2005;44:2060–2066. doi: 10.1021/ic048602x. PubMed DOI
Du J.-L., Rettig S. J., Thompson R. C., Trotter J.. Synthesis, structure, and magnetic properties of diphenylphosphinates of cobalt(II) and manganese(II). The crystal and molecular structures of the γ forms of poly-bis(μ-diphenylphosphinato)cobalt(II) and manganese(II) Can. J. Chem. 1991;69:277–285. doi: 10.1139/v91-043. DOI
Du J.-L., Rettig S. J., Thompson R. C., Trotter J., Betz P., Bino A.. Structure and magnetic properties of monophenylphosphinate bridged chain polymers of manganese(II), [MnL2(HPhPO2)2]x (where L = HPhPO2H, CH3CONH2, H2O, HCONH(CH3), and C5H5N) Can. J. Chem. 1992;70:732–741. doi: 10.1139/v92-098. DOI
Mendes R. F., Barbosa P., Domingues E. M., Silva P., Figueiredo F., Almeida Paz F. A.. Enhanced Proton Conductivity in a Layered Coordination Polymer. Chem. Sci. 2020;11:6305–6311. doi: 10.1039/D0SC01762K. PubMed DOI PMC
Kolokolov D. I., Lim D., Kitagawa H.. Characterization of Proton Dynamics for the Understanding of Conduction Mechanism in Proton Conductive Metal-Organic Frameworks. Chem. Rec. 2020;20:1297–1313. doi: 10.1002/tcr.202000072. PubMed DOI
Develioglu A., Resines-Urien E., Poloni R., Martín-Pérez L., Costa J. S., Burzurí E.. Tunable Proton Conductivity and Color in a Nonporous Coordination Polymer via Lattice Accommodation to Small Molecules. Adv. Sci. 2021;8:2102619. doi: 10.1002/advs.202102619. PubMed DOI PMC
Inukai M., Horike S., Itakura T., Shinozaki R., Ogiwara N., Umeyama D., Nagarkar S., Nishiyama Y., Malon M., Hayashi A.. et al. Encapsulating Mobile Proton Carriers into Structural Defects in Coordination Polymer Crystals: High Anhydrous Proton Conduction and Fuel Cell Application. J. Am. Chem. Soc. 2016;138:8505–8511. doi: 10.1021/jacs.6b03625. PubMed DOI
Stankiewicz J., Tomás M., Dobrinovitch I. T., Forcén-Vázquez E., Falvello L. R.. Proton Conduction in a Nonporous One Dimensional Coordination Polymer. Chem. Mater. 2014;26:5282–5287. doi: 10.1021/cm502142a. DOI
Rautenberg M., Bhattacharya B., Das C., Emmerling F.. Mechanochemical Synthesis of Phosphonate-Based Proton Conducting Metal–Organic Frameworks. Inorg. Chem. 2022;61:10801–10809. doi: 10.1021/acs.inorgchem.2c01023. PubMed DOI
Afrin U., Mian M. R., Otake K., Drout R. J., Redfern L. R., Horike S., Islamoglu T., Farha O. K.. Proton Conductivity via Trapped Water in Phosphonate-Based Metal–Organic Frameworks Synthesized in Aqueous Media. Inorg. Chem. 2021;60:1086–1091. doi: 10.1021/acs.inorgchem.0c03206. PubMed DOI
Salcedo I. R., Colodrero R. M. P., Bazaga-García M., López-González M., del Río C., Xanthopoulos K., Demadis K. D., Hix G. B., Furasova A. D., Choquesillo-Lazarte D.. et al. Phase Transformation Dynamics in Sulfate-Loaded Lanthanide Triphosphonates. Proton Conductivity and Application as Fillers in PEMFCs. ACS Appl. Mater. Interfaces. 2021;13:15279–15291. doi: 10.1021/acsami.1c01441. PubMed DOI PMC
Hynek J., Brázda P., Rohlíček J., Londesborough M. G. S., Demel J.. Phosphinic Acid Based Linkers: Building Blocks in Metal–Organic Framework Chemistry. Angew. Chem. Int. Ed. 2018;57(18):5016–5019. doi: 10.1002/anie.201800884. PubMed DOI
CrysAlisPRO, Version 1.0.43; Oxford Diffraction/Agilent Technologies UK Ltd: Yarnton, U.K., 2020.
