Transgenic expression of the HERV-W envelope protein leads to polarized glial cell populations and a neurodegenerative environment
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37695891
PubMed Central
PMC10515160
DOI
10.1073/pnas.2308187120
Knihovny.cz E-zdroje
- Klíčová slova
- endogenous retrovirus, glia, multiple sclerosis, myelin repair, neurodegeneration,
- MeSH
- endogenní retroviry * genetika MeSH
- geneticky modifikovaná zvířata MeSH
- lidé MeSH
- myelinová pochva MeSH
- myši MeSH
- neuroglie MeSH
- roztroušená skleróza * genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- syncytin MeSH Prohlížeč
The human endogenous retrovirus type W (HERV-W) has been identified and repeatedly confirmed as human-specific pathogenic entity affecting many cell types in multiple sclerosis (MS). Our recent contributions revealed the encoded envelope (ENV) protein to disturb myelin repair by interfering with oligodendroglial precursor differentiation and by polarizing microglial cells toward an axon-damage phenotype. Indirect proof of ENV's antiregenerative and degenerative activities has been gathered recently in clinical trials using a neutralizing anti-ENV therapeutic antibody. Yet direct proof of its mode of action can only be presented here based on transgenic ENV expression in mice. Upon demyelination, we observed myelin repair deficits, neurotoxic microglia and astroglia, and increased axon degeneration. Experimental autoimmune encephalomyelitis activity progressed faster in mutant mice equally accompanied by activated glial cells. This study therefore provides direct evidence on HERV-W ENV's contribution to the overall negative impact of this activated viral entity in MS.
Brain and Mind Center University of Sydney NSW 2050 Sydney Australia
Department of Neurology Palacky University Olomouc 77146 Olomouc Czech Republic
Department of Neurology University of Bern CH 3010 Bern Switzerland
GeNeuro Innovation 69008 Lyon France
Neuroscience Center Zurich University of Zürich and ETH Zürich CH 8057 Zürich Switzerland
Zobrazit více v PubMed
Reich D. S., Lucchinetti C. F., Calabresi P. A., Multiple sclerosis. N Engl. J. Med. 378, 169–180 (2018). PubMed PMC
Lassmann H., Multiple sclerosis pathology. Cold Spring Harb. Perspect. Med. 8, 1–15 (2018). PubMed PMC
Perron H., et al. , Leptomeningeal cell line from multiple sclerosis with reverse transcriptase activity and viral particles. Res. Virol. 140, 551–561 (1989). PubMed
Dolei A., Perron H., The multiple sclerosis-associated retrovirus and its HERV-W endogenous family: A biological interface between virology, genetics, and immunology in human physiology and disease. J. Neurovirol. 15, 4–13 (2009). PubMed
Perron H., et al. , Human endogenous retrovirus protein activates innate immunity and promotes experimental allergic encephalomyelitis in mice. PLoS One 8, e80128 (2013). PubMed PMC
Perron H., et al. , Multiple sclerosis retrovirus particles and recombinant envelope trigger an abnormal immune response in vitro, by inducing polyclonal Vbeta16 T-lymphocyte activation. Virology 287, 321–332 (2001). PubMed
Rolland A., et al. , The envelope protein of a human endogenous retrovirus-W family activates innate immunity through CD14/TLR4 and promotes Th1-like responses. J. Immunol. 176, 7636–7644 (2006). PubMed
Garson J. A., Tuke P. W., Giraud P., Paranhos-Baccala G., Perron H., Detection of virion-associated MSRV-RNA in serum of patients with multiple sclerosis. Lancet 351, 33 (1998). PubMed
Mameli G., et al. , Novel reliable real-time PCR for differential detection of MSRVenv and syncytin-1 in RNA and DNA from patients with multiple sclerosis. J. Virol. Methods 161, 98–106 (2009). PubMed
Perron H., et al. , Human endogenous retrovirus type W envelope expression in blood and brain cells provides new insights into multiple sclerosis disease. Mult. Scler. 18, 1721–1736 (2012). PubMed PMC
