Heart rate variability in male rats
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
37735345
PubMed Central
PMC10514026
DOI
10.14814/phy2.15827
Knihovny.cz E-zdroje
- Klíčová slova
- heart rate variability, in vivo experiments, rats,
- MeSH
- autonomní nervový systém * MeSH
- krysa rodu Rattus MeSH
- myokard MeSH
- referenční hodnoty MeSH
- srdeční frekvence MeSH
- termoregulace * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The cardiovascular system is primarily controlled by the autonomic nervous system, and any changes in sympathetic or parasympathetic activity also have an impact on myocardial activity. Heart rate variability (HRV) is a readily available metric used to assess heart rate control by the autonomic nervous system. HRV can provide information about neural (parasympathetic, sympathetic, reflex) and humoral (hormones, thermoregulation) control of myocardial activity. Because there are no relevant reference values for HRV parameters in rats in the scientific literature, all experimental results are only interpreted on the basis of changes from currently measured control or baseline HRV values, which are, however, significantly different in individual studies. Considering the significant variability of published HRV data, the present study focused primarily on comparing control or baseline HRV values under different conditions in in vivo experiments involving rats. The aim of the study was therefore to assess whether there are differences in the starting values before the experiment itself.
Zobrazit více v PubMed
Abulaiti, A. , Hu, D. , Zhu, D. , & Zhang, R. (2011). Influence of fastigial nucleus stimulation on heart rate variability of surgically induced myocardial infarction rats: Fastigial nucleus stimulation and autonomous nerve activity. Heart and Vessels, 26, 654–662. PubMed
Aires, R. , Pimentel, E. B. , Forechi, L. , Dantas, E. M. , & Mill, J. G. (2017). Time course of changes in heart rate and blood pressure variability in rats with myocardial infarction. Brazilian Journal of Medical and Biological Research, 50, e5511. PubMed PMC
Aubert, A. E. , Ramaekers, D. , Beckers, F. , Breem, R. , Denef, C. , van de Werf, F. , & Ector, H. (1999). The analysis of heart rate variability in unrestrained rats. Validation of method and results. Computer Methods and Programs in Biomedicine, 60, 197–213. PubMed
Barbier, J. , Reland, S. , Ville, N. , Rannou‐Bekono, F. , Wong, S. , & Carré, F. (2006). The effects of exercise training on myocardial adrenergic and muscarinic receptor. Clinical Autonomic Research, 16, 61–65. PubMed
Beckers, F. , Verheyden, B. , Ramaekers, D. , Swynghedauw, B. , & Aubert, A. E. (2006). Effects of autonomic blockade on non‐linear cardiovascular variability indices in rats. Clinical and Experimental Pharmacology and Physiology, 33, 431–439. PubMed
Beltrán, A. R. , Arce‐Álvarez, A. , Ramirez‐Campillo, R. , Vásquez‐Muñoz, M. , von Igel, M. , Ramírez, M. A. , Del Rio, R. , & Andrade, D. C. (2020). Baroreflex modulation during acute high‐altitude exposure in rats. Frontiers in Physiology, 11, 1049. PubMed PMC
Blanco, J. H. D. , Gastaldi, A. C. , Gardim, C. B. , Araujo, J. E. , Simoes, M. V. , Oliviera, L. F. L. , Carvalho, E. E. V. , & Souza, H. C. D. (2015). Chronic cholinergic stimulation promotes changes in cardiovascular autonomic control in spontaneously hypertensive rats. Autonomic Neuroscience, 193, 97–103. PubMed
Carll, A. P. , Hazari, M. S. , Perez, C. M. , Krantz, Q. T. , King, C. J. , Winsett, D. W. , Costa, D. L. , & Farraj, A. K. (2012). Whole and particle‐free diesel exhausts differentially affect cardiac electrophysiology, blood pressure, and autonomic balance in heart failure‐prone rats. Toxicological Sciences, 128, 490–499. PubMed PMC
Carnevali, L. , Statello, R. , & Sgoifo, A. (2019). Resting heart rate variability predicts vulnerability to pharmacologically‐induced ventricular arrhythmias in male rats. Journal of Clinical Medicine, 8, 655. PubMed PMC
Cerutti, C. , Gustin, M. P. , Paultre, C. Z. , Lo, M. , Julien, C. , Vincent, M. , & Sassard, J. (1991). Autonomic nervous system and cardiovascular variability in rats: A spectral analysis approach. The American Journal of Physiology, 261, H1292–H1299. PubMed
Chang, Y. T. , Wann, S. R. , Wu, P. L. , Hsieh, K. H. , Lin, C. C. , Huang, M. S. , & Chang, H. T. (2011). Influence of age on heart rate variability during therapeutic hypothermia in a rat model. Resuscitation, 82, 1350–1354. PubMed
Chizh, N. A. (2015). Parameters of spectral analysis of heart rate variability in rats. Problems of Cryobiology and Cryomedicine, 25(3), 235–245.
