• This record comes from PubMed

Nanoporous Titanium Oxynitride Nanotube Metamaterials with Deep Subwavelength Heat Dissipation for Perfect Solar Absorption

. 2023 Sep 20 ; 10 (9) : 3291-3301. [epub] 20230908

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

We report a quasi-unitary broadband absorption over the ultraviolet-visible-near-infrared range in spaced high aspect ratio, nanoporous titanium oxynitride nanotubes, an ideal platform for several photothermal applications. We explain such an efficient light-heat conversion in terms of localized field distribution and heat dissipation within the nanopores, whose sparsity can be controlled during fabrication. The extremely large heat dissipation could not be explained in terms of effective medium theories, which are typically used to describe small geometrical features associated with relatively large optical structures. A fabrication-process-inspired numerical model was developed to describe a realistic space-dependent electric permittivity distribution within the nanotubes. The resulting abrupt optical discontinuities favor electromagnetic dissipation in the deep sub-wavelength domains generated and can explain the large broadband absorption measured in samples with different porosities. The potential application of porous titanium oxynitride nanotubes as solar absorbers was explored by photothermal experiments under moderately concentrated white light (1-12 Suns). These findings suggest potential interest in realizing solar-thermal devices based on such simple and scalable metamaterials.

See more in PubMed

Chang C.-C.; Kort-Kamp W. J. M.; Nogan J.; Luk T. S.; Azad A. K.; Taylor A. J.; Dalvit D. A. R.; Sykora M.; Chen H.-T. High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting. Nano Lett. 2018, 18 (12), 7665–7673. 10.1021/acs.nanolett.8b03322. PubMed DOI

Zhou J.; Liu Z.; Liu G.; Pan P.; Liu X.; Tang C.; Liu Z.; Wang J. Ultra-Broadband Solar Absorbers for High-Efficiency Thermophotovoltaics. Opt. Express 2020, 28 (24), 36476.10.1364/OE.411918. PubMed DOI

Cai W.; Shalaev V.. Optical Properties of Metal-Dielectric Composites. In Optical Metamaterials; Springer New York: New York, NY, 2010; pp 11–37. 10.1007/978-1-4419-1151-3_2. DOI

Li W.; Guler U.; Kinsey N.; Naik G. V.; Boltasseva A.; Guan J.; Shalaev V. M.; Kildishev A. V. Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber. Adv. Mater. 2014, 26 (47), 7959–7965. 10.1002/adma.201401874. PubMed DOI

Chaudhuri K.; Alhabeb M.; Wang Z.; Shalaev V. M.; Gogotsi Y.; Boltasseva A. Highly Broadband Absorber Using Plasmonic Titanium Carbide (MXene). ACS Photonics 2018, 5 (3), 1115–1122. 10.1021/acsphotonics.7b01439. DOI

Cui Y.; He Y.; Jin Y.; Ding F.; Yang L.; Ye Y.; Zhong S.; Lin Y.; He S. Plasmonic and Metamaterial Structures as Electromagnetic Absorbers: Plasmonic and Metamaterial Absorbers. Laser Photonics Rev. 2014, 8 (4), 495–520. 10.1002/lpor.201400026. DOI

Bilal R. M. H.; Saeed M. A.; Choudhury P. K.; Baqir M. A.; Kamal W.; Ali M. M.; Rahim A. A. Elliptical Metallic Rings-Shaped Fractal Metamaterial Absorber in the Visible Regime. Sci. Rep. 2020, 10 (1), 14035.10.1038/s41598-020-71032-8. PubMed DOI PMC

Kenney M.; Grant J.; Shah Y. D.; Escorcia-Carranza I.; Humphreys M.; Cumming D. R. S. Octave-Spanning Broadband Absorption of Terahertz Light Using Metasurface Fractal-Cross Absorbers. ACS Photonics 2017, 4 (10), 2604–2612. 10.1021/acsphotonics.7b00906. DOI

Nguyen T. Q. M.; Nguyen T. K. T.; Le D. T.; Truong C. L.; Vu D. L.; Nguyen T. Q. H. Numerical Study of an Ultra-Broadband and Wide-Angle Insensitive Perfect Metamaterial Absorber in the UV-NIR Region. Plasmonics 2021, 16 (5), 1583–1592. 10.1007/s11468-021-01424-7. DOI

Zhou L.; Tan Y.; Ji D.; Zhu B.; Zhang P.; Xu J.; Gan Q.; Yu Z.; Zhu J. Self-Assembly of Highly Efficient, Broadband Plasmonic Absorbers for Solar Steam Generation. Sci. Adv. 2016, 2 (4), e150122710.1126/sciadv.1501227. PubMed DOI PMC

