Pregnancy Termination and Postnatal Major Congenital Heart Defect Prevalence After Introduction of Prenatal Cardiac Screening
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37713196
PubMed Central
PMC10504618
DOI
10.1001/jamanetworkopen.2023.34069
PII: 2809603
Knihovny.cz E-zdroje
- MeSH
- dítě MeSH
- indukovaný potrat * MeSH
- lidé MeSH
- prevalence MeSH
- průřezové studie MeSH
- retrospektivní studie MeSH
- těhotenství MeSH
- vrozené srdeční vady * diagnóza epidemiologie MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
IMPORTANCE: Prenatal cardiac screening of the first and second trimesters has had a major impact on postnatal prevalence of congenital heart defects (CHDs), rates of termination of pregnancy (TOP), and outcomes among children born alive with CHDs. OBJECTIVE: To examine the prenatal and postnatal incidence of major CHDs (ie, necessitating intervention within the first year of life), detection rate trends, rates of TOP, and the association of cardiac screening with postnatal outcomes. DESIGN, SETTINGS, AND PARTICIPANTS: In this cross-sectional study, 3827 fetuses with antenatally diagnosed major CHDs in the Czech Republic (population 10.7 million) between 1991 and 2021 were prospectively evaluated with known outcomes and associated comorbidities. Prenatal and postnatal prevalence of CHD in an unselected population was assessed by comparison with a retrospective analysis of all children born alive with major CHDs in the same period (5454 children), using national data registry. Data analysis was conducted from January 1991 to December 2021. MAIN OUTCOMES AND MEASURES: Prenatal detection and postnatal prevalence of major CHDs and rate of TOPs in a setting with a centralized health care system over 31 years. RESULTS: A total of 3 300 068 children were born alive during the study period. Major CHD was diagnosed in 3827 fetuses, of whom 1646 (43.0%) were born, 2069 (54.1%) resulted in TOP, and 112 (2.9%) died prenatally. The prenatal detection rate increased from 6.2% in 1991 to 82.8% in 2021 (P < .001). Termination of pregnancy decreased from 70% in 1991 to 43% (P < .001) in 2021. Of 627 fetuses diagnosed in the first trimester (introduced in 2007), 460 were terminated (73.3%). Since 2007, of 2066 fetuses diagnosed in the second trimester, 880 (42.6%) were terminated, resulting in an odds ratio of 3.6 (95% CI, 2.8-4.6; P < .001) for TOP in the first trimester compared with the second trimester. Postnatal prevalence of major CHDs declined from 0.21% to 0.14% (P < .001). The total incidence (combining prenatal detection of terminated fetuses with postnatal prevalence) of major CHD remained at 0.23% during the study period. CONCLUSIONS AND RELEVANCE: In this cross-sectional study, the total incidence of major CHD did not change significantly during the 31-year study period. The prenatal detection of major CHD approached 83% in the current era. Postnatal prevalence of major CHD decreased significantly due to early TOPs and intrauterine deaths. The introduction of first trimester screening resulted in a higher termination rate in the first trimester but did not revert the overall decreasing trend of termination for CHDs in general.
Centre for Medical Genetics České Budějovice the Czech Republic
Department of Pediatrics Masaryk Hospital Ústí nad Labem the Czech Republic
Department of Pediatrics University Hospital in Pilsen Charles University Pilsen the Czech Republic
Fetal Medicine Center Brno the Czech Republic
Gennet Centre for Fetal Medicine and Reproductive Genetics Prague the Czech Republic
Zobrazit více v PubMed
Samánek M, Vorísková M. Congenital heart disease among 815,569 children born between 1980 and 1990 and their 15-year survival: a prospective Bohemia survival study. Pediatr Cardiol. 1999;20(6):411-417. doi:10.1007/s002469900502 PubMed DOI
Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39(12):1890-1900. doi:10.1016/S0735-1097(02)01886-7 PubMed DOI
van der Linde D, Konings EE, Slager MA, et al. . Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;58(21):2241-2247. doi:10.1016/j.jacc.2011.08.025 PubMed DOI