Choudhary, A. K. , Sundareswaran, L. , & Devi, R. S. (2018). Effects of aspartame on the evaluation of electrophysiological responses in Wistar albino rats. Journal of Taibah University for Science, 10, 505–512.
Couderc, J. P. , Elder, A. , Cox, C. , Zareba, W. , & Oberdorster, G. (2002). Limitations of power‐spectrum and time‐domain analysis of heart rate variability in short‐term ECG recorded using telemetry in unrestrained rats. Computers in Cardiology, 29, 589–592.
Da Silva, V. J. D. , Viana, P. C. C. , Alves, R. M. , Fazan, R., Jr. , Ruscone, T. G. , Porta, A. , Malliani, A. , Salgado, H. C. , & Montano, N. (2002). Intravenous amiodarone modifies autonomic balance and increases baroreflex sensitivity in conscious rats. Autonomic Neuroscience, 95, 88–96. PubMed
Dai, F. , Yin, J. , & Chen, J. D. D. Z. (2020). Effects and mechanisms of vagal nerve stimulation on body weight in diet‐induced obese rat. Obesity Surgery, 30, 948–956. PubMed
De La Fuente, R. N. , Rodrigues, B. , Moraes‐Silva, I. C. , Souza, L. E. , Sirvente, R. , Mostarda, C. , De Angelis, K. , Soares, P. P. , Lacchini, S. , Consolim‐Colombo, F. , & Irigoyen, M. C. (2013). Cholinergic stimulation with pyridostigmine improves autonomic function in infarcted rats. Clinical and Experimental Pharmacology & Physiology, 40, 610–616. PubMed
Domingos‐Souza, G. , Santos‐Almeida, F. M. , Meschiari, C. A. , Ferreira, N. S. , Pereira, C. A. , Pestana‐Oliviera, N. , Prates‐Costa, T. C. , Tostes, R. C. , White, C. , & Fazan, R., Jr. (2021). The ability of baroreflex activation to improve blood pressure and resistance vessel function in spontaneously hypertensive rats is dependent on stimulation parameters. Hypertension Research, 44, 932–940. PubMed
Fabiyi‐Edebor, T. D. (2020). Vitamin C ameliorated cardiac autonomic neuropathy in type 2 diabetic rats. World Journal of Diabetes, 11, 52–65. PubMed PMC
Farraj, A. K. , Haykal‐Coates, N. , Winsett, D. W. , Hazari, M. S. , Carll, A. P. , Rowan, W. H., III , Ledbetter, A. D. , Cascio, W. E. , & Costa, D. L. (2009). Increased nonconducted P‐wave arrhythmias after a single oil fly ash inhalation exposure in hypertensive rats. Environmental Health Perspectives, 117, 709–715. PubMed PMC
Fazan, R., Jr. , Silva, C. A. A. , Oliveira, J. A. C. , Salgado, H. C. , Montano, N. , & Garcia‐Cairasco, N. (2015). Evaluation of cardiovascular risk factors in the Wistar audiogenic rat (WAR) strain. PLoS ONE, 10, e0129574. PubMed PMC
Fiorino, P. , Evangelista, F. S. , Santos, F. , Magri, F. M. M. , DeLorenzi, L. C. M. O. B. , Ginoza, M. , & Farah, V. (2012). The effect of green tea consumtion on cardiometabolic alterations induced by experimental diabetes. Experimental Diabetes Research, 2012, 309231. PubMed PMC
Haddadian, Z. , Eftekhari, G. , Mazloom, R. , Jazaeri, F. , Dehpour, A. R. , & Mani, A. R. (2013). Effect of endotoxin on heart rate dynamics in rats with cirrhosis. Autonomic Neuroscience, 177, 104–113. PubMed
Hashimoto, M. , Kuwahara, M. , Tsubone, H. , & Sugano, S. (1999). Diurnal variation of autonomic nervous activity in the rat—investigation by power spectral analysis of heart rate variability. Journal of Electrocardiology, 32, 167–171. PubMed
Hazari, M. S. , Phillips, K. , Stratford, K. M. , Khan, M. , Thompson, L. , Oshiro, W. , Hudson, G. , Herr, D. W. , & Farraj, A. K. (2021). Exposure to intermittent noise exacerbates the cardiovascular response of Wistar‐Kyoto rats to ozone inhalation and arrhythmogenic challenge. Cardiovascular Toxicology, 21, 336–348. PubMed PMC