Sheldrick G. M.. SHELXT– Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr., Sect. A:Found. Adv. 2015;71(1):3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC
Sheldrick G. M.. Crystal Structure Refinement withSHELXL. Acta Crystallogr., Sect. C:Struct. Chem. 2015;71(1):3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC
Dolomanov O. V., Bourhis L. J., Gildea R. J., Howard J. A. K., Puschmann H.. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009;42(2):339–341. doi: 10.1107/S0021889808042726. DOI
Chilton N. F., Anderson R. P., Turner L. D., Soncini A., Murray K. S.. PHI: A Powerful New Program for the Analysis of Anisotropic Monomeric and Exchange-coupled Polynuclear d- and f-block Complexes. J. Comput. Chem. 2013;34:1164–1175. doi: 10.1002/jcc.23234. PubMed DOI
Žák T., Jirásková Y.. CONFIT: Mössbauer Spectra Fitting Program. Surf. Interface Anal. 2006;38:710–714. doi: 10.1002/sia.2285. DOI
Abragam, A. ; Bleaney, B. . Electron Paramagnetic Resonance of Transition Ions Oxford: Dover, New York, 1986. 978–0486651064.
ZSimpWin, EChem Software, B. Yeum; AMETEK Scientific Instruments: Ann Arbor (USA), 1999–2013.
Barsoukov, E. ; Macdonald, J. R. . Impedance Spectroscopy; John Wiley & Sons Inc.: NJ, 2018.
Luschtinetz R., Seifert G., Jaehne E., Adler H. P.. Infrared Spectra of Alkylphosphonic Acid Bound to Aluminium Surfaces. Macromol. Symp. 2007;254:248–253. doi: 10.1002/masy.200750837. DOI
Groves J. A., Miller S. R., Warrender S. J., Mellot-Draznieks C., Lightfoot P., Wright P. A.. The First Route to Large Pore Metal Phosphonates. Chem. Commun. 2006:3305–3307. doi: 10.1039/b605400e. PubMed DOI
Blackmore W. J. A., Brambleby J., Lancaster T., Clark S. J., Johnson R. D., Singleton J., Ozarowski A., Schlueter J. A., Chen Y.-S., Arif A. M.. et al. Determining the Anisotropy and Exchange Parameters of Polycrystalline Spin-1 Magnets. New J. Phys. 2019;21:093025. doi: 10.1088/1367-2630/ab3dba. DOI
Mugiraneza S., Hallas A. M.. Tutorial: A Beginner’s Guide to Interpreting Magnetic Susceptibility Data with the Curie-Weiss Law. Commun. Phys. 2022;5(1):95. doi: 10.1038/s42005-022-00853-y. DOI
Amorós P., Beltrán A., Beltrán D.. Superexchange Pathways in Oxovanadium(IV) Phosphates. J. Alloys Compd. 1992;188:123–127. doi: 10.1016/0925-8388(92)90658-V. DOI
Juráková J., Šalitroš I.. Co(II) Single-Ion Magnets: Synthesis, Structure, and Magnetic Properties. Monatsh. Chem. 2022;153:1001–1036. doi: 10.1007/s00706-022-02920-0. PubMed DOI PMC
Wu Y., Tian D., Ferrando-Soria J., Cano J., Yin L., Ouyang Z., Wang Z., Luo S., Liu X., Pardo E.. Modulation of the Magnetic Anisotropy of Octahedral Cobalt(II) Single-Ion Magnets by Fine-Tuning the Axial Coordination Microenvironment. Inorg. Chem. Front. 2019;6:848–856. doi: 10.1039/c8qi01373j. DOI
Menil F.. Systematic Trends of the 57Fe Mössbauer Isomer Shifts in (FeOn) and (FeFn) Polyhedra. Evidence of a New Correlation between the Isomer Shift and the Inductive Effect of the Competing Bond T-X (→ Fe) (Where X Is O or F and T Any Element with a Formal Positive Charge) J. Phys. Chem. Solids. 1985;46:763–789. doi: 10.1016/0022-3697(85)90001-0. DOI
Gütlich, P. ; Bill, E. ; Trautwein, A. X. . Mössbauer Spectroscopy and Transition Metal Chemistry; Springer-Verlag Berlin Heidelberg, 2011. 978–3-540–88427–9.