Richardson H. H.; Carlson M. T.; Tandler P. J.; Hernandez P.; Govorov A. O. Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions. Nano Lett. 2009, 9 (3), 1139–1146. 10.1021/nl8036905. PubMed DOI PMC

Zhu M.; Li Y.; Chen F.; Zhu X.; Dai J.; Li Y.; Yang Z.; Yan X.; Song J.; Wang Y.; Hitz E.; Luo W.; Lu M.; Yang B.; Hu L. Plasmonic Wood for High-Efficiency Solar Steam Generation. Adv. Energy Mater. 2018, 8 (4), 1701028.10.1002/aenm.201701028. DOI

Tian L.; Xin Q.; Zhao C.; Xie G.; Akram M. Z.; Wang W.; Ma R.; Jia X.; Guo B.; Gong J. R. Nanoarray Structures for Artificial Photosynthesis. Small 2021, 17 (38), 2006530.10.1002/smll.202006530. PubMed DOI

Patsalas P.; Kalfagiannis N.; Kassavetis S.; Abadias G.; Bellas D. V.; Lekka Ch.; Lidorikis E. Conductive Nitrides: Growth Principles, Optical and Electronic Properties, and Their Perspectives in Photonics and Plasmonics. Mater. Sci. Eng. R Rep. 2018, 123, 1–55. 10.1016/j.mser.2017.11.001. DOI

Yalavarthi R.; Henrotte O.; Kment Š.; Naldoni A. Determining the Role of Pd Catalyst Morphology and Deposition Criteria over Large Area Plasmonic Metasurfaces during Light-Enhanced Electrochemical Oxidation of Formic Acid. J. Chem. Phys. 2022, 157 (11), 114706.10.1063/5.0102012. PubMed DOI

Guler U.; Ndukaife J. C.; Naik G. V.; Nnanna A. G. A.; Kildishev A. V.; Shalaev V. M.; Boltasseva A. Local Heating with Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles. Nano Lett. 2013, 13 (12), 6078–6083. 10.1021/nl4033457. PubMed DOI

Mascaretti L.; Schirato A.; Zbořil R.; Kment Š.; Schmuki P.; Alabastri A.; Naldoni A. Solar Steam Generation on Scalable Ultrathin Thermoplasmonic TiN Nanocavity Arrays. Nano Energy 2021, 83, 105828.10.1016/j.nanoen.2021.105828. DOI

Li Y.; Lin C.; Wu Z.; Chen Z.; Chi C.; Cao F.; Mei D.; Yan H.; Tso C. Y.; Chao C. Y. H.; Huang B. Solution-Processed All-Ceramic Plasmonic Metamaterials for Efficient Solar-Thermal Conversion over 100–727 C. Adv. Mater. 2021, 33 (1), 2005074.10.1002/adma.202005074. PubMed DOI

Moon G. D.; Joo J. B.; Dahl M.; Jung H.; Yin Y. Nitridation and Layered Assembly of Hollow TiO 2 Shells for Electrochemical Energy Storage. Adv. Funct. Mater. 2014, 24 (6), 848–856. 10.1002/adfm.201301718. DOI

Wei Q.; Kuhn D. L.; Zander Z.; DeLacy B. G.; Dai H.-L.; Sun Y. Silica-Coating-Assisted Nitridation of TiO2 Nanoparticles and Their Photothermal Property. Nano Res. 2021, 14 (9), 3228–3233. 10.1007/s12274-021-3427-7. DOI

Li C.; Shi J.; Zhu L.; Zhao Y.; Lu J.; Xu L. Titanium Nitride Hollow Nanospheres with Strong Lithium Polysulfide Chemisorption as Sulfur Hosts for Advanced Lithium-Sulfur Batteries. Nano Res. 2018, 11 (8), 4302–4312. 10.1007/s12274-018-2017-9. DOI

Zukalova M.; Prochazka J.; Bastl Z.; Duchoslav J.; Rubacek L.; Havlicek D.; Kavan L. Facile Conversion of Electrospun TiO 2 into Titanium Nitride/Oxynitride Fibers. Chem. Mater. 2010, 22 (13), 4045–4055. 10.1021/cm100877h. DOI

Qin P.; Huang C.; Gao B.; Pi C.; Fu J.; Zhang X.; Huo K.; Chu P. K. Ultrathin Carbon Layer-Encapsulated TiN Nanotubes Array with Enhanced Capacitance and Electrochemical Stability for Supercapacitors. Appl. Surf. Sci. 2020, 503, 144293.10.1016/j.apsusc.2019.144293. DOI

