Prenatal diagnosis and prevalence of critical congenital heart defects: an international retrospective cohort study
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31270117
PubMed Central
PMC6609145
DOI
10.1136/bmjopen-2018-028139
PII: bmjopen-2018-028139
Knihovny.cz E-zdroje
- Klíčová slova
- critical congenital heart defects, epidemiology, prenatal diagnosis,
- MeSH
- lidé MeSH
- novorozenec MeSH
- prenatální diagnóza * statistika a číselné údaje trendy MeSH
- prevalence MeSH
- retrospektivní studie MeSH
- těhotenství MeSH
- vrozené srdeční vady diagnóza epidemiologie mortalita MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Asie epidemiologie MeSH
- Evropa epidemiologie MeSH
- Jižní Amerika epidemiologie MeSH
- Severní Amerika epidemiologie MeSH
OBJECTIVES: To assess international trends and patterns of prenatal diagnosis of critical congenital heart defects (CCHDs) and their relation to total and live birth CCHD prevalence and mortality. SETTING: Fifteen birth defect surveillance programmes that participate in the International Clearinghouse for Birth Defects Surveillance and Research from 12 countries in Europe, North and South America and Asia. PARTICIPANTS: Live births, stillbirths and elective terminations of pregnancy for fetal anomaly diagnosed with 1 of 12 selected CCHD, ascertained by the 15 programmes for delivery years 2000 to 2014. RESULTS: 18 243 CCHD cases were reported among 8 847 081 births. The median total prevalence was 19.1 per 10 000 births but varied threefold between programmes from 10.1 to 31.0 per 10 000. CCHD were prenatally detected for at least 50% of the cases in one-third of the programmes. However, prenatal detection varied from 13% in Slovak Republic to 87% in some areas in France. Prenatal detection was consistently high for hypoplastic left heart syndrome (64% overall) and was lowest for total anomalous pulmonary venous return (28% overall). Surveillance programmes in countries that do not legally permit terminations of pregnancy tended to have higher live birth prevalence of CCHD. Most programmes showed an increasing trend in prenatally diagnosed CCHD cases. DISCUSSION AND CONCLUSIONS: Prenatal detection already accounts for 50% or more of CCHD detected in many programmes and is increasing. Local policies and access likely account for the wide variability of reported occurrence and prenatal diagnosis. Detection rates are high especially for CCHD that are more easily diagnosed on a standard obstetric four-chamber ultrasound or for fetuses that have extracardiac anomalies. These ongoing trends in prenatal diagnosis, potentially in combination with newborn pulse oximetry, are likely to modify the epidemiology and clinical outcomes of CCHD in the near future.
Birth Defects Registry of India Mediscan Systems Chennai India
Congenital Anomaly Register and Information Service for Wales Public Health Wales Swansea Wales UK
Division of Medical Genetics Department of Pediatrics University of Utah Salt Lake City Utah USA
International Center on Birth Defects University of Utah Salt Lake City Utah USA
Lombardy Birth Defects Registry Fondazione IRCCS Instituto Nazionale Tumori Milan Italy
Malformation Monitoring Centre Medical Faculty Otto von Guericke University Magdeburg Germany
Malta Congenital Anomalies Registry Directorate for Health Information and Research Malta Malta
Maternal Child and Youth Health Division Public Health Agency of Canada Ottawa Canada
Registre Des Malformations en Rhone Alpes REMERA Lyon France
Slovak Teratologic Information Centre Slovak Medical University Bratislava Slovakia
Zobrazit více v PubMed
Dolk H, Loane M, Garne E, et al. . Congenital heart defects in Europe: prevalence and perinatal mortality, 2000 to 2005. Circulation 2011;123:841–9. 10.1161/CIRCULATIONAHA.110.958405 PubMed DOI
Reller MD, Strickland MJ, Riehle-Colarusso T, et al. . Prevalence of congenital heart defects in metropolitan Atlanta, 1998-2005. J Pediatr 2008;153:807–13. 10.1016/j.jpeds.2008.05.059 PubMed DOI PMC
