Epiphytic microflora and mycotoxin content in meadows-Is plant biodiversity affecting fungal contamination?
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37708181
PubMed Central
PMC10501618
DOI
10.1371/journal.pone.0288397
PII: PONE-D-23-01988
Knihovny.cz E-zdroje
- MeSH
- biodiverzita MeSH
- ekosystém MeSH
- lipnicovité MeSH
- mykotoxiny * MeSH
- pastviny MeSH
- Saccharomyces cerevisiae MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mykotoxiny * MeSH
Ecosystem services are an important aspect of grasslands utilization; however, they are often contradictory to their main purpose, which is a production of good quality and safe feed. In this study, we evaluated the difference between grass monocultures and species-rich mixtures in terms of epiphytic microflora and mycotoxin contamination levels. We hypothesized that higher species diversity would lead to higher microbial counts, which could lead to higher mycotoxin contamination risk. Differences in epiphytic fungal, yeast and total amount of microorganisms (CFU g -1) depending on the species diversity in the field has been evaluated by cultivation method. Concentration of deoxynivalenol (DON), zearalenone (ZEN) and aflatoxin B1 (AFB1) was measured by ELISA. Results are suggesting that higher total amount of microorganisms were found in monocultures, however, fungal and yeast counts were higher in species-rich mixtures. Higher species diversity of grasses was related to higher total microbial count (TMC) and yeast colonization of phyllosphere. Our results suggest higher risk of fungal phyllosphere colonization of species-rich mixtures with higher biodiversity and therefore higher risk of mycotoxin contamination of such feed.
Zobrazit více v PubMed
Sala OE, Vivanco L, Flombaum P. Grassland Communities and Ecosystems☆. Reference Module in Life Sciences. Elsevier; 2017. doi: 10.1016/B978-0-12-809633-8.02201-9 DOI
Fleury P, Seres C, Dobremez L, Nettier B, Pauthenet Y. “Flowering Meadows”, a result-oriented agri-environmental measure: Technical and value changes in favour of biodiversity. Land Use Policy. 2015;46: 103–114. doi: 10.1016/j.landusepol.2015.02.007 DOI
Twarużek M, Dembek R, Pańka D, Soszczyńska E, Zastempowska E, Grajewski J. Evaluation of Cytotoxicity and Mould Contamination of Selected Plants from Meadows Covered by the Agri-Environmental Program. Toxins. 2019;11: 228. doi: 10.3390/toxins11040228 PubMed DOI PMC
Burkin AA, Kononenko GP. Mycotoxin Contamination of Meadow Grasses in European Russia. Selskokhozyaistvennaya Biol. 2015;50: 503–512. doi: 10.15389/agrobiology.2015.4.503eng DOI
The European Medicines Agency. Committee for Medicinal Products Veterinary Use (CVMP) Meeting of 14–16 March 2017. Sep 17, 2018. Available: https://www.ema.europa.eu/en/news/committee-medicinal-products-veterinary-use-cvmp-meeting-14-16-march-2017
Bragulat MR, Martínez E, Castellá G, Cabañes FJ. Ochratoxin A and citrinin producing species of the genus Penicillium from feedstuffs. Int J Food Microbiol. 2008;126: 43–48. doi: 10.1016/j.ijfoodmicro.2008.04.034 PubMed DOI
Medina Á, González-Jartín JM, Sainz MJ. Impact of global warming on mycotoxins. Food Toxicol • Food Saf. 2017;18: 76–81. doi: 10.1016/j.cofs.2017.11.009 DOI
Kononenko GP, Gavrilova OP, Gagkaeva TY. Fungal species and multiple mycotoxin contamination of cultivated grasses and legumes crops. Agric Food Sci. 2015;24: 323–330.
Beule L, Lehtsaar E, Rathgeb A, Karlovsky P. Crop Diseases and Mycotoxin Accumulation in Temperate Agroforestry Systems. Sustainability. 2019;11: 2925. doi: 10.3390/su11102925 DOI
Wu F. Measuring the economic impacts of Fusarium toxins in animal feeds. Anim Feed Sci Technol. 2007;137: 363–374. doi: 10.1016/j.anifeedsci.2007.06.010 DOI
Rekha C, Shridhar NB, Jagadeesh SS, Narayanaswamy HD. Isolation and identification of fungal isolates from contaminated meadow grass fodder. J Livestock Sci. 2015;6: 104–108.
