The pros and cons of nucleic acid-amplified immunoassays-a comparative study on the quantitation of prostate-specific antigen with and without rolling circle amplification

. 2024 Dec ; 416 (30) : 7285-7294. [epub] 20240607

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, srovnávací studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid38849527

Grantová podpora
H2020-MSCA-COFUND-2018 HORIZON EUROPE Marie Sklodowska-Curie Actions
22-27580S Grantová Agentura České Republiky
CERC-2022-0007 Canada Excellence Research Chairs, Government of Canada

Odkazy

PubMed 38849527
PubMed Central PMC11584466
DOI 10.1007/s00216-024-05357-y
PII: 10.1007/s00216-024-05357-y
Knihovny.cz E-zdroje

Integrating isothermal nucleic acid amplification strategies into immunoassays can significantly decrease analytical limits of detection (LODs). On the other hand, an amplification step adds time, complication, reagents, and costs to the assay format. To evaluate the pros and cons in the context of heterogeneous multistep immunoassays, we quantified prostate-specific antigen (PSA) with and without rolling circle amplification (RCA). In addition, we compared time-gated (TG) with continuous-wave (CW) photoluminescence (PL) detection using a terbium complex and a fluorescein dye, respectively. For both direct (non-amplified) and amplified assays, TG PL detection provided circa four- to eightfold lower LODs, illustrating the importance of autofluorescence background suppression even for multi-wash assay formats. Amplified assays required an approximately 2.4 h longer assay time but led to almost 100-fold lower LODs down to 1.3 pg/mL of PSA. Implementation of TG-FRET (using a Tb-Cy5.5 donor-acceptor pair) into the RCA immunoassay resulted in a slightly higher LOD (3.0 pg/mL), but the ratiometric detection format provided important benefits, such as higher reproducibility, lower standard deviations, and multiplexing capability. Overall, our direct comparison demonstrated the importance of biological background suppression even in heterogeneous assays and the potential of using isothermal RCA for strongly decreasing analytical LODs, making such assays viable alternatives to conventional enzyme-linked immunosorbent assays (ELISAs).

Zobrazit více v PubMed

Wild D. The Immunoassay Handbook. 4th ed. Elsevier Science; 2013.

Norman M, Gilboa T, Ogata AF, Maley AM, Cohen L, Busch EL, Lazarovits R, Mao CP, Cai Y, Zhang J, Feldman JE, Hauser BM, Caradonna TM, Chen B, Schmidt AG, Alter G, Charles RC, Ryan ET, Walt DR. Ultrasensitive high-resolution profiling of early seroconversion in patients with COVID-19. Nat Biomed Eng. 2020;4:1180–7. 10.1038/s41551-020-00611-x. PubMed PMC

O’Connell GC, Alder ML, Smothers CG, Still CH, Webel AR, Moore SM. Diagnosis of ischemic stroke using circulating levels of brain-specific proteins measured via high-sensitivity digital ELISA. Brain Res. 2020;1739: 146861. 10.1016/j.brainres.2020.146861. PubMed PMC

Arya SK, Estrela P. Recent advances in enhancement strategies for electrochemical ELISA-based immunoassays for cancer biomarker detection. Sensors. 2018;18:1–45. 10.3390/s18072010. PubMed PMC

Butler JE. Enzyme-linked immunosorbent assay. J Immunoassay. 2000;21:165–209. 10.1080/01971520009349533. PubMed

Hornbeck P V. Enzyme-linked immunosorbent assays. Curr Protoc Immunol. 2015;110:2.1.1–2.1.23. 10.1002/0471142735.im0201s110. PubMed

Zhang S, Garcia-D’Angeli A, Brennan JP, Huo Q. Predicting detection limits of enzyme-linked immunosorbent assay (ELISA) and bioanalytical techniques in general. Analyst. 2013;139:439–45. 10.1039/c3an01835k. PubMed

Tsurusawa N, Chang J, Namba M, Makioka D, Yamura S, Iha K, Kyosei Y, Watabe S, Yoshimura T, Ito E. Modified ELISA for ultrasensitive diagnosis. J Clin Med. 2021;10:1–13. 10.3390/jcm10215197. PubMed PMC

Shan W, Cheng J, Qu B, Sai J, Kong H, Qu H, Zhao Y, Wang Q. Development of a fluorescence-linked immunosorbent assay for baicalin. J Fluoresc. 2015;25:1371–6. 10.1007/s10895-015-1627-9. PubMed

Lv Y, Wang F, Li N, Wu R, Li J, Shen H, Li LS, Guo F. Development of dual quantum dots-based fluorescence-linked immunosorbent assay for simultaneous detection on inflammation biomarkers. Sens Actuators B Chem. 2019;301: 127118. 10.1016/j.snb.2019.127118.

