• This record comes from PubMed

Exploring the Isoreticular Continuum between Phosphonate- and Phosphinate-Based Metal-Organic Frameworks

. 2022 Nov 28 ; 61 (47) : 18990-18997. [epub] 20221111

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

The rational design of metal-organic frameworks (MOFs) is one of the driving forces behind the great success that this class of materials is experiencing. The so-called isoreticular approach is a key design tool, very often used to tune the size, steric properties, and additional functional groups of the linker used. In this work, we go one step further and show that even linkers with two different coordinating groups, namely, phosphonate and phosphinate, can form isoreticular MOFs. This effectively bridges the gap between MOFs utilizing phosphinate and phosphonate coordinating groups. Using a novel bifunctional ligand, 4-[hydroxy(methyl)phosphoryl]phenylphosphonic acid [H3PPP(Me)], we were able to prepare ICR-12, a MOF isoreticular to already published MOFs containing bisphosphinate linkers (e.g., ICR-4). An isostructural MOF ICR-13 was also successfully prepared using 1,4-benzenediphosphonic acid. We envisage that this strategy can be used to further enlarge the pool of MOFs.

See more in PubMed

Li H.; Wang K.; Sun Y.; Lollar C. T.; Li J.; Zhou H.-C. Recent Advances in Gas Storage and Separation Using Metal–Organic Frameworks. Mater. Today 2018, 21, 108–121. 10.1016/j.mattod.2017.07.006. DOI

Dhakshinamoorthy A.; Li Z.; Garcia H. Catalysis and Photocatalysis by Metal Organic Frameworks. Chem. Soc. Rev. 2018, 47, 8134–8172. 10.1039/c8cs00256h. PubMed DOI

Bavykina A.; Kolobov N.; Khan I. S.; Bau J. A.; Ramirez A.; Gascon J. Metal–Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives. Chem. Rev. 2020, 120, 8468–8535. 10.1021/acs.chemrev.9b00685. PubMed DOI

Fang X.; Zong B.; Mao S. Metal–Organic Framework-Based Sensors for Environmental Contaminant Sensing. Nano-Micro Lett. 2018, 10, 64.10.1007/s40820-018-0218-0. PubMed DOI PMC

Cai H.; Huang Y.-L.; Li D. Biological Metal–Organic Frameworks: Structures, Host–Guest Chemistry and Bio-Applications. Coord. Chem. Rev. 2019, 378, 207–221. 10.1016/j.ccr.2017.12.003. DOI

López J.; Chávez A. M.; Rey A.; Álvarez P. M. Insights into the Stability and Activity of MIL-53(Fe) in Solar Photocatalytic Oxidation Processes in Water. Catalysts 2021, 11, 448.10.3390/catal11040448. DOI

Pearson R. G. Hard and Soft Acids and Bases. J. Am. Chem. Soc. 1963, 85, 3533–3539. 10.1021/ja00905a001. DOI

Park K. S.; Ni Z.; Côté A. P.; Choi J. Y.; Huang R.; Uribe-Romo F. J.; Chae H. K.; O’Keeffe M.; Yaghi O. M. Exceptional Chemical and Thermal Stability of Zeolitic Imidazolate Frameworks. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 10186–10191. 10.1073/pnas.0602439103. PubMed DOI PMC

Hönicke I. M.; Senkovska I.; Bon V.; Baburin I. A.; Bönisch N.; Raschke S.; Evans J. D.; Kaskel S. Balancing Mechanical Stability and Ultrahigh Porosity in Crystalline Framework Materials. Angew. Chem., Int. Ed. 2018, 57, 13780–13783. 10.1002/anie.201808240. PubMed DOI

Bůžek D.; Demel J.; Lang K. Zirconium Metal–Organic Framework UiO-66: Stability in an Aqueous Environment and Its Relevance for Organophosphate Degradation. Inorg. Chem. 2018, 57, 14290–14297. 10.1021/acs.inorgchem.8b02360. PubMed DOI

