Nanoporous Titanium Oxynitride Nanotube Metamaterials with Deep Subwavelength Heat Dissipation for Perfect Solar Absorption
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
37743938
PubMed Central
PMC10515634
DOI
10.1021/acsphotonics.3c00731
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
We report a quasi-unitary broadband absorption over the ultraviolet-visible-near-infrared range in spaced high aspect ratio, nanoporous titanium oxynitride nanotubes, an ideal platform for several photothermal applications. We explain such an efficient light-heat conversion in terms of localized field distribution and heat dissipation within the nanopores, whose sparsity can be controlled during fabrication. The extremely large heat dissipation could not be explained in terms of effective medium theories, which are typically used to describe small geometrical features associated with relatively large optical structures. A fabrication-process-inspired numerical model was developed to describe a realistic space-dependent electric permittivity distribution within the nanotubes. The resulting abrupt optical discontinuities favor electromagnetic dissipation in the deep sub-wavelength domains generated and can explain the large broadband absorption measured in samples with different porosities. The potential application of porous titanium oxynitride nanotubes as solar absorbers was explored by photothermal experiments under moderately concentrated white light (1-12 Suns). These findings suggest potential interest in realizing solar-thermal devices based on such simple and scalable metamaterials.
Department of Chemistry and NIS Centre University of Turin Turin 10125 Italy
Department of Physics Politecnico di Milano Piazza Leonardo da Vinci 32 20133 Milano Italy
Istituto Italiano di Tecnologia via Morego 30 16163 Genoa Italy
See more in PubMed
Chang C.-C.; Kort-Kamp W. J. M.; Nogan J.; Luk T. S.; Azad A. K.; Taylor A. J.; Dalvit D. A. R.; Sykora M.; Chen H.-T. High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting. Nano Lett. 2018, 18 (12), 7665–7673. 10.1021/acs.nanolett.8b03322. PubMed DOI
Zhou J.; Liu Z.; Liu G.; Pan P.; Liu X.; Tang C.; Liu Z.; Wang J. Ultra-Broadband Solar Absorbers for High-Efficiency Thermophotovoltaics. Opt. Express 2020, 28 (24), 36476.10.1364/OE.411918. PubMed DOI
Cai W.; Shalaev V.. Optical Properties of Metal-Dielectric Composites. In Optical Metamaterials; Springer New York: New York, NY, 2010; pp 11–37. 10.1007/978-1-4419-1151-3_2. DOI
Li W.; Guler U.; Kinsey N.; Naik G. V.; Boltasseva A.; Guan J.; Shalaev V. M.; Kildishev A. V. Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber. Adv. Mater. 2014, 26 (47), 7959–7965. 10.1002/adma.201401874. PubMed DOI
Chaudhuri K.; Alhabeb M.; Wang Z.; Shalaev V. M.; Gogotsi Y.; Boltasseva A. Highly Broadband Absorber Using Plasmonic Titanium Carbide (MXene). ACS Photonics 2018, 5 (3), 1115–1122. 10.1021/acsphotonics.7b01439. DOI
Cui Y.; He Y.; Jin Y.; Ding F.; Yang L.; Ye Y.; Zhong S.; Lin Y.; He S. Plasmonic and Metamaterial Structures as Electromagnetic Absorbers: Plasmonic and Metamaterial Absorbers. Laser Photonics Rev. 2014, 8 (4), 495–520. 10.1002/lpor.201400026. DOI
Bilal R. M. H.; Saeed M. A.; Choudhury P. K.; Baqir M. A.; Kamal W.; Ali M. M.; Rahim A. A. Elliptical Metallic Rings-Shaped Fractal Metamaterial Absorber in the Visible Regime. Sci. Rep. 2020, 10 (1), 14035.10.1038/s41598-020-71032-8. PubMed DOI PMC
