How do grass species, season and ensiling influence mycotoxin content in forage?
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24225645
PubMed Central
PMC3863888
DOI
10.3390/ijerph10116084
PII: ijerph10116084
Knihovny.cz E-zdroje
- MeSH
- dobytek MeSH
- ELISA MeSH
- hodnocení rizik MeSH
- lidé MeSH
- lipnicovité mikrobiologie MeSH
- mykotoxiny analýza MeSH
- potravinářská mikrobiologie * MeSH
- roční období MeSH
- siláž mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- mykotoxiny MeSH
Mycotoxins are secondary metabolites produced by fungal species that have harmful effects on mammals. The aim of this study was to assess the content of mycotoxins in fresh-cut material of selected forage grass species both during and at the end of the growing season. We further assessed mycotoxin content in subsequently produced first-cutting silages with respect to the species used in this study: Lolium perenne (cv. Kentaur), Festulolium pabulare (cv. Felina), Festulolium braunii (cv. Perseus), and mixtures of these species with Festuca rubra (cv. Gondolin) or Poa pratensis (Slezanka). The mycotoxins deoxynivalenol, zearalenone and T-2 toxin were mainly detected in the fresh-cut grass material, while fumonisin and aflatoxin contents were below the detection limits. July and October were the most risky periods for mycotoxins to occur. During the cold temperatures in November and December, the occurrence of mycotoxins in fresh-cut material declined. Although June was a period with low incidence of mycotoxins in green silage, contents of deoxynivalenol and zearalenone in silages from the first cutting exceeded by several times those determined in their biomass collected directly from the field. Moreover, we observed that use of preservatives or inoculants did not prevent mycotoxin production.
Zobrazit více v PubMed
Kreft H., Jetz W., Mutke J., Barthlott W. Contrasting environmental and regional effects on global pteridophyte and seed plant diversity. Ecography. 2010;33:408–419. doi: 10.1111/j.1600-0587.2010.06434.x. DOI
Wolf J.H.D., Alejandro F. Patterns in species richness and distribution of vascular epiphytes in Chiapas, Mexico. J. Biogeogr. 2003;30:1689–1707. doi: 10.1046/j.1365-2699.2003.00902.x. DOI
Von Boberfeld W.O., Banzhaf K. Yield and forage quality of different xFestulolium cultivars in winter. J. Agron. Crop Sci. 2006;192:239–247. doi: 10.1111/j.1439-037X.2006.00214.x. DOI
Rodrigues I., Naehrer K. Prevalence of mycotoxins in feedstuffs and feed surveyed worldwide in 2009 and 2010. Phytopathol. Mediterr. 2012;51:175–192.
Yiannikouris A., Jouany J.P. Mycotoxins in feeds and their fate in animals: A review. Anim. Res. 2002;51:81–99. doi: 10.1051/animres:2002012. DOI
Cheli F., Campagnoli A., Dell’Orto V. Fungal populations and mycotoxins in silages: From occurrence to analysis. Anim. Feed Sci. Technol. 2013;183:1–16. doi: 10.1016/j.anifeedsci.2013.01.013. DOI
Liu Y., Wu F. Global burden of aflatoxin-induced hepatocellular carcinoma: A risk assessment. Environ. Health Perspect. 2010;118:818–824. doi: 10.1289/ehp.0901388. PubMed DOI PMC
Charmley E., Trenholm H.L., Thompson B.K., Vudathala D., Nicholson J.W.G., Prelusky D.B., Charmley L.L. Influence of levels of deoxynivalenol in the diet of dairy cows on feed intake, milk production, and its composition. J. Dairy Sci. 1993;76:3580–3587. doi: 10.3168/jds.S0022-0302(93)77697-3. PubMed DOI
Afshar P., Shokrzadeh M., Kalhori S., Babaee Z., Saravi S.S.S. Occurrence of Ochratoxin A and Aflatoxin M1 in human breast milk in Sari, Iran. Food Control. 2013;31:525–529. doi: 10.1016/j.foodcont.2012.12.009. DOI
Duarte S.C., Almeida A.M., Teixeira A.S., Pereira A.L., Falcao A.C., Pena A., Lino C.M. Aflatoxin M-1 in marketed milk in Portugal: Assessment of human and animal exposure. Food Control. 2013;30:411–417. doi: 10.1016/j.foodcont.2012.08.002. DOI
Signorini M.L., Gaggiotti M., Molineri A., Chiericatti C.A., de Basilico M.L.Z., Basilico J.C., Pisani M. Exposure assessment of mycotoxins in cow’s milk in Argentina. Food Chem. Toxicol. 2012;50:250–257. doi: 10.1016/j.fct.2011.09.036. PubMed DOI
Edwards S.G. Influence of agricultural practices on fusarium infection of cereals and subsequent contamination of grain by trichothecene mycotoxins. Toxicol. Lett. 2004;153:29–35. doi: 10.1016/j.toxlet.2004.04.022. PubMed DOI
Barnes R.F., Nelson J.C., Moore K.J., Collins M. Forages. 6th ed. Volume II Blackwell Publishing; Ames, IA, USA: 2007.