Bůžek D.; Adamec S.; Lang K.; Demel J. Metal–Organic Frameworks vs. Buffers: Case Study of UiO-66 Stability. Inorg. Chem. Front. 2021, 8, 720–734. 10.1039/d0qi00973c. DOI

Taddei M.; Costantino F.; Vivani R. Robust Metal-Organic Frameworks Based on Tritopic Phosphonoaromatic Ligands. Eur. J. Inorg. Chem. 2016, 2016, 4300–4309. 10.1002/ejic.201600207. DOI

Le Bideau J.; Payen C.; Palvadeau P.; Bujoli B. Preparation, Structure, and Magnetic Properties of Copper(II) Phosphonates. β-CuII(CH3PO3), an Original Three-Dimensional Structure with a Channel-Type Arrangement. Inorg. Chem. 1994, 33, 4885–4890. 10.1021/ic00100a011. DOI

Maeda K.; Kiyozumi Y.; Mizukami F. Synthesis of the First Microporous Aluminum Phosphonate with Organic Groups Covalently Bonded to the Skeleton. Angew. Chem., Int. Ed. 1994, 33, 2335–2337. 10.1002/anie.199423351. DOI

Lohse D. L.; Sevov S. C. Co2(O3P–CH2–PO3)·H2O: A Novel Microporous Diphosphonate with an Inorganic Framework and Hydrocarbon-Lined Hydrophobic Channels. Angew. Chem., Int. Ed. 1997, 36, 1619–1621. 10.1002/anie.199716191. DOI

Arnold D. I.; Ouyang X.; Clearfield A. Synthesis and Crystal Structures of Copper(II) Diphosphonatoalkanes: C4 and C5. Chem. Mater. 2002, 14, 2020–2027. 10.1021/cm010651+. DOI

Vaidhyanathan R.; Liang J.; Iremonger S. S.; Shimizu G. K. H. A Route to Functionalised Pores in Coordination Polymers via Mixed Phosphonate and Amino-Triazole Linkers. Supramol. Chem. 2011, 23, 278–282. 10.1080/10610278.2010.523119. DOI

Tholen P.; Zorlu Y.; Beckmann J.; Yücesan G. Probing Isoreticular Expansions in Phosphonate MOFs and Their Applications. Eur. J. Inorg. Chem. 2020, 2020, 1542–1554. 10.1002/ejic.201901291. DOI

Gagnon K. J.; Perry H. P.; Clearfield A. Conventional and Unconventional Metal–Organic Frameworks Based on Phosphonate Ligands: MOFs and UMOFs. Chem. Rev. 2011, 112, 1034–1054. 10.1021/cr2002257. PubMed DOI

Shearan S. J. I.; Stock N.; Emmerling F.; Demel J.; Wright P. A.; Demadis K. D.; Vassaki M.; Costantino F.; Vivani R.; Sallard S.; Ruiz Salcedo I. R.; Cabeza A.; Taddei M. New Directions in Metal Phosphonate and Phosphinate Chemistry. Crystals 2019, 9, 270.10.3390/cryst9050270. DOI

Wilke M.; Bach S.; Gorelik T. E.; Kolb U.; Tremel W.; Emmerling F. Divalent Metal Phosphonates – New Aspects for Syntheses, in Situ Characterization and Structure Solution. Z. für Kristallogr. - Cryst. Mater. 2016, 232, 209–222. 10.1515/zkri-2016-1971. DOI

Iremonger S. S.; Liang J.; Vaidhyanathan R.; Martens I.; Shimizu G. K. H.; Daff T. D.; Yeganegi M. Z.; Woo S.; Woo T. K. Phosphonate Monoesters as Carboxylate-like Linkers for Metal Organic Frameworks. J. Am. Chem. Soc. 2011, 133, 20048–20051. 10.1021/ja207606u. PubMed DOI

Ayhan M. M.; Bayraktar C.; Yu K. B.; Hanna G.; Yazaydin A. O.; Zorlu Y.; Yücesan G. A Nanotubular Metal–Organic Framework with a Narrow Bandgap from Extended Conjugation. Chem.—Eur J. 2020, 26, 14813–14816. 10.1002/chem.202001917. PubMed DOI PMC