Pérez-Ruiz E, Decrop D, Ven K, Tripodi L, Leirs K, Rosseels J, Van de Wouwer M, Geukens N, De Vos A, Vanmechelen E, Winderickx J, Lammertyn J, Spasic D. Digital ELISA for the quantification of attomolar concentrations of Alzheimer’s disease biomarker protein Tau in biological samples. Anal Chim Acta. 2018;1015:74–81. 10.1016/j.aca.2018.02.011. PubMed

Dong J, Ueda H. ELISA-type assays of trace biomarkers using microfluidic methods. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9:1–19. 10.1002/wnan.1457. PubMed

Ebai T, De Oliveira FMS, Löf L, Wik L, Schweiger C, Larsson A, Keilholtz U, Haybaeck J, Landegren U, Kamali-Moghaddam M. Analytically sensitive protein detection in microtiter plates by proximity ligation with rolling circle amplification. Clin Chem. 2017;63:1497–505. 10.1373/clinchem.2017.271833. PubMed

Shi H, Cui J, Sulemana H, Wang W, Gao L. Protein detection based on rolling circle amplification sensors. Luminescence. 2021;36:842–8. 10.1002/bio.4017. PubMed

Niemeyer CM, Adler M, Wacker R. Detecting antigens by quantitative immuno-PCR. Nat Protoc. 2007;2:1918–30. 10.1038/nprot.2007.267. PubMed

Adler M, Wacker R, Niemeyer CM. A real-time immuno-PCR assay for routine ultrasensitive quantification of proteins. Biochem Biophys Res Commun. 2003;308:240–50. 10.1016/S0006-291X(03)01364-0. PubMed

Oliveira BB, Veigas B, Baptista PV. Isothermal amplification of nucleic acids: the race for the next “gold standard.” Frontiers in Sensors. 2021;2: 752600. 10.3389/fsens.2021.752600.

Chang L, Li J, Wang L. Immuno-PCR: an ultrasensitive immunoassay for biomolecular detection. Anal Chim Acta. 2016;910:12–24. 10.1016/j.aca.2015.12.039. PubMed

Liu H, Zhang L, Xu Y, Chen J, Wang Y, Huang Q, Chen X, Liu Y, Dai Z, Zou X, Li Z. Sandwich immunoassay coupled with isothermal exponential amplification reaction: an ultrasensitive approach for determination of tumor marker MUC1. Talanta. 2019;204:248–54. 10.1016/j.talanta.2019.06.001. PubMed

Xu L, Duan J, Chen J, Ding S, Cheng W. Recent advances in rolling circle amplification-based biosensing strategies-a review. Anal Chim Acta. 2021;1148: 238187. 10.1016/j.aca.2020.12.062. PubMed

You M, Peng P, Xue Z, Tong H, He W, Mao P, Liu Q, Yao C, Xu F. A fast and ultrasensitive ELISA based on rolling circle amplification. Analyst. 2021;146:2871–7. 10.1039/d1an00355k. PubMed

Schweitzer B, Wiltshire S, Lambert J, O’Malley S, Kukanskis K, Zhu Z, Kingsmore SF, Lizardi PM, Ward DC. Immunoassays with rolling circle DNA amplification: a versatile platform for ultrasensitive antigen detection. PNAS. 2000;97:10113–9. 10.1073/pnas.170237197. PubMed PMC

Gullberg M, Söderberg O, Landegren U, Liu Y. Multiplexed proximity ligation assay. Patent No.: US 10,465,235 B2.

Cane G, Leuchowius KJ, Söderberg O, Kamali-Moghaddam M, Jarvius M, Helbing I, Pardali K, Koos B, Ebai T, Landegren U. Protein diagnostics by proximity ligation: combining multiple recognition and DNA amplification for improved protein analyses. Mol Diagn. Third Edition. 2017;219–231. 10.1016/B978-0-12-802971-8.00012-2

https://www.sigmaaldrich.com/PL/en/products/protein-biology/duolink-proximity-ligation-assay.

