Synthesis and Characterization of New Pyrano[2,3-c]pyrazole Derivatives as 3-Hydroxyflavone Analogues

. 2023 Sep 13 ; 28 (18) : . [epub] 20230913

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37764375

Grantová podpora
S-MIP-23-51 Lietuvos Mokslo Taryba

In this paper, an efficient synthetic route from pyrazole-chalcones to novel 6-aryl-5-hydroxy-2-phenylpyrano[2,3-c]pyrazol-4(2H)-ones as 3-hydroxyflavone analogues is described. The methylation of 5-hydroxy-2,6-phenylpyrano[2,3-c]pyrazol-4(2H)-one with methyl iodide in the presence of a base yielded a compound containing a 5-methoxy group, while the analogous reaction of 5-hydroxy-2-phenyl-6-(pyridin-4-yl)pyrano[2,3-c]pyrazol-4(2H)-one led to the zwitterionic 6-(N-methylpyridinium)pyrano[2,3-c]pyrazol derivative. The treatment of 5-hydroxy-2,6-phenylpyrano[2,3-c]pyrazol-4(2H)-one with triflic anhydride afforded a 5-trifloylsubstituted compound, which was further used in carbon-carbon bond forming Pd-catalyzed coupling reactions to yield 5-(hetero)aryl- and 5-carbo-functionalized pyrano[2,3-c]pyrazoles. The excited-state intramolecular proton transfer (ESIPT) reaction of 5-hydroxypyrano[2,3-c]pyrazoles from the 5-hydroxy moiety to the carbonyl group in polar protic, polar aprotic, and nonpolar solvents was observed, resulting in well-resolved two-band fluorescence. The structures of the novel heterocyclic compounds were confirmed by 1H-, 13C-, 15N-, and 19F-NMR spectroscopy, HRMS, and single-crystal X-ray diffraction data.

Zobrazit více v PubMed

Li M.-M., Huang H., Pu Y., Tian W., Deng Y., Lu J. A close look into the biological and synthetic aspects of fused pyrazole derivatives. Eur. J. Med. Chem. 2022;243:114739. doi: 10.1016/j.ejmech.2022.114739. PubMed DOI

Hassan A.Y., Mohamed M.A., Abdel-Aziem A., Hussain A.O. Synthesis and Anticancer Activity of Some Fused Heterocyclic Compounds Containing Pyrazole Ring. Polycycl. Aromat. Compd. 2020;40:1280–1290. doi: 10.1080/10406638.2020.1764984. DOI

Bondock S., Fadaly W., Metwally M.A. Synthesis and antimicrobial activity of some new thiazole, thiophene and pyrazole derivatives containing benzothiazole moiety. Eur. J. Med. Chem. 2010;45:3692–3701. doi: 10.1016/j.ejmech.2010.05.018. PubMed DOI

Han C., Guo Y.-C., Wang D.-D., Dai X.-Y., Wu F.-J., Liu H.-F., Dai G.-F., Tao J.-C. Novel pyrazole fused heterocyclic ligands: Synthesis, characterization, DNA binding/cleavage activity and anti-BVDV activity. Chin. Chem. Lett. 2015;26:534–538. doi: 10.1016/j.cclet.2015.01.006. DOI

Pinto D.J.P., Orwat M.J., Koch S., Rossi K.A., Alexander R.S., Smallwood A., Wong P.C., Rendina A.R., Luettgen J.M., Knabb R.M., et al. Discovery of 1-(4-Methoxyphenyl)-7-oxo-6-(4-(2-oxopiperidin-1-yl)phenyl)-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-c]pyridine-3-carboxamide (Apixaban, BMS-562247), a Highly Potent, Selective, Efficacious, and Orally Bioavailable Inhibitor of Blood Coagulation Factor Xa. J. Med. Chem. 2007;50:5339–5356. PubMed

Xu Y., Zhang Z., Jiang X., Chen X., Wang Z., Alsulami H., Qin H.-L., Tang W. Discovery of δ-sultone-fused pyrazoles for treating Alzheimer’s disease: Design, synthesis, biological evaluation and SAR studies. Eur. J. Med. Chem. 2019;181:111598. doi: 10.1016/j.ejmech.2019.111598. PubMed DOI

Syed Y.Y. Futibatinib: First Approval. Drugs. 2022;82:1737–1743. doi: 10.1007/s40265-022-01806-z. PubMed DOI

Kumar A., Lohan P., Aneja D.K., Gupta G.K., Kaushik D., Prakash O. Design, synthesis, computational and biological evaluation of some new hydrazino derivatives of DHA and pyranopyrazoles. Eur. J. Med. Chem. 2012;50:81–89. doi: 10.1016/j.ejmech.2012.01.042. PubMed DOI

Parikh P.H., Timaniya J.B., Patel M.J., Patel K.P. Microwave-assisted synthesis of pyrano[2,3-c]-pyrazole derivatives and their anti-microbial, anti-malarial, anti-tubercular, and anti-cancer activities. J. Mol. Struct. 2022;1249:131605. doi: 10.1016/j.molstruc.2021.131605. DOI