Kremer D., et al. , pHERV-W envelope protein fuels microglial cell-dependent damage of myelinated axons in multiple sclerosis. Proc. Natl. Acad. Sci. U.S.A. 116, 15216–15225 (2019). PubMed PMC
van Horssen J., van der Pol S., Nijland P., Amor S., Perron H., Human endogenous retrovirus W in brain lesions: Rationale for targeted therapy in multiple sclerosis. Mult. Scler. Relat. Disord. 8, 11–18 (2016). PubMed
Mameli G., et al. , Activation of MSRV-type endogenous retroviruses during infectious mononucleosis and Epstein-Barr virus latency: The missing link with multiple sclerosis? PLoS One 8, e78474 (2013). PubMed PMC
Mameli G., et al. , Expression and activation by Epstein Barr virus of human endogenous retroviruses-W in blood cells and astrocytes: Inference for multiple sclerosis. PLoS One 7, e44991 (2012). PubMed PMC
Bjornevik K., et al. , Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 375, 296–301 (2022). PubMed
Duperray A., et al. , Inflammatory response of endothelial cells to a human endogenous retrovirus associated with multiple sclerosis is mediated by TLR4. Int. Immunol. 27, 545–553 (2015). PubMed PMC
Göttle P., et al. , Rescuing the negative impact of human endogenous retrovirus envelope protein on oligodendroglial differentiation and myelination. Glia 67, 160–170 (2019). PubMed
Kremer D., et al. , Human endogenous retrovirus type W envelope protein inhibits oligodendroglial precursor cell differentiation. Ann. Neurol. 74, 721–732 (2013). PubMed
Hartung H. P., et al. , Efficacy and safety of temelimab in multiple sclerosis: Results of a randomized phase 2b and extension study. Mult. Scler. 28, 429–440 (2022). PubMed
Kremer D., Perron H., Küry P., Reply to Ruprecht and Mayer: Unearthing genomic fossils in the pathogenesis of multiple sclerosis. Proc. Natl. Acad. Sci. U.S.A. 116, 19793–19794 (2019). PubMed PMC
Ruprecht K., Mayer J., On the origin of a pathogenic HERV-W envelope protein present in multiple sclerosis lesions. Proc. Natl. Acad. Sci. U.S.A. 116, 19791–19792 (2019). PubMed PMC
Levet S., et al. , An ancestral retroviral protein identified as a therapeutic target in type-1 diabetes. JCI Insight 2, e94387 (2017). PubMed PMC
Charvet B., et al. , Human endogenous retrovirus type W envelope from multiple sclerosis demyelinating lesions shows unique solubility and antigenic characteristics. Virolog. Sin. 36, 1006–1026 (2021). PubMed PMC
Göttle P., et al. , Teriflunomide as a therapeutic means for myelin repair. J. Neuroinflamm. 20, 7 (2023). PubMed PMC
Manousi A., et al. , Identification of novel myelin repair drugs by modulation of oligodendroglial differentiation competence. EBioMedicine 65, 103276 (2021). PubMed PMC
Silva Oliveira M. Jr., et al. , Myelin repair is fostered by the corticosteroid medrysone specifically acting on astroglial subpopulations. EBioMedicine 83, 104204 (2022). PubMed PMC
Fard M. K., et al. , BCAS1 expression defines a population of early myelinating oligodendrocytes in multiple sclerosis lesions. Sci. Transl. Med. 9, eaam7816 (2017). PubMed PMC
Keren-Shaul H., et al. , A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017). PubMed
Krasemann S., et al. , The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47, 566–581.e9 (2017). PubMed PMC
Stratoulias V., Venero J. L., Tremblay M. E., Joseph B., Microglial subtypes: Diversity within the microglial community. EMBO J. 38, e101997 (2019). PubMed PMC
Liddelow S. A., et al. , Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017). PubMed PMC
Jin C., et al. , A unique type of highly-activated microglia evoking brain inflammation via Mif/Cd74 signaling axis in aged mice. Aging Dis. 12, 2125–2139 (2021). PubMed PMC
Zöller T., Attaai A., Potru P. S., Russ T., Spittau B., Aged mouse cortical microglia display an activation profile suggesting immunotolerogenic functions. Int. J. Mol. Sci. 19, 706 (2018). PubMed PMC