Naldoni A.; Kudyshev Z. A.; Mascaretti L.; Sarmah S. P.; Rej S.; Froning J. P.; Tomanec O.; Yoo J. E.; Wang D.; Kment Š.; Montini T.; Fornasiero P.; Shalaev V. M.; Schmuki P.; Boltasseva A.; Zbořil R. Solar Thermoplasmonic Nanofurnace for High-Temperature Heterogeneous Catalysis. Nano Lett. 2020, 20 (5), 3663–3672. 10.1021/acs.nanolett.0c00594. PubMed DOI

Riboni F.; Nguyen N. T.; So S.; Schmuki P. Aligned Metal Oxide Nanotube Arrays: Key-Aspects of Anodic TiO 2 Nanotube Formation and Properties. Nanoscale Horiz 2016, 1 (6), 445–466. 10.1039/C6NH00054A. PubMed DOI

Lee K.; Mazare A.; Schmuki P. One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes. Chem. Rev. 2014, 114 (19), 9385–9454. 10.1021/cr500061m. PubMed DOI

Ozkan S.; Mazare A.; Schmuki P. Critical Parameters and Factors in the Formation of Spaced TiO2 Nanotubes by Self-Organizing Anodization. Electrochim. Acta 2018, 268, 435–447. 10.1016/j.electacta.2018.02.120. DOI

Wawrzyniak J.; Grochowska K.; Karczewski J.; Kupracz P.; Ryl J.; Dołȩga A.; Siuzdak K. The Geometry of Free-Standing Titania Nanotubes as a Critical Factor Controlling Their Optical and Photoelectrochemical Performance. Surf. Coat. Technol. 2020, 389, 125628.10.1016/j.surfcoat.2020.125628. DOI

Varghese O. K.; Paulose M.; Grimes C. A. Long Vertically Aligned Titania Nanotubes on Transparent Conducting Oxide for Highly Efficient Solar Cells. Nat. Nanotechnol. 2009, 4 (9), 592–597. 10.1038/nnano.2009.226. PubMed DOI

Tesler A. B.; Altomare M.; Schmuki P. Morphology and Optical Properties of Highly Ordered TiO 2 Nanotubes Grown in NH 4 F/ o -H 3 PO 4 Electrolytes in View of Light-Harvesting and Catalytic Applications. ACS Appl. Nano Mater. 2020, 3 (11), 10646–10658. 10.1021/acsanm.0c01859. DOI

Ozkan S.; Nguyen N. T.; Mazare A.; Schmuki P. Optimized Spacing between TiO 2 Nanotubes for Enhanced Light Harvesting and Charge Transfer. ChemElectroChem. 2018, 5 (21), 3183–3190. 10.1002/celc.201801136. DOI

Liu Y.; Wang Y.; Zhang Y.; You Z.; Lv X. Mechanism on Reduction and Nitridation of Micrometer-sized Titania with Ammonia Gas. J. Am. Ceram. Soc. 2020, 103 (6), 3905–3916. 10.1111/jace.17067. DOI

Anderson B. D.; Tracy J. B. Nanoparticle Conversion Chemistry: Kirkendall Effect, Galvanic Exchange, and Anion Exchange. Nanoscale 2014, 6 (21), 12195–12216. 10.1039/C4NR02025A. PubMed DOI

Koya A. N.; Zhu X.; Ohannesian N.; Yanik A. A.; Alabastri A.; Proietti Zaccaria R.; Krahne R.; Shih W.-C.; Garoli D. Nanoporous Metals: From Plasmonic Properties to Applications in Enhanced Spectroscopy and Photocatalysis. ACS Nano 2021, 15 (4), 6038–6060. 10.1021/acsnano.0c10945. PubMed DOI PMC

Plawsky J. L.; Kim J. K.; Schubert E. F. Engineered Nanoporous and Nanostructured Films. Mater. Today 2009, 12 (6), 36–45. 10.1016/S1369-7021(09)70179-8. DOI

Lu J. Y.; Nam S. H.; Wilke K.; Raza A.; Lee Y. E.; AlGhaferi A.; Fang N. X.; Zhang T. Localized Surface Plasmon-Enhanced Ultrathin Film Broadband Nanoporous Absorbers. Adv. Opt. Mater. 2016, 4 (8), 1255–1264. 10.1002/adom.201600078. DOI

Farhat M.; Cheng T.-C.; Le K. Q.; Cheng M. M.-C.; Bağcı H.; Chen P.-Y. Mirror-Backed Dark Alumina: A Nearly Perfect Absorber for Thermoelectronics and Thermophotovotaics. Sci. Rep. 2016, 6 (1), 19984.10.1038/srep19984. PubMed DOI PMC