Houshmand, F. , Faghihi, M. , Imani, A. , & Kheiri, S. (2017). Effect of different doses of oxytocin on cardiac electrophysiology and arrhythmias induced by ischemia. Journal of Advanced Pharmaceutical Technology and Research, 8, 131–137. PubMed PMC
Imai, K. , Ariga, H. , Chen, C. , Mantyh, C. , Pappas, T. N. , & Takahashi, T. (2008). Effects of electroacupuncture on gastric motility and heart rate variability in conscious rats. Autonomic Neuroscience: Basic and Clinical, 138, 91–98. PubMed
Japundzic, N. , Grichois, M. L. , Zitoun, P. , Laude, D. , & Elghozi, J. L. (1990). Spectral analysis of blood pressure and heart rate in conscious rats: Effects of autonomic blockers. Journal of the Autonomic Nervous System, 30, 91–100. PubMed
Koizumi, S. , Minamisawa, S. , Sasaguri, K. , Onozuka, M. , Sato, S. , & Ono, Y. (2011). Chewing reduces sympathetic nervous response to stress and prevents poststress arrhythmias in rats. American Journal of Physiology. Heart and Circulatory Physiology, 301, H1551–H1558. PubMed
Koresh, O. , Kaplan, Z. , Zohar, J. , Matar, M. A. , Geva, A. B. , & Cohen, H. (2016). Distinctive cardiac autonomic dysfunction following stress exposure in both sexes in an animal model of PTSD. Behavioural Brain Research, 308, 128–142. PubMed
Krüger, C. , Kalenka, A. , Haunstetter, A. , Schweizer, M. , Maier, C. , Rühle, U. , Ehmke, H. , Kübler, W. , & Haass, M. (1997). Baroreflex sensitivity and heart rate variability in conscious rats with myocardial infarction. The American Journal of Physiology, 273, H2240–H2247. PubMed
Krüger, C. , Landerer, V. , Zugck, C. , Ehmke, H. , Kübler, W. , & Haass, M. (2000). The bradycardic agent zatebradine enhances baroreflex sensitivity and heart rate variability in rats early after myocardial infarction. Cardiovascular Research, 45, 900–912. PubMed
Kuwahara, M. , Yayou, K. , Ishii, K. , Hashimoto, S. , Tsubone, H. , & Sugano, S. (1994). Power spectral analysis of heart rate variability as a new method for assessing autonomic activity in the rat. Journal of Electrocardiology, 27, 333–337. PubMed
Lamb, C. M. , Hazari, M. S. , Haykal‐Coates, N. , Carll, A. P. , Krantz, Q. T. , King, C. , Winsett, D. W. , Cascio, W. E. , Costa, D. L. , & Farraj, A. K. (2012). Divergent electrocardiographic responses to whole and particle‐free diesel exhaust inhalation in spontaneously hypertensive rats. Toxicological Sciences, 125, 558–568. PubMed
Lima, S. E. B. , de Oliviera, L. C. S. , Cardoso, G. S. , Telles, P. V. N. , Lima, L. C. , E Sousa, J. F. R. , Araújo, R. P. N. , Oliviera, A. P. , Santos, R. F. , Santos, A. A. , & Silva, M. T. B. (2018). Moderate‐intensity exercise and renin angiotensin system blockade improve the renovascular hypertension (2K1C)‐induced gastric dysmotility in rats. Life Sciences, 210, 55–64. PubMed
Lin, T. T. , Sung, Y. L. , Wu, C. E. , Zhang, H. , Liu, Y. B. , & Lin, S. F. (2016). Proarrhythmic risk and determinants of cardiac autonomic dysfunction in collagen‐induced arthritis rats. BMC Musculoskeletal Disorders, 17, 491. PubMed PMC
Lo Giudice, P. , Careddu, A. , Magni, G. , Quagliata, T. , Pacifici, L. , & Carminati, P. (2002). Autonomic neuropathy in streptozotocin diabetic rats: Effect of acetyl‐l‐carnitine. Diabetes Research and Clinical Practice, 56, 173–180. PubMed