Kenney M.; Grant J.; Shah Y. D.; Escorcia-Carranza I.; Humphreys M.; Cumming D. R. S. Octave-Spanning Broadband Absorption of Terahertz Light Using Metasurface Fractal-Cross Absorbers. ACS Photonics 2017, 4 (10), 2604–2612. 10.1021/acsphotonics.7b00906. DOI
Nguyen T. Q. M.; Nguyen T. K. T.; Le D. T.; Truong C. L.; Vu D. L.; Nguyen T. Q. H. Numerical Study of an Ultra-Broadband and Wide-Angle Insensitive Perfect Metamaterial Absorber in the UV-NIR Region. Plasmonics 2021, 16 (5), 1583–1592. 10.1007/s11468-021-01424-7. DOI
Zhou L.; Tan Y.; Ji D.; Zhu B.; Zhang P.; Xu J.; Gan Q.; Yu Z.; Zhu J. Self-Assembly of Highly Efficient, Broadband Plasmonic Absorbers for Solar Steam Generation. Sci. Adv. 2016, 2 (4), e150122710.1126/sciadv.1501227. PubMed DOI PMC
Richardson H. H.; Carlson M. T.; Tandler P. J.; Hernandez P.; Govorov A. O. Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions. Nano Lett. 2009, 9 (3), 1139–1146. 10.1021/nl8036905. PubMed DOI PMC
Zhu M.; Li Y.; Chen F.; Zhu X.; Dai J.; Li Y.; Yang Z.; Yan X.; Song J.; Wang Y.; Hitz E.; Luo W.; Lu M.; Yang B.; Hu L. Plasmonic Wood for High-Efficiency Solar Steam Generation. Adv. Energy Mater. 2018, 8 (4), 1701028.10.1002/aenm.201701028. DOI
Tian L.; Xin Q.; Zhao C.; Xie G.; Akram M. Z.; Wang W.; Ma R.; Jia X.; Guo B.; Gong J. R. Nanoarray Structures for Artificial Photosynthesis. Small 2021, 17 (38), 2006530.10.1002/smll.202006530. PubMed DOI
Patsalas P.; Kalfagiannis N.; Kassavetis S.; Abadias G.; Bellas D. V.; Lekka Ch.; Lidorikis E. Conductive Nitrides: Growth Principles, Optical and Electronic Properties, and Their Perspectives in Photonics and Plasmonics. Mater. Sci. Eng. R Rep. 2018, 123, 1–55. 10.1016/j.mser.2017.11.001. DOI
Yalavarthi R.; Henrotte O.; Kment Š.; Naldoni A. Determining the Role of Pd Catalyst Morphology and Deposition Criteria over Large Area Plasmonic Metasurfaces during Light-Enhanced Electrochemical Oxidation of Formic Acid. J. Chem. Phys. 2022, 157 (11), 114706.10.1063/5.0102012. PubMed DOI
Guler U.; Ndukaife J. C.; Naik G. V.; Nnanna A. G. A.; Kildishev A. V.; Shalaev V. M.; Boltasseva A. Local Heating with Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles. Nano Lett. 2013, 13 (12), 6078–6083. 10.1021/nl4033457. PubMed DOI
Mascaretti L.; Schirato A.; Zbořil R.; Kment Š.; Schmuki P.; Alabastri A.; Naldoni A. Solar Steam Generation on Scalable Ultrathin Thermoplasmonic TiN Nanocavity Arrays. Nano Energy 2021, 83, 105828.10.1016/j.nanoen.2021.105828. DOI
Li Y.; Lin C.; Wu Z.; Chen Z.; Chi C.; Cao F.; Mei D.; Yan H.; Tso C. Y.; Chao C. Y. H.; Huang B. Solution-Processed All-Ceramic Plasmonic Metamaterials for Efficient Solar-Thermal Conversion over 100–727 C. Adv. Mater. 2021, 33 (1), 2005074.10.1002/adma.202005074. PubMed DOI
Moon G. D.; Joo J. B.; Dahl M.; Jung H.; Yin Y. Nitridation and Layered Assembly of Hollow TiO 2 Shells for Electrochemical Energy Storage. Adv. Funct. Mater. 2014, 24 (6), 848–856. 10.1002/adfm.201301718. DOI
Wei Q.; Kuhn D. L.; Zander Z.; DeLacy B. G.; Dai H.-L.; Sun Y. Silica-Coating-Assisted Nitridation of TiO2 Nanoparticles and Their Photothermal Property. Nano Res. 2021, 14 (9), 3228–3233. 10.1007/s12274-021-3427-7. DOI
Li C.; Shi J.; Zhu L.; Zhao Y.; Lu J.; Xu L. Titanium Nitride Hollow Nanospheres with Strong Lithium Polysulfide Chemisorption as Sulfur Hosts for Advanced Lithium-Sulfur Batteries. Nano Res. 2018, 11 (8), 4302–4312. 10.1007/s12274-018-2017-9. DOI