Raut H. K.; Ganesh V. A.; Nair A. S.; Ramakrishna S. Anti-Reflective Coatings: A Critical, in-Depth Review. Energy Environ. Sci. 2011, 4 (10), 3779.10.1039/c1ee01297e. DOI

Wang W.; Qi L. Light Management with Patterned Micro- and Nanostructure Arrays for Photocatalysis, Photovoltaics, and Optoelectronic and Optical Devices. Adv. Funct. Mater. 2019, 29 (25), 1807275.10.1002/adfm.201807275. DOI

Ulusoy Ghobadi T. G.; Ghobadi A.; Odabasi O.; Karadas F.; Ozbay E. Subwavelength Densely Packed Disordered Semiconductor Metasurface Units for Photoelectrochemical Hydrogen Generation. ACS Appl. Energy Mater. 2022, 5 (3), 2826–2837. 10.1021/acsaem.1c03363. DOI

Soydan M. C.; Ghobadi A.; Yildirim D. U.; Duman E.; Bek A.; Erturk V. B.; Ozbay E. Lithography-Free Random Bismuth Nanostructures for Full Solar Spectrum Harvesting and Mid-Infrared Sensing. Adv. Opt. Mater. 2020, 8 (4), 1901203.10.1002/adom.201901203. DOI

Zhang F.; Tang F.; Xu X.; Adam P.-M.; Martin J.; Plain J. Influence of Order-to-Disorder Transitions on the Optical Properties of the Aluminum Plasmonic Metasurface. Nanoscale 2020, 12 (45), 23173–23182. 10.1039/D0NR06334G. PubMed DOI

Huo D.; Zhang J.; Wang H.; Ren X.; Wang C.; Su H.; Zhao H. Broadband Perfect Absorber with Monolayer MoS2 and Hexagonal Titanium Nitride Nano-Disk Array. Nanoscale Res. Lett. 2017, 12 (1), 465.10.1186/s11671-017-2232-4. PubMed DOI PMC

Wang J.; Zhang W.; Zhu M.; Yi K.; Shao J. Broadband Perfect Absorber with Titanium Nitride Nano-Disk Array. Plasmonics 2015, 10 (6), 1473–1478. 10.1007/s11468-015-9962-x. DOI

Chirumamilla M.; Chirumamilla A.; Yang Y.; Roberts A. S.; Kristensen P. K.; Chaudhuri K.; Boltasseva A.; Sutherland D. S.; Bozhevolnyi S. I.; Pedersen K. Large-Area Ultrabroadband Absorber for Solar Thermophotovoltaics Based on 3D Titanium Nitride Nanopillars. Adv. Opt. Mater. 2017, 5 (22), 1700552.10.1002/adom.201700552. DOI

Boyd R. W.; Gehr R. J.; Fischer G. L.; Sipe J. E. Nonlinear Optical Properties of Nanocomposite Materials. Pure Appl. Opt. J. Eur. Opt. Soc. Part A 1996, 5 (5), 505–512. 10.1088/0963-9659/5/5/005. DOI

Mascaretti L.; Schirato A.; Montini T.; Alabastri A.; Naldoni A.; Fornasiero P. Challenges in Temperature Measurements in Gas-Phase Photothermal Catalysis. Joule 2022, 6 (8), 1727–1732. 10.1016/j.joule.2022.06.019. DOI

Tao P.; Ni G.; Song C.; Shang W.; Wu J.; Zhu J.; Chen G.; Deng T. Solar-Driven Interfacial Evaporation. Nat. Energy 2018, 3 (12), 1031–1041. 10.1038/s41560-018-0260-7. DOI

Zhang P.; Liao Q.; Yao H.; Huang Y.; Cheng H.; Qu L. Direct Solar Steam Generation System for Clean Water Production. Energy Storage Mater. 2019, 18, 429–446. 10.1016/j.ensm.2018.10.006. DOI

Dongare P. D.; Alabastri A.; Neumann O.; Nordlander P.; Halas N. J. Solar Thermal Desalination as a Nonlinear Optical Process. Proc. Natl. Acad. Sci. U. S. A. 2019, 116 (27), 13182–13187. 10.1073/pnas.1905311116. PubMed DOI PMC

Palm K. J.; Murray J. B.; Narayan T. C.; Munday J. N. Dynamic Optical Properties of Metal Hydrides. ACS Photonics 2018, 5 (11), 4677–4686. 10.1021/acsphotonics.8b01243. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...