Oster ME, Lee KA, Honein MA, et al. . Temporal trends in survival among infants with critical congenital heart defects. Pediatrics 2013;131:1502–e1508. 10.1542/peds.2012-3435 PubMed DOI PMC
Mackie AS, Tran DT, Marelli AJ, et al. . Cost of Congenital Heart Disease Hospitalizations in Canada: A Population-Based Study. Can J Cardiol 2017;33:792–8. 10.1016/j.cjca.2017.01.024 PubMed DOI
Arth AC, Tinker SC, Simeone RM, et al. . Inpatient Hospitalization Costs Associated with Birth Defects Among Persons of All Ages - United States, 2013. MMWR Morb Mortal Wkly Rep 2017;66:41–6. 10.15585/mmwr.mm6602a1 PubMed DOI PMC
Boneva RS, Botto LD, Moore CA, et al. . Mortality associated with congenital heart defects in the United States: trends and racial disparities, 1979-1997. Circulation 2001;103:2376–81. PubMed
Gilboa SM, Salemi JL, Nembhard WN, et al. . Mortality resulting from congenital heart disease among children and adults in the United States, 1999 to 2006. Circulation 2010;122:2254–63. 10.1161/CIRCULATIONAHA.110.947002 PubMed DOI PMC
Jortveit J, Eskedal L, Hirth A, et al. . Sudden unexpected death in children with congenital heart defects. Eur Heart J 2016;37:621–6. 10.1093/eurheartj/ehv478 PubMed DOI
Knowles RL, Bull C, Wren C, et al. . Mortality with congenital heart defects in England and Wales, 1959-2009: exploring technological change through period and birth cohort analysis. Arch Dis Child 2012;97:861–5. 10.1136/archdischild-2012-301662 PubMed DOI
Blyth M, Howe D, Gnanapragasam J, et al. . The hidden mortality of transposition of the great arteries and survival advantage provided by prenatal diagnosis. BJOG 2008;115:1096–100. 10.1111/j.1471-0528.2008.01793.x PubMed DOI
Bonnet D, Coltri A, Butera G, et al. . Detection of transposition of the great arteries in fetuses reduces neonatal morbidity and mortality. Circulation 1999;99:916–8. 10.1161/01.CIR.99.7.916 PubMed DOI
Holland BJ, Myers JA, Woods CR. Prenatal diagnosis of critical congenital heart disease reduces risk of death from cardiovascular compromise prior to planned neonatal cardiac surgery: a meta-analysis. Ultrasound Obstet Gynecol 2015;45:631–8. 10.1002/uog.14882 PubMed DOI
Morris SA, Ethen MK, Penny DJ, et al. . Prenatal diagnosis, birth location, surgical center, and neonatal mortality in infants with hypoplastic left heart syndrome. Circulation 2014;129:285–92. 10.1161/CIRCULATIONAHA.113.003711 PubMed DOI PMC
Tworetzky W, McElhinney DB, Reddy VM, et al. . Improved surgical outcome after fetal diagnosis of hypoplastic left heart syndrome. Circulation 2001;103:1269–73. 10.1161/01.CIR.103.9.1269 PubMed DOI
Pinto NM, Keenan HT, Minich LL, et al. . Barriers to prenatal detection of congenital heart disease: a population-based study. Ultrasound Obstet Gynecol 2012;40:418–25. 10.1002/uog.10116 PubMed DOI
Clur SA, Bilardo CM. Early detection of fetal cardiac abnormalities: how effective is it and how should we manage these patients? Prenat Diagn 2014;34:1235–45. 10.1002/pd.4466 PubMed DOI
Egbe A, Uppu S, Lee S, et al. . Changing prevalence of severe congenital heart disease: a population-based study. Pediatr Cardiol 2014;35:1232–8. 10.1007/s00246-014-0921-7 PubMed DOI
Gilboa SM, Correa A, Botto LD, et al. . Association between prepregnancy body mass index and congenital heart defects. Am J Obstet Gynecol 2010;202:e1–e10. 10.1016/j.ajog.2009.08.005 PubMed DOI
Baardman ME, Kerstjens-Frederikse WS, Corpeleijn E, et al. . Combined adverse effects of maternal smoking and high body mass index on heart development in offspring: evidence for interaction? Heart 2012;98:474–9. 10.1136/heartjnl-2011-300822 PubMed DOI
Hoang TT, Marengo LK, Mitchell LE, et al. . Original findings and updated meta-analysis for the association between maternal diabetes and risk for congenital heart disease phenotypes. Am J Epidemiol 2017;186:118–28. 10.1093/aje/kwx033 PubMed DOI PMC