Gallo A, Giuberti G, Frisvad JC, Bertuzzi T, Nielsen KF. Review on Mycotoxin Issues in Ruminants: Occurrence in Forages, Effects of Mycotoxin Ingestion on Health Status and Animal Performance and Practical Strategies to Counteract Their Negative Effects. Toxins. 2015;7: 3057–3111. doi: 10.3390/toxins7083057 PubMed DOI PMC
Marasas WFO, Gelderblom W, Shephard G, Vismer H. Mycotoxins: A global problem. Mycotoxins Detect Methods Manag Public Health Agric Trade. 2008; 29–39. doi: 10.1079/9781845930820.0029 DOI
Schmale DG, Munkvold GP. Mycotoxins in Crops ‐ A Threat to Human and Domestic Animal Health. Plant Health Instr. 2014 [cited 9 Feb 2022]. Available: https://www.apsnet.org/edcenter/disimpactmngmnt/topc/Mycotoxins/Pages/default.aspx
Hassan YI, Zhou T. Promising Detoxification Strategies to Mitigate Mycotoxins in Food and Feed. Toxins. 2018;10: 116. doi: 10.3390/toxins10030116 PubMed DOI PMC
Coulibaly O, Hell K, Ranajit Bandyopadhyay RB, Hounkponou S, Leslie JF. Economic impact of aflatoxin contamination in sub-Saharan Africa. Mycotoxins Detect Methods Manag Public Health Agric Trade. 2008; 67–76. doi: 10.1079/9781845930820.0067 DOI
European Commission. Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed ‐ Council statement. OJ L May 7, 2002. Available: http://data.europa.eu/eli/dir/2002/32/oj/eng
European Commission M. Commision Recommendation on the coordinated inspection programme in the field of animal nutrition for the year 2006 in accordance with Council Directive 95/53/EC. 2005 [cited 15 Jul 2022]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32005H0925&from=CS
European Commission. Commission Recommendation of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. OJ L. 2006 Aug. Report No.: 32006H0576. Available: http://data.europa.eu/eli/reco/2006/576/oj/eng
Krnjaja V, Mandić V, Stanković S, Obradović A, Vasić T, Lukić M, et al. Influence of plant density on toxigenic fungal and mycotoxin contamination of maize grains. Crop Prot. 2019;116: 126–131. doi: 10.1016/j.cropro.2018.10.021 DOI
Zachariasova M, Dzuman Z, Veprikova Z, Hajkova K, Jiru M, Vaclavikova M, et al. Occurrence of multiple mycotoxins in European feedingstuffs, assessment of dietary intake by farm animals. Anim Feed Sci Technol. 2014;193: 124–140. doi: 10.1016/j.anifeedsci.2014.02.007 DOI
Skladanka J, Adam V, Dolezal P, Nedelnik J, Kizek R, Linduskova H, et al. How Do Grass Species, Season and Ensiling Influence Mycotoxin Content in Forage? Int J Environ Res Public Health. 2013;10: 6084–6095. doi: 10.3390/ijerph10116084 PubMed DOI PMC
Baholet D, Kolackova I, Kalhotka L, Skladanka J, Haninec P. Effect of Species, Fertilization and Harvest Date on Microbial Composition and Mycotoxin Content in Forage. Agriculture. 2019;9: 102. doi: 10.3390/agriculture9050102 DOI
Bao L, Gu L, Sun B, Cai W, Zhang S, Zhuang G, et al. Seasonal variation of epiphytic bacteria in the phyllosphere of Gingko biloba, Pinus bungeana and Sabina chinensis. FEMS Microbiol Ecol. 2020;96: fiaa017. doi: 10.1093/femsec/fiaa017 PubMed DOI
Benešová K, Boško R, Běláková S, Pluháčková H, Křápek M, Pernica M, et al. Natural contamination of Czech malting barley with mycotoxins in connection with climate variability. Food Control. 2022;140: 109139. doi: 10.1016/j.foodcont.2022.109139 DOI
Li Y, Wu X, Chen T, Wang W, Liu G, Zhang W, et al. Plant Phenotypic Traits Eventually Shape Its Microbiota: A Common Garden Test. Front Microbiol. 2018;9. Available: https://www.frontiersin.org/article/10.3389/fmicb.2018.02479 PubMed DOI PMC
Sun A, Jiao X-Y, Chen Q, Wu A-L, Zheng Y, Lin Y-X, et al. Microbial communities in crop phyllosphere and root endosphere are more resistant than soil microbiota to fertilization. Soil Biol Biochem. 2021;153: 108113. doi: 10.1016/j.soilbio.2020.108113 DOI