Mäenpää, M. , Penttilä, J. , Laitio, T. , Kaisti, K. , Kuusela, T. , Hinkka, S. , & Scheinin, H. (2007). The effects of surgical levels of sevoflurane and propofol anaesthesia on heart rate variability. European Journal of Anaesthesiology, 24, 626–633. PubMed
Maida, K. D. , Gastaldi, A. C. , Facioli, T. P. , Araújo, J. E. , & de Souza, H. C. D. (2017). Physical training associated with enalapril but not to losartan, results in better cardiovascular autonomic effects. Autonomic Neuroscience: Basic and Clinical, 203, 33–40. PubMed
Malliani, A. , Pagani, M. , Lombardi, F. , & Cerutti, S. (1991). Cardiovascular neural regulation explored in the frequency domain. Circulation, 84, 482–492. PubMed
Mamalyga, M. L. (2013). Heart rate regulation at different levels of convulsive readiness. Bulletin of Experimental Biology and Medicine, 155, 425–428. PubMed
Mangin, L. , Swynghedauw, B. , Benis, A. , Thibault, N. , Lerebours, G. , & Carré, F. (1998). Relationships between heart rate and heart rate variability: Study in conscious rats. Journal of Cardiovascular Pharmacology, 32, 601–607. PubMed
Matchett, G. , & Wood, P. (2014). General anesthesia suppresses normal heart rate variability in humans. Chaos: An Interdisciplinary Journal of Nonlinear Science, 24(2), 23129. PubMed
Mostarda, C. , Rogow, A. , Silva, I. C. M. , De La Fuente, R. N. , Jorge, L. , Rodrigues, B. , Heeren, M. V. , Caldini, E. G. , De Angelis, K. , & CláudiaIrigoyen, M. (2009). Benefits of exercise training in diabetic rats persist after three weeks of detraining. Autonomic Neuroscience, 145, 11–16. PubMed
Müller‐Ribeiro, F. C. , Wanner, S. P. , Santos, W. H. M. , Malheiros‐Lima, M. R. , Fonseca, I. A. T. , Coimbra, C. C. , & Pires, W. (2017). Changes in systolic arterial pressure variability are associated with the decreased aerobic performance of rats subjected to physical exercise in the heat. Journal of Thermal Biology, 63, 31–40. PubMed
Neto, O. B. , Sordi, C. C. , Mota, G. R. , Marocolo, M. , Chriguer, R. S. , & Silva, V. J. D. (2017). Exercise training improves hypertension‐induced autonomic dysfunction without influencing properties of peripheral cardiac vagus nerve. Autonomic Neuroscience, 208, 66–72. PubMed
Nobre, F. , da Silva, C. A. A. , Coelho, E. B. , Salgado, H. C. , & Fazan, R. (2006). Antihypertensive agents have different ability to modulate arterial pressure and heart rate variability in 2K1C rats. American Journal of Hypertension, 19, 1079–1083. PubMed
Pereira‐Junior, P. P. , Chaves, E. A. , Costa‐e‐Sousa, R. H. , Masuda, M. O. , Campos de Carvalho, A. C. , & Nascimento, J. H. M. (2006). Cardiac autonomic dysfunction in rats chronically treated with anabolic steroid. European Journal of Applied Physiology, 96, 487–494. PubMed
Pereira‐Junior, P. P. , Marocolo, M. , Rodrigues, F. P. , Medei, E. , & Nascimento, J. H. M. (2010). Noninvasive method for electrocardiogram recording in conscious rats: Feasibility for heart rate variability analysis. Anais da Academia Brasileira de Ciências, 82, 431–443. PubMed
Powell, K. L. , Liu, Z. , Curl, C. L. , Raaijmakers, A. J. A. , Sharma, P. , Braine, E. L. , Gomes, F. M. , Sivathamboo, S. , Macefield, V. G. , Casillas‐Espinosa, P. M. , Jones, N. C. , Delbridge, L. M. , & O'Brien, T. J. (2021). Altered cardiac structure and function is related to seizure frequency in a rat model of chronic acquired temporal lobe epilepsy. Neurobiology of Disease, 159, 105505. PubMed