Zukalova M.; Prochazka J.; Bastl Z.; Duchoslav J.; Rubacek L.; Havlicek D.; Kavan L. Facile Conversion of Electrospun TiO 2 into Titanium Nitride/Oxynitride Fibers. Chem. Mater. 2010, 22 (13), 4045–4055. 10.1021/cm100877h. DOI
Qin P.; Huang C.; Gao B.; Pi C.; Fu J.; Zhang X.; Huo K.; Chu P. K. Ultrathin Carbon Layer-Encapsulated TiN Nanotubes Array with Enhanced Capacitance and Electrochemical Stability for Supercapacitors. Appl. Surf. Sci. 2020, 503, 144293.10.1016/j.apsusc.2019.144293. DOI
Naldoni A.; Kudyshev Z. A.; Mascaretti L.; Sarmah S. P.; Rej S.; Froning J. P.; Tomanec O.; Yoo J. E.; Wang D.; Kment Š.; Montini T.; Fornasiero P.; Shalaev V. M.; Schmuki P.; Boltasseva A.; Zbořil R. Solar Thermoplasmonic Nanofurnace for High-Temperature Heterogeneous Catalysis. Nano Lett. 2020, 20 (5), 3663–3672. 10.1021/acs.nanolett.0c00594. PubMed DOI
Riboni F.; Nguyen N. T.; So S.; Schmuki P. Aligned Metal Oxide Nanotube Arrays: Key-Aspects of Anodic TiO 2 Nanotube Formation and Properties. Nanoscale Horiz 2016, 1 (6), 445–466. 10.1039/C6NH00054A. PubMed DOI
Lee K.; Mazare A.; Schmuki P. One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes. Chem. Rev. 2014, 114 (19), 9385–9454. 10.1021/cr500061m. PubMed DOI
Ozkan S.; Mazare A.; Schmuki P. Critical Parameters and Factors in the Formation of Spaced TiO2 Nanotubes by Self-Organizing Anodization. Electrochim. Acta 2018, 268, 435–447. 10.1016/j.electacta.2018.02.120. DOI
Wawrzyniak J.; Grochowska K.; Karczewski J.; Kupracz P.; Ryl J.; Dołȩga A.; Siuzdak K. The Geometry of Free-Standing Titania Nanotubes as a Critical Factor Controlling Their Optical and Photoelectrochemical Performance. Surf. Coat. Technol. 2020, 389, 125628.10.1016/j.surfcoat.2020.125628. DOI
Varghese O. K.; Paulose M.; Grimes C. A. Long Vertically Aligned Titania Nanotubes on Transparent Conducting Oxide for Highly Efficient Solar Cells. Nat. Nanotechnol. 2009, 4 (9), 592–597. 10.1038/nnano.2009.226. PubMed DOI
Tesler A. B.; Altomare M.; Schmuki P. Morphology and Optical Properties of Highly Ordered TiO 2 Nanotubes Grown in NH 4 F/ o -H 3 PO 4 Electrolytes in View of Light-Harvesting and Catalytic Applications. ACS Appl. Nano Mater. 2020, 3 (11), 10646–10658. 10.1021/acsanm.0c01859. DOI
Ozkan S.; Nguyen N. T.; Mazare A.; Schmuki P. Optimized Spacing between TiO 2 Nanotubes for Enhanced Light Harvesting and Charge Transfer. ChemElectroChem. 2018, 5 (21), 3183–3190. 10.1002/celc.201801136. DOI
Liu Y.; Wang Y.; Zhang Y.; You Z.; Lv X. Mechanism on Reduction and Nitridation of Micrometer-sized Titania with Ammonia Gas. J. Am. Ceram. Soc. 2020, 103 (6), 3905–3916. 10.1111/jace.17067. DOI
Anderson B. D.; Tracy J. B. Nanoparticle Conversion Chemistry: Kirkendall Effect, Galvanic Exchange, and Anion Exchange. Nanoscale 2014, 6 (21), 12195–12216. 10.1039/C4NR02025A. PubMed DOI
Koya A. N.; Zhu X.; Ohannesian N.; Yanik A. A.; Alabastri A.; Proietti Zaccaria R.; Krahne R.; Shih W.-C.; Garoli D. Nanoporous Metals: From Plasmonic Properties to Applications in Enhanced Spectroscopy and Photocatalysis. ACS Nano 2021, 15 (4), 6038–6060. 10.1021/acsnano.0c10945. PubMed DOI PMC
Plawsky J. L.; Kim J. K.; Schubert E. F. Engineered Nanoporous and Nanostructured Films. Mater. Today 2009, 12 (6), 36–45. 10.1016/S1369-7021(09)70179-8. DOI