Liu Y, Chen S, Zühlke L, et al. . Global birth prevalence of congenital heart defects 1970-2017: updated systematic review and meta-analysis of 260 studies. Int J Epidemiol. 2019;48(2):455-463. doi:10.1093/ije/dyz009 PubMed DOI PMC
Hwang BF, Lee YL, Jaakkola JJ. Air pollution and the risk of cardiac defects: a population-based case-control study. Medicine (Baltimore). 2015;94(44):e1883. doi:10.1097/MD.0000000000001883 PubMed DOI PMC
Bakker MK, Bergman JEH, Krikov S, et al. . Prenatal diagnosis and prevalence of critical congenital heart defects: an international retrospective cohort study. BMJ Open. 2019;9(7):e028139. doi:10.1136/bmjopen-2018-028139 PubMed DOI PMC
Buskens E, Steyerberg EW, Hess J, Wladimiroff JW, Grobbee DE. Routine prenatal screening for congenital heart disease: what can be expected? a decision-analytic approach. Am J Public Health. 1997;87(6):962-967. doi:10.2105/AJPH.87.6.962 PubMed DOI PMC
Krishnan A, Jacobs MB, Morris SA, et al. ; Fetal Heart Society . Impact of socioeconomic status, race and ethnicity, and geography on prenatal detection of hypoplastic left heart syndrome and transposition of the great arteries. Circulation. 2021;143(21):2049-2060. doi:10.1161/CIRCULATIONAHA.120.053062 PubMed DOI PMC
Peiris V, Singh TP, Tworetzky W, Chong EC, Gauvreau K, Brown DW. Association of socioeconomic position and medical insurance with fetal diagnosis of critical congenital heart disease. Circ Cardiovasc Qual Outcomes. 2009;2(4):354-360. doi:10.1161/CIRCOUTCOMES.108.802868 PubMed DOI
Lytzen R, Vejlstrup N, Bjerre J, et al. . Live-born major congenital heart disease in Denmark: incidence, detection rate, and termination of pregnancy rate from 1996 to 2013. JAMA Cardiol. 2018;3(9):829-837. doi:10.1001/jamacardio.2018.2009 PubMed DOI PMC
Mai CT, Isenburg JL, Canfield MA, et al. ; National Birth Defects Prevention Network . National population-based estimates for major birth defects, 2010-2014. Birth Defects Res. 2019;111(18):1420-1435. doi:10.1002/bdr2.1589 PubMed DOI PMC
Marek J, Tomek V, Skovránek J, Povysilová V, Samánek M. Prenatal ultrasound screening of congenital heart disease in an unselected national population: a 21-year experience. Heart. 2011;97(2):124-130. doi:10.1136/hrt.2010.206623 PubMed DOI
Germanakis I, Sifakis S. The impact of fetal echocardiography on the prevalence of liveborn congenital heart disease. Pediatr Cardiol. 2006;27(4):465-472. doi:10.1007/s00246-006-1291-6 PubMed DOI
Blakeley C, Smith DM, Johnstone ED, Wittkowski A. Parental decision-making following a prenatal diagnosis that is lethal, life-limiting, or has long term implications for the future child and family: a meta-synthesis of qualitative literature. BMC Med Ethics. 2019;20(1):56. doi:10.1186/s12910-019-0393-7 PubMed DOI PMC
Tegnander E, Williams W, Johansen OJ, Blaas HG, Eik-Nes SH. Prenatal detection of heart defects in a non-selected population of 30,149 fetuses–detection rates and outcome. Ultrasound Obstet Gynecol. 2006;27(3):252-265. doi:10.1002/uog.2710 PubMed DOI
Jicinska H, Vlasin P, Jicinsky M, et al. . Does first-trimester screening modify the natural history of congenital heart disease? analysis of outcome of regional cardiac screening at 2 different time periods. Circulation. 2017;135(11):1045-1055. doi:10.1161/CIRCULATIONAHA.115.020864 PubMed DOI
Calda P, Sípek A, Gregor V. Gradual implementation of first trimester screening in a population with a prior screening strategy: population based cohort study. Acta Obstet Gynecol Scand. 2010;89(8):1029-1033. doi:10.3109/00016349.2010.489599 PubMed DOI
Donofrio MT, Moon-Grady AJ, Hornberger LK, et al. ; American Heart Association Adults With Congenital Heart Disease Joint Committee of the Council on Cardiovascular Disease in the Young and Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and Council on Cardiovascular and Stroke Nursing . Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation. 2014;129(21):2183-2242. doi:10.1161/01.Cir.0000437597.44550.5d PubMed DOI