Quagliotto, E. , Casali, K. R. , Dal Lago, P. , & Rasia‐Filho, A. A. (2015). Neuropeptides in the posterodorsal medial amygdala modulate central cardiovascular reflex responses in awake male rats. Brazilian Journal of Medical and Biological Research, 48, 128–139. PubMed PMC
Ramaekers, D. , Beckers, F. , Demeulemeester, H. , & Aubert, A. E. (2002). Cardiovascular autonomic function in conscious rats: A novel approach to facilitate stationary conditions. Annals of Noninvasive Electrocardiology, 7, 307–318. PubMed PMC
Ribeiro, A. B. , da Silva, T. M. , Santos‐Junior, N. N. , Castania, J. A. , Fayan, R., Jr. , & Salgado, H. C. (2021). Short‐term effect of ligature‐induced periodontitis on cardiovascular variability and inflammatory response in spontaneously hypertensive rats. BMC Oral Health, 21, 515. PubMed PMC
Rowan, W. H., III , Campen, M. J. , Wichers, C. L. , & Watkinson, W. O. (2007). Heart rate variability in rodents: Uses and caveats in toxicological studies. Cardiovascular Toxicology, 7, 28–51. PubMed
Ruiz, R. , Ramos, S. P. , Pinge, M. M. , de Moraes, S. F. , & Polito, M. (2014). Caffeine and physical training: Effects on cardiac morphology and cardiovascular response. Revista da Associação Médica Brasileira, 60, 23–28. PubMed
Saalfield, J. , & Spear, L. (2014). Developmental differences in the effects of alcohol and stress on heart rate variability. Physiology and Behavior, 135, 72–80. PubMed
Sallam, M. Y. , El‐Gowilly, S. M. , Abdel‐Galil, A. G. A. , & El‐Mas, M. M. (2016). Central GABAA receptors are involved in inflammatory and cardiovascular consequences of endotoxemia in conscious rats. Naunyn‐Schmiedeberg's Archives of Pharmacology, 389, 279–288. PubMed
Sallam, M. Y. , El‐Gowilly, S. M. , Abdel‐Galil, A. G. A. , & El‐Mas, M. M. (2017). Cyclosporine counteracts endotoxemia‐evoked reductions in blood pressure and cardiac autonomic dysfunction via central sGC/MAPKs signaling in rats. European Journal of Pharmacology, 797, 143–152. PubMed
Sant'Ana, J. E. , Pereira, M. G. A. G. , Da Silva, J. D. , Dambrós, C. , Costa‐Neto, C. M. , & Souza, C. D. (2011). Effect of the duration of daily aerobic physical training on cardiac autonomic adaptations. Autonomic Neuroscience, 159, 32–37. PubMed
Sanyal, S. N. , Arita, M. , & Ono, K. (2002). Inhomogeneous derangement of cardiac autonomic nerve control in diabetic rats. Circulation Journal, 66, 283–288. PubMed
Scridon, A. , Gallet, C. , Arisha, M. M. , Oréa, V. , Chapuis, B. , Li, N. , Tabib, A. , Christé, G. , Julien, C. , & Chevalier, P. (2012). Unprovoked atrial tachyarrhythmias in aging spontaneously hypertensive rats: The role of the autonomic nervous system. American Journal of Physiology. Heart and Circulatory Physiology, 303(3), H386–H392. PubMed
Shi, S. , Liu, T. , Wang, D. , Zhang, Y. , Liang, J. , Yang, B. , & Hu, D. (2017). Activation of N‐methyl‐D‐aspartate receptors reduces heart rate variability and facilitates atrial fibrillation in rats. EP Europace, 19, 1237–1243. PubMed
Shi, Z. J. , Cheng, M. , Liu, Y. C. , Fan, X. R. , & Wei, Z. Y. (2020). Effect of chronic intermittent hypobaric hypoxia on heart rate variability in conscious rats. Clinical and Experimental Pharmacology and Physiology, 47, 60–66. PubMed