Pieczul K, Swierczynska I, Byczkowska K, Drapikowska M. Preliminary research on pathogenic fungi colonizing Anthoxanthum aristatum Boiss. Pak J Bot. 2022;54. doi: 10.30848/PJB2022-4(12) DOI
Seguin V, Lemauviel-Lavenant S, Garon D, Bouchart V, Gallard Y, Blanchet B, et al. An evaluation of the hygienic quality in single-species hays and commercial forages used in equine nutrition. Grass Forage Sci. 2010;65: 304–317. doi: 10.1111/j.1365-2494.2010.00751.x DOI
Wang S, Shao T, Li J, Zhao J, Dong Z. Fermentation Profiles, Bacterial Community Compositions, and Their Predicted Functional Characteristics of Grass Silage in Response to Epiphytic Microbiota on Legume Forages. Front Microbiol. 2022;13. Available: doi: 10.3389/fmicb.2022.830888 PubMed DOI PMC
Wang S, Zhao J, Dong Z, Li J, Kaka NA, Shao T. Sequencing and microbiota transplantation to determine the role of microbiota on the fermentation type of oat silage. Bioresour Technol. 2020;309: 123371. doi: 10.1016/j.biortech.2020.123371 PubMed DOI
Jha UC, Bohra A, Pandey S, Parida SK. Breeding, Genetics, and Genomics Approaches for Improving Fusarium Wilt Resistance in Major Grain Legumes. Front Genet. 2020;11. Available: https://www.frontiersin.org/articles/10.3389/fgene.2020.01001 PubMed DOI PMC
Vasić T, Krnjaja V, Marković J, Andjelković S, Petrović M, Leposavić A, et al. Fungal pathogens of birdsfoot trefoil (Lotus corniculatus L.) in Serbia. Proc X Int Sci Agric Symp “Agrosim 2019.” 2019; 1025–1029.
Accensi F, Abarca ML, Cabañes FJ. Occurrence of Aspergillus species in mixed feeds and component raw materials and their ability to produce ochratoxin A. Food Microbiol. 2004;21: 623–627. doi: 10.1016/j.fm.2003.12.003 DOI
ANSES. Aspergillus flavus and other aflatoxin-producing moulds. ANSES: French Agency for Food, Environmental and Occupational Health & Safety; 2013. Available: https://www.anses.fr/en/system/files/MIC2012sa0053FiEN.pdf
Rose LJ, Okoth S, Flett BC, Rensburg BJ van, Viljoen A. Preharvest Management Strategies and Their Impact on Mycotoxigenic Fungi and Associated Mycotoxins. Mycotoxins ‐ Impact and Management Strategies. IntechOpen; 2018. doi: 10.5772/intechopen.76808 DOI
Garcia D, Barros G, Chulze S, Ramos AJ, Sanchis V, Marín S. Impact of cycling temperatures on Fusarium verticillioides and Fusarium graminearum growth and mycotoxins production in soybean. J Sci Food Agric. 2012;92: 2952–2959. doi: 10.1002/jsfa.5707 PubMed DOI
Venslovas E, Merkeviciute-Venslove L, Mankeviciene A, Kochiieru Y, Slepetiene A, Ceseviciene J. The prevalence of mycotoxins and their relation to nutrient composition of maize and grass silage. Zemdirb-Agric. 2021;108: 147–152. doi: 10.13080/z-a.2021.108.019 DOI
Prandini A, Sigolo S, Filippi L, Battilani P, Piva G. Review of predictive models for Fusarium head blight and related mycotoxin contamination in wheat. Food Chem Toxicol. 2009;47: 927–931. doi: 10.1016/j.fct.2008.06.010 PubMed DOI
Schenck J, Müller C, Djurle A, Jensen DF, O’Brien M, Johansen A, et al. Occurrence of filamentous fungi and mycotoxins in wrapped forages in Sweden and Norway and their relation to chemical composition and management. Grass Forage Sci. 2019;74: 613–625. doi: 10.1111/gfs.12453 DOI
Whipps JM, Hand P, Pink D, Bending GD. Phyllosphere microbiology with special reference to diversity and plant genotype. J Appl Microbiol. 2008;105: 1744–1755. doi: 10.1111/j.1365-2672.2008.03906.x PubMed DOI
Iqbal N, Czékus Z, Poór P, Ördög A. Plant defence mechanisms against mycotoxin Fumonisin B1. Chem Biol Interact. 2021;343: 109494. doi: 10.1016/j.cbi.2021.109494 PubMed DOI
Giancaspro A, Lionetti V, Giove SL, Zito D, Fabri E, Reem N, et al. Cell wall features transferred from common into durum wheat to improve Fusarium Head Blight resistance. Plant Sci. 2018;274: 121–128. doi: 10.1016/j.plantsci.2018.05.016 PubMed DOI