Jenkins KJ, Correa A, Feinstein JA, et al. . Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 2007;115:2995–3014. 10.1161/CIRCULATIONAHA.106.183216 PubMed DOI
Mills JL, Troendle J, Conley MR, et al. . Maternal obesity and congenital heart defects: a population-based study. Am J Clin Nutr 2010;91:1543–9. 10.3945/ajcn.2009.28865 PubMed DOI PMC
Quartermain MD, Pasquali SK, Hill KD, et al. . Variation in prenatal diagnosis of congenital heart disease in infants. Pediatrics 2015;136:e378–85. 10.1542/peds.2014-3783 PubMed DOI PMC
Wong SF, Chan FY, Cincotta RB, et al. . Factors influencing the prenatal detection of structural congenital heart diseases. Ultrasound Obstet Gynecol 2003;21:19–25. 10.1002/uog.7 PubMed DOI
Hill GD, Block JR, Tanem JB, et al. . Disparities in the prenatal detection of critical congenital heart disease. Prenat Diagn 2015;35:859–63. 10.1002/pd.4622 PubMed DOI PMC
Baardman ME, du Marchie Sarvaas GJ, de Walle HE, et al. . Impact of introduction of 20-week ultrasound scan on prevalence and fetal and neonatal outcomes in cases of selected severe congenital heart defects in The Netherlands. Ultrasound Obstet Gynecol 2014;44:58–63. 10.1002/uog.13269 PubMed DOI
van Velzen CL, Clur SA, Rijlaarsdam ME, et al. . Prenatal detection of congenital heart disease--results of a national screening programme. BJOG 2016;123:400–7. 10.1111/1471-0528.13274 PubMed DOI
Chew C, Stone S, Donath SM, et al. . Impact of antenatal screening on the presentation of infants with congenital heart disease to a cardiology unit. J Paediatr Child Health 2006;42:704–8. 10.1111/j.1440-1754.2006.00955.x PubMed DOI
Corcoran S, Briggs K, O' Connor H, et al. . Prenatal detection of major congenital heart disease - optimising resources to improve outcomes. Eur J Obstet Gynecol Reprod Biol 2016;203:260–3. 10.1016/j.ejogrb.2016.06.008 PubMed DOI
van Velzen CL, Ket JCF, van de Ven PM, et al. . Systematic review and meta-analysis of the performance of second-trimester screening for prenatal detection of congenital heart defects. Int J Gynaecol Obstet 2018;140:137–45. 10.1002/ijgo.12373 PubMed DOI
Lytzen R, Veijlstrup N, Bjerre J, et al. . Live born major congenital heart disease in Denmark; incidence. detection rate and termination of pregnancy rate from 1996-2013, JAMA Cardiol 2018;3:829–37. PubMed PMC
Komisar J, Srivastava S, Geiger M, et al. . Impact of changing indications and increased utilization of fetal echocardiography on prenatal detection of congenital heart disease. Congenit Heart Dis 2017;12:67–73. 10.1111/chd.12405 PubMed DOI
Oggè G, Gaglioti P, Maccanti S, et al. . Prenatal screening for congenital heart disease with four-chamber and outflow-tract views: a multicenter study. Ultrasound Obstet Gynecol 2006;28:779–84. 10.1002/uog.3830 PubMed DOI
Sklansky MS, Berman DP, Pruetz JD, et al. . Prenatal screening for major congenital heart disease: superiority of outflow tracts over the 4-chamber view. J Ultrasound Med 2009;28:889–99. PubMed
International Society of Ultrasound in Obstetrics & Gynecology. Cardiac screening examination of the fetus: guidelines for performing the ’basic' and ’extended basic' cardiac scan. Ultrasound Obstet Gynecol 2006;27:107–13. 10.1002/uog.2677 PubMed DOI
Boyle B, Addor MC, Arriola L, et al. . Estimating Global Burden of Disease due to congenital anomaly: an analysis of European data. Arch Dis Child Fetal Neonatal Ed 2018;103:F22–8. 10.1136/archdischild-2016-311845 PubMed DOI PMC
Bratt EL, Järvholm S, Ekman-Joelsson BM, et al. . Parent’s experiences of counselling and their need for support following a prenatal diagnosis of congenital heart disease--a qualitative study in a Swedish context. BMC Pregnancy Childbirth 2015;15:171 10.1186/s12884-015-0610-4 PubMed DOI PMC
Thakur V, Dutil N, Schwartz SM, et al. . Impact of prenatal diagnosis on the management and early outcome of critical duct-dependent cardiac lesions. Cardiol Young 2018;28:548–53. 10.1017/S1047951117002682 PubMed DOI