Kloda M.; Ondrušová S.; Lang K.; Demel J. Phosphinic Acids as Building Units in Materials Chemistry. Coord. Chem. Rev. 2021, 433, 213748.10.1016/j.ccr.2020.213748. DOI

Hynek J.; Brázda P.; Rohlíček J.; Londesborough M. G. S.; Demel J. Phosphinic Acid Based Linkers: Building Blocks in Metal-Organic Framework Chemistry. Angew. Chem., Int. Ed. 2018, 57, 5016–5019. 10.1002/anie.201800884. PubMed DOI

Carson I.; Healy M. R.; Doidge E. D.; Love J. B.; Morrison C. A.; Tasker P. A. Metal-Binding Motifs of Alkyl and Aryl Phosphinates; Versatile Mono and Polynucleating Ligands. Coord. Chem. Rev. 2017, 335, 150–171. 10.1016/j.ccr.2016.11.018. DOI

Bůžek D.; Ondrušová S.; Hynek J.; Kovář P.; Lang K.; Rohlíček J.; Demel J. Robust Aluminum and Iron Phosphinate Metal-Organic Frameworks for Efficient Removal of Bisphenol A. Inorg. Chem. 2020, 59, 5538–5545. 10.1021/acs.inorgchem.0c00201. PubMed DOI

Garczarek P.; Zaręba J. K.; Duczmal M.; Janczak J.; Zoń J.; Samoć M.; Nyk M. Combining Three Different Functional Groups in One Linker: A Variety of Features of Copper(II) Aminocarboxyphosphonate. Cryst. Growth Des. 2017, 17, 1373–1383. 10.1021/acs.cgd.6b01771. DOI

Li J.-T.; Cao D.-K.; Liu B.; Li Y.-Z.; Zheng L.-M. Zinc 4-Carboxyphenylphosphonates with Pillared Layered Framework Structures Containing Large 12-Membered Rings Built Up from Tetranuclear Zn4 Clusters and CPO3 Linkages. Cryst. Growth Des. 2008, 8, 2950–2953. 10.1021/cg8000653. DOI

Dai L.-L.; Zhu Y.-Y.; Jiao C.-Q.; Sun Z.-G.; Shi S.-P.; Zhou W.; Li W.-Z.; Sun T.; Luo H.; Ma M.-X. Syntheses, Structures, Luminescence and Molecular Recognition Properties of Four New Cadmium Carboxyphosphonates with 2D Layered and 3D Supramolecular Structures. CrystEngComm 2014, 16, 5050–5061. 10.1039/c4ce00040d. DOI

Bazaga-García M.; Papadaki M.; Colodrero R. M. P.; Olivera-Pastor P.; Losilla E. R.; Nieto-Ortega B.; Aranda M. Á. G.; Choquesillo-Lazarte D.; Cabeza A.; Demadis K. D. Tuning Proton Conductivity in Alkali Metal Phosphonocarboxylates by Cation Size-Induced and Water-Facilitated Proton Transfer Pathways. Chem. Mater. 2015, 27, 424–435. 10.1021/cm502716e. DOI

Wöhlbrandt S.; Igeska A.; Svensson Grape E.; Øien-Ødegaard S.; Ken Inge A.; Stock N. Permanent Porosity and Role of Sulfonate Groups in Coordination Networks Constructed from a New Polyfunctional Phosphonato-Sulfonate Linker Molecule. Dalton Trans. 2020, 49, 2724–2733. 10.1039/c9dt04571f. PubMed DOI

Ayyappan P.; Evans O. R.; Cui Y.; Wheeler K. A.; Lin W. Nonlinear Optically Active Polymeric Coordination Networks Based on Metal m-Pyridylphosphonates. Inorg. Chem. 2002, 41, 4978–4980. 10.1021/ic025819n. PubMed DOI