Lu J. Y.; Nam S. H.; Wilke K.; Raza A.; Lee Y. E.; AlGhaferi A.; Fang N. X.; Zhang T. Localized Surface Plasmon-Enhanced Ultrathin Film Broadband Nanoporous Absorbers. Adv. Opt. Mater. 2016, 4 (8), 1255–1264. 10.1002/adom.201600078. DOI
Farhat M.; Cheng T.-C.; Le K. Q.; Cheng M. M.-C.; Bağcı H.; Chen P.-Y. Mirror-Backed Dark Alumina: A Nearly Perfect Absorber for Thermoelectronics and Thermophotovotaics. Sci. Rep. 2016, 6 (1), 19984.10.1038/srep19984. PubMed DOI PMC
Raut H. K.; Ganesh V. A.; Nair A. S.; Ramakrishna S. Anti-Reflective Coatings: A Critical, in-Depth Review. Energy Environ. Sci. 2011, 4 (10), 3779.10.1039/c1ee01297e. DOI
Wang W.; Qi L. Light Management with Patterned Micro- and Nanostructure Arrays for Photocatalysis, Photovoltaics, and Optoelectronic and Optical Devices. Adv. Funct. Mater. 2019, 29 (25), 1807275.10.1002/adfm.201807275. DOI
Ulusoy Ghobadi T. G.; Ghobadi A.; Odabasi O.; Karadas F.; Ozbay E. Subwavelength Densely Packed Disordered Semiconductor Metasurface Units for Photoelectrochemical Hydrogen Generation. ACS Appl. Energy Mater. 2022, 5 (3), 2826–2837. 10.1021/acsaem.1c03363. DOI
Soydan M. C.; Ghobadi A.; Yildirim D. U.; Duman E.; Bek A.; Erturk V. B.; Ozbay E. Lithography-Free Random Bismuth Nanostructures for Full Solar Spectrum Harvesting and Mid-Infrared Sensing. Adv. Opt. Mater. 2020, 8 (4), 1901203.10.1002/adom.201901203. DOI
Zhang F.; Tang F.; Xu X.; Adam P.-M.; Martin J.; Plain J. Influence of Order-to-Disorder Transitions on the Optical Properties of the Aluminum Plasmonic Metasurface. Nanoscale 2020, 12 (45), 23173–23182. 10.1039/D0NR06334G. PubMed DOI
Huo D.; Zhang J.; Wang H.; Ren X.; Wang C.; Su H.; Zhao H. Broadband Perfect Absorber with Monolayer MoS2 and Hexagonal Titanium Nitride Nano-Disk Array. Nanoscale Res. Lett. 2017, 12 (1), 465.10.1186/s11671-017-2232-4. PubMed DOI PMC
Wang J.; Zhang W.; Zhu M.; Yi K.; Shao J. Broadband Perfect Absorber with Titanium Nitride Nano-Disk Array. Plasmonics 2015, 10 (6), 1473–1478. 10.1007/s11468-015-9962-x. DOI
Chirumamilla M.; Chirumamilla A.; Yang Y.; Roberts A. S.; Kristensen P. K.; Chaudhuri K.; Boltasseva A.; Sutherland D. S.; Bozhevolnyi S. I.; Pedersen K. Large-Area Ultrabroadband Absorber for Solar Thermophotovoltaics Based on 3D Titanium Nitride Nanopillars. Adv. Opt. Mater. 2017, 5 (22), 1700552.10.1002/adom.201700552. DOI
Boyd R. W.; Gehr R. J.; Fischer G. L.; Sipe J. E. Nonlinear Optical Properties of Nanocomposite Materials. Pure Appl. Opt. J. Eur. Opt. Soc. Part A 1996, 5 (5), 505–512. 10.1088/0963-9659/5/5/005. DOI
Mascaretti L.; Schirato A.; Montini T.; Alabastri A.; Naldoni A.; Fornasiero P. Challenges in Temperature Measurements in Gas-Phase Photothermal Catalysis. Joule 2022, 6 (8), 1727–1732. 10.1016/j.joule.2022.06.019. DOI
Tao P.; Ni G.; Song C.; Shang W.; Wu J.; Zhu J.; Chen G.; Deng T. Solar-Driven Interfacial Evaporation. Nat. Energy 2018, 3 (12), 1031–1041. 10.1038/s41560-018-0260-7. DOI
Zhang P.; Liao Q.; Yao H.; Huang Y.; Cheng H.; Qu L. Direct Solar Steam Generation System for Clean Water Production. Energy Storage Mater. 2019, 18, 429–446. 10.1016/j.ensm.2018.10.006. DOI
Dongare P. D.; Alabastri A.; Neumann O.; Nordlander P.; Halas N. J. Solar Thermal Desalination as a Nonlinear Optical Process. Proc. Natl. Acad. Sci. U. S. A. 2019, 116 (27), 13182–13187. 10.1073/pnas.1905311116. PubMed DOI PMC
Palm K. J.; Murray J. B.; Narayan T. C.; Munday J. N. Dynamic Optical Properties of Metal Hydrides. ACS Photonics 2018, 5 (11), 4677–4686. 10.1021/acsphotonics.8b01243. DOI