Kmječ T., Kohout J., Dopita M., Veverka M., Kuriplach J.. Mössbauer Spectroscopy of Triphylite (LiFePO4) at Low Temperatures. Condens. Matter. 2019;4:86. doi: 10.3390/condmat4040086. DOI
Sanselme M., Grenèche J.-M., Riou-Cavellec M., Férey G.. The First Ferric Carboxylate with a Three-Dimensional Hydrid Open-Framework (MIL-82): Its Synthesis, Structure, Magnetic Behavior and Study of Its Dehydration by Mössbauer Spectroscopy. Solid State Sci. 2004;6:853–858. doi: 10.1016/j.solidstatesciences.2004.04.001. DOI
Gonser U., Grant R. W.. Determination of Spin Directions and Electric Field Gradient Axes in Vivianite by Polarized Recoil-Free γ-Rays. Phys. Status Solidi B. 1967;21:331–342. doi: 10.1002/pssb.19670210134. DOI
Ingalls R.. Electric-Field Gradient Tensor in Ferrous Compounds. Phys. Rev. 1964;133:A787–A795. doi: 10.1103/PhysRev.133.A787. DOI
Price D. C., Srivastava K. K. P.. Paramagnetic Hyperfine Structure and Electronic Relaxation of Fe2+ in CaCO3 and CdCO3 . Le J. de Phys. Colloq. 1976;37:C6–123–C6–127. doi: 10.1051/jphyscol:1976629. DOI
Eeckhout S. G., De Grave E., Vochten R., Blaton N. M.. Mössbauer Effect Study of Anapaite, Ca2Fe2+(PO4)2·4H2O, and of Its Oxidation Products. Phys. Chem. Miner. 1999;26:506–512. doi: 10.1007/s002690050213. DOI
Johnson C. E.. Hyperfine Interactions in Ferrous Fluosilicate. Proc. Phys. Soc. 1967;92:748–757. doi: 10.1088/0370-1328/92/3/326. DOI
Slichter, C. P. Principles of Magnetic Resonance; Springer Berlin Heidelberg, 1990. 10.1007/978-3-662-09441-9. DOI
Boča R.. Mean and Differential Magnetic Susceptibilities in Metal Complexes. Coord. Chem. Rev. 1998;173(1):167–283. doi: 10.1016/S0010-8545(98)00139-8. DOI
Boča R.. Zero-Field Splitting in Metal Complexes. Coord. Chem. Rev. 2004;248(9–10):757–815. doi: 10.1016/j.ccr.2004.03.001. DOI
Kahn, O. Molecular Magnetism; VCH Publishers, Inc.: Cambridge, 1993. 1–56081–566–3.
Klencsár Z., Kuzmann E., Vértes A.. User-Friendly Software for Mössbauer Spectrum Analysis. J. Radioanal. Nucl. Chem. Art. 1996;210:105–118. doi: 10.1007/BF02055410. DOI
Sawatzky G. A., van der Woude F.. Covalency Effects in Hyperfine Interactions. Le J. de Phys. Colloq. 1974;35:C6–47–C6–60. doi: 10.1051/jphyscol:1974605. DOI
Colodrero R. M. P., Angeli G. K., Bazaga-Garcia M., Olivera-Pastor P., Villemin D., Losilla E. R., Martos E. Q., Hix G. B., Aranda M. A. G., Demadis K. D., Cabeza A.. Structural Variability in Multifunctional Metal Xylenediaminetetraphosphonate Hybrids. Inorg. Chem. 2013;52:8770–8783. doi: 10.1021/ic400951s. PubMed DOI