He M.-Q.; Xu Y.; Li M.-X.; Shao M.; Wang Z.-X. Various Silver Phosphinate Inorganic Architectures in Three-Dimensional Frameworks with Argentophilic Interactions. Cryst. Growth Des. 2019, 19, 2892–2898. 10.1021/acs.cgd.9b00111. DOI

Mo J.-P.; Hashemi L.; He J.-L.; Feng W.-L.; Yin Y.; Zhang W.-B.; Li X.-H.; Xiao H.-P.; Morsali A. Crystal Structure, Thermal Stability and Photoluminesence Properties of Five New Zn(II) Coordination Polymers Constructed from Mixed Ligand; N-Donor Pyridine Ligands and Bis(4-Carboxylphenyl)Phosphinic Acid. J. Mol. Struct. 2019, 1180, 63–71. 10.1016/j.molstruc.2018.11.007. DOI

Yeh C.-W.; Chen J.-D. Role of Ligand Conformation in the Structural Diversity of Divalent Complexes Containing Phosphinic Amide Ligand. Inorg. Chem. Commun. 2011, 14, 1212–1216. 10.1016/j.inoche.2011.04.023. DOI

Psillakis E.; Jeffery J. C.; McCleverty J. A.; Ward M. D. Complexes of Silver(I), Thallium(I), Lead(II) and Barium(II) with bis[3-(2-pyridyl)pyrazol-1-yl]phosphinate: One-Dimensional Helical Chains and Discrete Mononuclear Complexes. J. Chem. Soc., Dalton Trans. 1997, 1645–1651. 10.1039/a700475c. DOI

Xue D.-X.; Cairns A. J.; Belmabkhout Y.; Wojtas L.; Liu Y.; Alkordi M. H.; Eddaoudi M. Tunable Rare-Earth Fcu-MOFs: A Platform for Systematic Enhancement of CO2 Adsorption Energetics and Uptake. J. Am. Chem. Soc. 2013, 135, 7660–7667. 10.1021/ja401429x. PubMed DOI

Wharmby M. T.; Mowat J. P. S.; Thompson S. P.; Wright P. A. Extending the Pore Size of Crystalline Metal Phosphonates toward the Mesoporous Regime by Isoreticular Synthesis. J. Am. Chem. Soc. 2011, 133, 1266–1269. 10.1021/ja1097995. PubMed DOI

Steinke F.; Javed A.; Wöhlbrandt S.; Tiemann M.; Stock N. New Isoreticular Phosphonate MOFs Based on a Tetratopic Linker. Dalton Trans. 2021, 50, 13572–13579. 10.1039/d1dt02610k. PubMed DOI

Attfield M. P.; Mendieta-Tan C.; Telchadder R. N.; Roberts M. A. Synthesis, Crystal Structure and Properties of a Novel Framework Aluminium Diphosphonate. RSC Adv. 2012, 2, 10291.10.1039/c2ra21930a. DOI

Kinnibrugh T. L.; Bakhmutov V. I.; Clearfield A. Reversible Dehydration Behavior Reveals Coordinatively Unsaturated Metal Sites in Microporous Aluminum Phosphonates. Cryst. Growth Des. 2014, 14, 4976–4984. 10.1021/cg5005215. DOI

Sarkisov L.; Harrison A. Computational Structure Characterisation Tools in Application to Ordered and Disordered Porous Materials. Mol. Simul. 2011, 37, 1248–1257. 10.1080/08927022.2011.592832. DOI

Vilela S. M. F.; Navarro J. A. R.; Barbosa P.; Mendes R. F.; Pérez-Sánchez G.; Nowell H.; Ananias D.; Figueiredo F.; Gomes J. R. B.; Tomé J. P. C.; Paz F. A. Multifunctionality in an Ion-Exchanged Porous Metal–Organic Framework. J. Am. Chem. Soc. 2021, 143, 1365–1376. 10.1021/jacs.0c10421. PubMed DOI

Hirao T.; Masunaga T.; Ohshiro Y.; Agawa T. A Novel Synthesis of Dialkyl Arenephosphonates. Synthesis 1981, 1981, 56–57. 10.1055/s-1981-29335. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...