Silva, L. E. V. , Geraldini, V. R. , de Oliveira, B. P. , Silva, C. A. A. , Porta, A. , & Fazan, R. (2017). Comparison between spectral analysis and symbolic dynamics for heart rate variability analysis in the rat. Scientific Reports, 7, 8428. PubMed PMC
Silva, L. E. V. , Silva, C. A. A. , Salgado, H. C. , & Fazan, R., Jr. (2017). The role of sympathetic and vagal cardiac control on complexity of heart rate dynamics. American Journal of Physiology‐Heart and Circulatory Physiology, 312, H469–H477. PubMed
Simoes, M. R. , Azevedo, B. F. , Fiorim, J. , Freire, D. D. J. , Covre, E. P. , Vassallo, D. V. , & dos Santos, L. (2016). Chronic mercury exposure impairs the sympathovagal control of the rat heart. Clinical and Experimental Pharmacology and Physiology, 43, 1038–1045. PubMed
Soler, A. I. R. , Silva, L. E. V. , Fayan, R., Jr. , & Murta, L. O., Jr. (2018). The impact of artifact correction methods of RR series on heart rate variability parameters. Journal of Applied Physiology, 124, 646–652. PubMed
Svorc, P., Jr. , Svorc, P. , & Gresova, S. (2023). Sex differences, chronobiology and general anesthesia in activities of the autonomic nervous system in rats. Experimental Physiology, 108, 1–8. PubMed PMC
Towa, S. , Kuwahara, M. , & Tsubone, H. (2004). Characteristics of autonomic nervous function in Zucker‐fatty rats: Investigation by power spectral analysis of heart rate variability. Experimental Animals, 53, 137–144. PubMed
Tsai, S. H. , Lin, J. Y. , Lin, Y. C. , Liu, Y. P. , & Tung, C. S. (2020). Portal vein innervation underlying the pressor effect of water ingestion with and without cold stress. The Chinese Journal of Physiology, 63, 53–59. PubMed
Wang, D. , Liu, T. , Shi, S. , Li, R. , Shan, Y. , Huang, Y. , Hu, D. , & Huang, C. (2016). Chronic administration of catestatin improves autonomic function and exerts cardioprotective effects in myocardial infarction rats. Journal of Cardiovascular Pharmacology and Therapeutics, 21, 526–535. PubMed
Xu, L. , Zhou, L. , Dai, J. , & Lin, Y. (2020). Effects of guanxinning tablets on the autonomic nerve regulation function of MI/RI rats by antioxidation and inhibition of inflammatory response. Acta Medica Mediterranea, 36, 3389–3394.
Yang, Y. N. , Tsai, H. L. , Lin, Y. C. , Liu, Y. P. , & Tung, C. S. (2019). Differential effects of sympatholytic agents on the power spectrum of rats during the cooling‐induced hemodynamic perturbations. Chinese Journal of Physiology, 62, 86–92. PubMed
Zajączkowski, S. , Smolińska, M. , Badtke, P. , & Wierzba, T. H. (2014). Time‐domain and spectral analysis of heart rate variability in rats challenged with hypoxia. Computers in Cardiology, 41, 785–788.
Zajączkowski, S. , Ziółkowski, W. , Badtke, P. , Zajączkowski, M. A. , Flis, D. J. , Figarski, A. , Smolińska‐Bylańska, M. , & Wierzba, T. H. (2018). Promising effects of xanthine oxidase inhibition by allopurinol on autonomic heart regulation estimated by heart rate variability (HRV) analysis in rats exposed to hypoxia and hyperoxia. PLoS ONE, 13(2), e0192781. PubMed PMC
Zhu, G. , Chen, Z. , Dai, B. , Zheng, C. , Jiang, H. , Xu, Y. , Sheng, X. , Guo, J. , Dan, Y. , Liang, S. , & Li, G. (2018). Chronic lead exposure enhances the sympathoexcitatory response associated with P2X4 receptor in rat stellate ganglia. Environmental Toxicology, 33, 631–639. PubMed