Unger J. Comparisons of urban and rural bioclimatological conditions in the case of a Central-European city. Int. J. Biometeorol. 1999;43:139–144. doi: 10.1007/s004840050129. PubMed DOI
Vollmann J., Fritz C.N., Wagentristl H., Ruckenbauer P. Environmental and genetic variation of soybean seed protein content under Central European growing conditions. J. Sci. Food Agric. 2000;80:1300–1306. doi: 10.1002/1097-0010(200007)80:9<1300::AID-JSFA640>3.0.CO;2-I. DOI
Skladanka J., Nedelnik J., Adam V., Dolezal P., Moravcova H., Dohnal V. Forage as a primary source of mycotoxins in animal diets. Int. J. Environ. Res. Public Health. 2011;8:37–50. PubMed PMC
Behrendt U., Stauber T., Muller T. Microbial communities in the phyllosphere of grasses on fenland at different intensities of management. Grass Forage Sci. 2004;59:169–179. doi: 10.1111/j.1365-2494.2004.00418.x. DOI
Goertz A., Zuehlke S., Spiteller M., Steiner U., Dehne H.W., Waalwijk C., de Vries I., Oerke E.C. Fusarium species and mycotoxin profiles on commercial maize hybrids in Germany. Eur. J. Plant Pathol. 2010;128:101–111. doi: 10.1007/s10658-010-9634-9. DOI
Oviedo M.S., Ramirez M.L., Barros G.G., Chulze S.N. Influence of water activity and temperature on growth and mycotoxin production by Alternaria alternata on irradiated soya beans. Int. J. Food Microbiol. 2011;149:127–132. doi: 10.1016/j.ijfoodmicro.2011.06.007. PubMed DOI
Pietri A., Battilani P., Gualla A., Bertuzzi T. Mycotoxin levels in maize produced in northern Italy in 2008 as influenced by growing location and FAO class of hybrid. World Mycotoxin J. 2012;5:409–418. doi: 10.3920/WMJ2012.1449. DOI
DeNijs M., Soentoro P., Asch E.D.V., Kamphuis H., Rombouts F.M., Notermans S.H.W. Fungal infection and presence of deoxynivalenol and zearalenone in cereals grown in the Netherlands. J. Food Prot. 1996;59:772–777. PubMed
Engels R., Kramer J. Incidence of fusaria and occurence of selected Fusarium mycotoxins on Lolium ssp. in Germany. Mycotoxin Res. 1996;12:31–40. doi: 10.1007/BF03192078. PubMed DOI
Golinski P., von Boberfeld W.O., Koztecki M., Kaczmarek Z., Golinski P.K. Accumulation of secondary metabolites formed by field fungi in autumn-saved herbage. J. Agron. Crop Sci. 2006;192:344–351. doi: 10.1111/j.1439-037X.2006.00221.x. DOI
Driehuis F. Silage and the safety and quality of dairy foods: A review. Agric. Food Sci. 2013;22:16–34.
Holdren G.C., Armstrong D.E. Factors affecting phosphorus release from intact lake sediment cores. Environ. Sci. Technol. 1980;14:79–87. doi: 10.1021/es60161a014. DOI
Sondergaard M., Kristensen P., Jeppesen E. Phosphorus release from resuspended sediment in the shallow and wind-exposed lake arreso, Denmark. Hydrobiologia. 1992;228:91–99. doi: 10.1007/BF00006480. DOI
D’Mello J.P.F. Food Safety Contaminants and Toxins. CABI Publishing; Wallingford, CT, USA: 2003. p. 452.
Marasas W.F.O., Vanrensburg S.J., Mirocha C.J. Incidence of fusarium species and the mycotoxins, deoxynivalenol and zearalenone, in corn produced in esophageal cancer areas in Transkei. J. Agric. Food Chem. 1979;27:1108–1112. doi: 10.1021/jf60225a013. PubMed DOI
Dogi C.A., Fochesato A., Armando R., Pribull B., de Souza M.M.S., Coelho I.D., de Melo D.A., Dalcero A., Cavaglieri L. Selection of lactic acid bacteria to promote an efficient silage fermentation capable of inhibiting the activity of Aspergillus parasiticus and Fusarium gramineraum and mycotoxin production. J. Appl. Microbiol. 2013;114:1650–1660. doi: 10.1111/jam.12173. PubMed DOI
Murata H., Yamaguchi D., Nagai A., Shimada N. Reduction of deoxynivalenol contaminating corn silage by short-term ultraviolet irradiation: A pilot study. J. Vet. Med. Sci. 2011;73:1059–1060. doi: 10.1292/jvms.10-0409. PubMed DOI
Moon N.J. Inhibition of the growth of acid tolerant yeast by acetate, lactate and propionate and their synergistic mixtures. J. Appl. Bacteriol. 1983;55:453–460. doi: 10.1111/j.1365-2672.1983.tb01685.x. DOI