Bull C; British Paediatric Cardiac Association . Current and potential impact of fetal diagnosis on prevalence and spectrum of serious congenital heart disease at term in the UK. Lancet. 1999;354(9186):1242-1247. doi:10.1016/s0140-6736(99)01167-8 PubMed DOI
Institute of Health Information and Statistics of the Czech Republic. Accessed August 18, 2023. https://www.uzis.cz/
Allan LD, Crawford DC, Anderson RH, Tynan M. Spectrum of congenital heart disease detected echocardiographically in prenatal life. Br Heart J. 1985;54(5):523-526. doi:10.1136/hrt.54.5.523 PubMed DOI PMC
Hoffman JI. Incidence of congenital heart disease: II. prenatal incidence. Pediatr Cardiol. 1995;16(4):155-165. doi:10.1007/BF00794186 PubMed DOI
Jørgensen DE, Vejlstrup N, Jørgensen C, et al. . Prenatal detection of congenital heart disease in a low risk population undergoing first and second trimester screening. Prenat Diagn. 2015;35(4):325-330. doi:10.1002/pd.4525 PubMed DOI
Quartermain MD, Hill KD, Goldberg DJ, et al. . Prenatal diagnosis influences preoperative status in neonates with congenital heart disease: an analysis of the Society of Thoracic Surgeons Congenital Heart Surgery Database. Pediatr Cardiol. 2019;40(3):489-496. doi:10.1007/s00246-018-1995-4 PubMed DOI
Khoshnood B, Lelong N, Andrieu T, et al. ; EPICARD Study Group . Assessing sociodemographic differences (or lack thereof) in prenatal diagnosis of congenital heart defects: a population-based study. BMJ Open. 2016;6(3):e009353. doi:10.1136/bmjopen-2015-009353 PubMed DOI PMC
Galindo A, Herraiz I, Escribano D, Lora D, Melchor JC, de la Cruz J. Prenatal detection of congenital heart defects: a survey on clinical practice in Spain. Fetal Diagn Ther. 2011;29(4):287-295. doi:10.1159/000322519 PubMed DOI
Mandalenakis Z, Giang KW, Eriksson P, et al. . Survival in children with congenital heart disease: have we reached a peak at 97%? J Am Heart Assoc. 2020;9(22):e017704. doi:10.1161/JAHA.120.017704 PubMed DOI PMC
Rempel GR, Cender LM, Lynam MJ, Sandor GG, Farquharson D. Parents’ perspectives on decision making after antenatal diagnosis of congenital heart disease. J Obstet Gynecol Neonatal Nurs. 2004;33(1):64-70. doi:10.1177/0884217503261092 PubMed DOI
Grossman TB, Chasen ST. Abortion for fetal genetic abnormalities: type of abnormality and gestational age at diagnosis. AJP Rep. 2020;10(1):e87-e92. doi:10.1055/s-0040-1705173 PubMed DOI PMC
Yagel S, Arbel R, Anteby EY, Raveh D, Achiron R. The three vessels and trachea view (3VT) in fetal cardiac scanning. Ultrasound Obstet Gynecol. 2002;20(4):340-345. doi:10.1046/j.1469-0705.2002.00801.x PubMed DOI
Jeanty P, Chaoui R, Grochal F, Tihonenko I. A review of findings in fetal cardiac section drawings, part 2: high abdominal views. J Ultrasound Med. 2007;26(12):1743-1746. doi:10.7863/jum.2007.26.12.1743 PubMed DOI
Gardiner HM, Kovacevic A, van der Heijden LB, et al. . Prenatal screening for major congenital heart disease: assessing performance by combining national cardiac audit with maternity data. Heart. 2014;100(5):375-382. doi:10.1136/heartjnl-2013-304640 PubMed DOI
Escobar-Diaz MC, Freud LR, Bueno A, et al. . Prenatal diagnosis of transposition of the great arteries over a 20-year period: improved but imperfect. Ultrasound Obstet Gynecol. 2015;45(6):678-682. doi:10.1002/uog.14751 PubMed DOI PMC
Carvalho JS, Allan LD, Chaoui R, et al. ; International Society of Ultrasound in Obstetrics and Gynecology . ISUOG Practice Guidelines (updated): sonographic screening examination of the fetal heart. Ultrasound Obstet Gynecol. 2013;41(3):348-359. doi:10.1002/uog.12403 PubMed DOI
Persico N, Moratalla J, Lombardi CM, Zidere V, Allan L, Nicolaides KH. Fetal echocardiography at 11-13 weeks by transabdominal high-frequency ultrasound. Ultrasound Obstet Gynecol. 2011;37(3):296-301. doi:10.1002/uog.8934 PubMed DOI
Zidere V, Bellsham-Revell H, Persico N, Allan LD. Comparison of echocardiographic findings in fetuses at less than 15 weeks’ gestation with later cardiac evaluation. Ultrasound Obstet Gynecol. 2013;42(6):679-686. doi:10.1002/uog.12517 PubMed DOI
Czech Statistical Office. Accessed August 18, 2023. https://www.czso.cz/