Parshad M., Verma V., Kumar D. Iodine-mediated efficient synthesis of pyrano[2,3-c]pyrazoles and their antimicrobial activity. Monatsh. Chem. 2014;145:1857–1865. doi: 10.1007/s00706-014-1250-5. DOI

Wang J., Liu D., Zheng Z., Shan S., Han X., Srinivasula S.M., Croce C.M., Alnemri E.S., Huang Z. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc. Natl. Acad. Sci. USA. 2000;97:7124–7129. doi: 10.1073/pnas.97.13.7124. PubMed DOI PMC

Sun X., Zhang L., Gao M., Que X., Zhou C., Zhu D., Cai Y. Nanoformulation of a Novel Pyrano[2,3-c]Pyrazole Heterocyclic Compound AMDPC Exhibits Anti-Cancer Activity via Blocking the Cell Cycle through a P53-Independent Pathway. Molecules. 2019;24:624. doi: 10.3390/molecules24030624. PubMed DOI PMC

Nguyen H.T., Truong M.-N.H., Le T.V., Vo N.T., Nguyen H.D., Tran P.H. A New Pathway for the Preparation of Pyrano[2,3-c]pyrazoles and molecular Docking as Inhibitors of p38 MAP Kinase. ACS Omega. 2022;7:17432–17443. doi: 10.1021/acsomega.2c01814. PubMed DOI PMC

Bieliauskas A., Krikštolaitytė S., Holzer W., Šačkus A. Ring-closing metathesis as a key step to construct 2,6-dihydropyrano[2,3-c]pyrazole ring system. Arkivoc. 2018;2018:296–307. doi: 10.24820/ark.5550190.p010.407. DOI

Milišiūnaitė V., Kadlecová A., Žukauskaitė A., Doležal K., Strnad M., Voller J., Arbačiauskienė E., Holzer W., Šačkus A. Synthesis and Anthelmintic Activity of Benzopyrano[2,3-c]Pyrazol-4(2H)-One Derivatives. Mol. Divers. 2020;24:1025–1042. doi: 10.1007/s11030-019-10010-3. PubMed DOI

Al-Khayri J.M., Sahana G.R., Nagella P., Joseph B.V., Alessa F.M., Al-Mssallem M.Q. Flavonoids as Potential Anti-Inflammatory. Molecules. 2022;27:2901. doi: 10.3390/molecules27092901. PubMed DOI PMC

Panche A., Diwan A., Chandra S. Flavonoids: An overview. J. Nutr. Sci. 2016;5:E47. doi: 10.1017/jns.2016.41. PubMed DOI PMC

Ullah A., Munir S., Badshah S.L., Khan N., Ghani L., Poulson B.G., Mews A.-H., Jaremko M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules. 2020;25:5243. doi: 10.3390/molecules25225243. PubMed DOI PMC

Jan R., Khan M., Asaf S., Lubna, Asif S., Kim K.-M. Bioactivity and Therapeutic Potential of Kaempferol and Quercetin: New Insights for Plant and Human Health. Plants. 2022;11:2623. doi: 10.3390/plants11192623. PubMed DOI PMC

Nejabati H.R., Roshangar L. Kaempferol: A potential agent in the prevention of colorectal cancer. Physiol. Rep. 2022;10:e15488. doi: 10.14814/phy2.15488. PubMed DOI PMC

Borsari C., Jiménez-Antón M.D., Eick J., Bifeld E., Torrado J.J., Olías-Molero A.I., Corral M.J., Santarem N., Baptista C., Severi L., et al. Discovery of a benzothiophene-flavonol halting miltefosine and antimonial drug resistance in Leishmania parasites through the application of medicinal chemistry, screening and genomics. Eur. J. Med. Chem. 2019;183:111676. doi: 10.1016/j.ejmech.2019.111676. PubMed DOI

Kishore N.R., Ashok D., Sarasija M., Murthy N.Y.S. One-pot synthesis of spirochromanone-based 3-hydroxy-4H-chromen-4-ones by a modified Algar–Flynn–Oyamada reaction and evaluation of their antimicrobial activity. Chem. Heterocycl. Compd. 2017;53:1187–1191. doi: 10.1007/s10593-018-2200-7. DOI

Ashok D., Kifah M.A., Lakshmi B.V., Sarasija M., Adam S. Microwave-assisted one-pot synthesis of some new flavonols by modified Algar–Flynn–Oyamada reaction and their antimicrobial activity. Chem. Heterocycl. Compd. 2016;52:172–176. doi: 10.1007/s10593-016-1852-4. DOI

Lee J., Park T., Jeong S., Kim K.-H., Hong C. 3-Hydroxychromones as cyclin-dependent kinase inhibitors: Synthesis and biological evaluation. Bioorg. Med. Chem. Lett. 2007;17:1284–1287. doi: 10.1016/j.bmcl.2006.12.011. PubMed DOI

Joshi H.C., Antonov L. Excited-State Intramolecular Proton Transfer: A Short Introductory Review. Molecules. 2021;26:1475. doi: 10.3390/molecules26051475. PubMed DOI PMC