Hildebrandt N, Wegner KD, Algar WR. Luminescent terbium complexes: superior Förster resonance energy transfer donors for flexible and sensitive multiplexed biosensing. Coord Chem Rev. 2014;273–274:125–38. 10.1016/j.ccr.2014.01.020.

Qiu X, Xu J, Cardoso Dos Santos M, Hildebrandt N. Multiplexed biosensing and bioimaging using lanthanide-based time-gated förster resonance energy transfer. Acc Chem Res. 2022;55:551–64. 10.1021/acs.accounts.1c00691. PubMed

Dekaliuk M, Hildebrandt N. Lanthanide-FRET Molecular beacons for microRNA biosensing, logic operations, and physical unclonable functions. Eur J Inorg Chem. 2023;26:e202300288. 10.1002/ejic.202300288.

Qiu X, Guo J, Xu J, Hildebrandt N. Three-dimensional FRET multiplexing for DNA quantification with attomolar detection limits. J Phys Chem Lett. 2018;9:4379–84. 10.1021/acs.jpclett.8b01944. PubMed

Dekaliuk M, Qiu X, Troalen F, Busson P, Hildebrandt N. Discrimination of the V600E mutation in BRAF by rolling circle amplification and Förster resonance energy transfer. ACS Sens. 2019;4:2786–93. 10.1021/acssensors.9b01420. PubMed

Francés-Soriano L, Leino M, Cardoso Dos Santos M, Kovacs D, Borbas KE, Söderberg O, Hildebrandt N. In situ rolling circle amplification Förster resonance energy transfer (RCA-FRET) for washing-free real-time single-protein imaging. Anal Chem. 2021;93:1842–50. 10.1021/acs.analchem.0c04828. PubMed

Dekaliuk M, Busson P, Hildebrandt N. Isothermal rolling circle amplification and lanthanide-based FRET for femtomolar quantification of microRNA. Analysis & Sensing. 2022;2:1–7. 10.1002/anse.202200049.

Qiu X, Xu J, Guo J, Yahia-Ammar A, Kapetanakis NI, Duroux-Richard I, Unterluggauer JJ, Golob-Schwarzl N, Regeard C, Uzan C, Gouy S, Dubow M, Haybaeck J, Apparailly F, Busson P, Hildebrandt N. Advanced microRNA-based cancer diagnostics using amplified time-gated FRET. Chem Sci. 2018;9:8046–55. 10.1039/c8sc03121e. PubMed PMC

Greene KL, Albertsen PC, Babaian RJ, Carter HB, Gann PH, Han M, Kuban DA, Sartor AO, Stanford JL, Zietman A, Carroll P. Prostate specific antigen best practice statement: 2009 update. J Urol. 2013;189:2–11. 10.1016/j.juro.2012.11.014. PubMed

Pfister C, Basuyau JP. Current usefulness of free/total PSA ratio in the diagnosis of prostate cancer at an early stage. World J Urol. 2005;23:236–42. 10.1007/s00345-005-0506-4. PubMed

Duffy MJ. Prostate-specific antigen: Does the current evidence support its use in prostate cancer screening? Ann Clin Biochem. 2011;48:310–6. 10.1258/acb.2011.010273. PubMed

Hermanson GT. Bioconjugate Techniques. 2nd ed. Academic press. 2008. 10.1016/B978-0-12-370501-3.X0001-X.

Bünzli JCG. Lanthanide luminescence for biomedical analyses and imaging. Chem Rev. 2010;110:2729–55. 10.1021/cr900362e. PubMed

Pope AJ. LANCE vs. HTRF technologies (or vice versa). J Biomol Screen. 1999;4:301–2. 10.1177/108705719900400603. PubMed

Mickert MJ, Farka Z, Kostiv U, Hlaváček A, Horák D, Skládal P, Gorris HH. Measurement of sub-femtomolar concentrations of prostate-specific antigen through single-molecule counting with an upconversion-linked immunosorbent assay. Anal Chem. 2019;91:9435–41. 10.1021/acs.analchem.9b02872. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...