Gorina R., et al. , Astrocytes are very sensitive to develop innate immune responses to lipid-carried short interfering RNA. Glia 57, 93–107 (2009). PubMed
Gharagozloo M., et al. , Complement component 3 from astrocytes mediates retinal ganglion cell loss during neuroinflammation. Acta Neuropathol. 142, 899–915 (2021). PubMed PMC
Bi F., et al. , Reactive astrocytes secrete lcn2 to promote neuron death. Proc. Natl. Acad. Sci. U.S.A. 110, 4069–4074 (2013). PubMed PMC
Kaya T., et al. , CD8(+) T cells induce interferon-responsive oligodendrocytes and microglia in white matter aging. Nat. Neurosci. 25, 1446–1457 (2022). PubMed PMC
Gruchot J., Herrero F., Weber-Stadlbauer U., Meyer U., Küry P., Interplay between activation of endogenous retroviruses and inflammation as common pathogenic mechanism in neurological and psychiatric disorders. Brain Behav. Immun. 107, 242–252 (2023). PubMed
Küry P., et al. , Human endogenous retroviruses in neurological diseases. Trends Mol. Med. 24, 379–394 (2018). PubMed PMC
Balestrieri E., et al. , Evidence of the pathogenic HERV-W envelope expression in T lymphocytes in association with the respiratory outcome of COVID-19 patients. EBioMedicine 66, 103341 (2021). PubMed PMC
Charvet B., et al. , SARS-CoV-2 awakens ancient retroviral genes and the expression of proinflammatory HERV-W envelope protein in COVID-19 patients. iScience 26, 106604 (2023). PubMed PMC
Gruchot J., Kremer D., Küry P., Human endogenous retroviruses: Ammunition for myeloid cells in neurodegenerative diseases? Neural. Regener. Res. 15, 1043–1044 (2020). PubMed PMC
Gruchot J., Kremer D., Küry P., Neural cell responses upon exposure to human endogenous retroviruses. Front. Genet. 10, 655 (2019). PubMed PMC
Jordao M. J. C., et al. , Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science 363, eaat7554 (2019). PubMed
Masuda T., et al. , Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566, 388–392 (2019). PubMed
Absinta M., et al. , A lymphocyte-microglia-astrocyte axis in chronic active multiple sclerosis. Nature 597, 709–714 (2021). PubMed PMC
Ponath G., Park C., Pitt D., The role of astrocytes in multiple sclerosis. Front. Immunol. 9, 217 (2018). PubMed PMC
Galloway D. A., Gowing E., Setayeshgar S., Kothary R., Inhibitory milieu at the multiple sclerosis lesion site and the challenges for remyelination. Glia 68, 859–877 (2020). PubMed
Zhan J., et al. , The cuprizone model: Dos and do nots. Cells 9, 843 (2020). PubMed PMC
Johansson E. M., et al. , Human endogenous retroviral protein triggers deficit in glutamate synapse maturation and behaviors associated with psychosis. Sci. Adv. 6, eabc0708 (2020). PubMed PMC
Lanz T. V., et al. , Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature 603, 321–327 (2022). PubMed PMC
Bello-Morales R., et al. , The effect of cellular differentiation on HSV-1 infection of oligodendrocytic cells. PLoS One 9, e89141 (2014). PubMed PMC
Ferro M. T., Franciotta D., Prelle A., Bestetti A., Cinque P., Active intrathecal herpes simplex virus type 1 (HSV-1) and human herpesvirus-6 (HHV-6) infection at onset of multiple sclerosis. J. Neurovirol. 18, 437–440 (2012). PubMed
Praena B., Bello-Morales R., de Castro F., Lopez-Guerrero J. A., Amidic derivatives of valproic acid, valpromide and valnoctamide, inhibit HSV-1 infection in oligodendrocytes. Antiviral Res. 168, 91–99 (2019). PubMed
Göttle P., et al. , TLR4 Associated signaling disrupters as a new means to overcome HERV-W envelope-mediated myelination deficits. Front. Cell. Neurosci. 15, 777542 (2021). PubMed PMC
Dietrich M., et al. , Increased Remyelination and Proregenerative Microglia Under Siponimod Therapy in Mechanistic Models. Neurol. Neuroimmunol. Neuroinflamm. 9, e1161 (2022). PubMed PMC
Dietrich M., et al. , Early alpha-lipoic acid therapy protects from degeneration of the inner retinal layers and vision loss in an experimental autoimmune encephalomyelitis-optic neuritis model. J. neuroinflammation 15, 71 (2018). PubMed PMC