Ameer-Beg S., Ormson S.M., Brown R.G., Matousek P., Towrie M., Nibbering E.T.J., Foggi P., Neuwahl F.V.R. Ultrafast Measurements of Excited State Intramolecular Proton Transfer (ESIPT) in Room Temperature Solutions of 3-Hydroxyflavone and Derivatives. J. Phys. Chem. A. 2001;105:3709–3718. doi: 10.1021/jp0031101. DOI

Sarkar M., Ray J.G., Sengupta P.K. Effect of reverse micelles on the intramolecular excited state proton transfer (ESPT) and dual luminescence behaviour of 3-hydroxyflavone. Spectrochim. Acta A Mol. Biomol. 1996;52:275–278. doi: 10.1016/0584-8539(95)01622-8. DOI

Zhao X., Li X., Liang S., Dong X., Zhang Z. 3-Hydroxyflavone derivatives: Promising scaffolds for fluorescent imaging in cells. RSC Adv. 2021;11:28851. doi: 10.1039/D1RA04767A. PubMed DOI PMC

Butun B., Topcu G., Ozturk T. Recent Advances on 3-Hydroxyflavone Derivatives: Structures and Properties. Mini Rev. Med. Chem. 2018;18:98–103. doi: 10.2174/1389557517666170425102827. PubMed DOI

Russo M., Orel V., Takko P., Šranková M., Muchová L., Vítek L., Klán P. Structure–Photoreactivity Relationship of 3-Hydroxyflavone-Based CO-Releasing Molecules. J. Org. Chem. 2022;87:4750–4763. doi: 10.1021/acs.joc.2c00032. PubMed DOI

Jiang G., Jin Y., Li M., Wang H., Xiong M., Zeng W., Yuan H., Liu C., Ren Z., Liu C. Faster and More Specific: Excited-State Intramolecular Proton Transfer-Based Dyes for High-Fidelity Dynamic Imaging of Lipid Droplets within Cells and Tissues. Anal. Chem. 2020;92:10342–10349. doi: 10.1021/acs.analchem.0c00390. PubMed DOI

Kamariza M., Keyser S.G.L., Utz A., Knapp B.D., Ealand C., Ahn G., Cambier C.J., Chen T., Kana B., Huang K.C., et al. Toward Point-of-Care Detection of Mycobacterium tuberculosis: A Brighter Solvatochromic Probe Detects Mycobacteria within Minutes. JACS Au. 2021;1:1368–1379. doi: 10.1021/jacsau.1c00173. PubMed DOI PMC

Bernini R., Crisante F., Ginnasi M.C. A Convenient and Safe O-Methylation of Flavonoids with Dimethyl Carbonate (DMC) Molecules. 2011;16:1418–1425. doi: 10.3390/molecules16021418. PubMed DOI PMC

Koirala N., Thuan N.H., Ghimire G.P., Thang D.V., Sohng J.K. Methylation of flavonoids: Chemical structures, bioactivities, progress and perspectives for biotechnological production. Enzym. Microb. 2016;86:103–116. doi: 10.1016/j.enzmictec.2016.02.003. PubMed DOI

Liu Y., Fernie A.R., Tohge T. Diversification of Chemical Structures of Methoxylated Flavonoids and Genes Encoding Flavonoid-O-Methyltransferases. Plants. 2022;11:564. doi: 10.3390/plants11040564. PubMed DOI PMC

Ohtani H., Ikegawa T., Honda Y., Kohyama N., Morimoto S., Shoyama Y., Juichi M., Naito M., Tsuruo T., Sawada T. Effects of various methoxyflavones on vincristine uptake and multidrug resistance to vincristine in P-gp-overexpressing K562/ADM cells. Pharm. Res. 2007;24:1936–1943. doi: 10.1007/s11095-007-9320-6. PubMed DOI

Juvale K., Stefan K., Wiese M. Synthesis and biological evaluation of flavones and benzoflavones as inhibitors of BCRP/ABCG. Eur. J. Med. Chem. 2013;67:115–126. doi: 10.1016/j.ejmech.2013.06.035. PubMed DOI

Khan D., Parveen I., Shaily S.S. Design, Synthesis and Characterization of Aurone Based α,β-unsaturated Carbonyl-Amino Ligands and their Application in Microwave Assisted Suzuki, Heck and Buchwald Reactions. Asian J. Org. Chem. 2022;11:e202100638. doi: 10.1002/ajoc.202100638. DOI

Khan D., Parveen I. Chroman-4-one-Based Amino Bidentate Ligand: An Efficient Ligand for Suzuki-Miyaura and Mizoroki-Heck Coupling Reactions in Aqueous Medium. Eur. J. Org. Chem. 2021;35:4946–4957. doi: 10.1002/ejoc.202100866. DOI

Joo Y.H., Kim J.K., Kang S.-H., Noh M.-S., Ha J.Y., Choi J.C., Lim K.M., Lee C.H., Chung S. 2,3-Diarylbenzopyran derivatives as a novel class of selective cyclooxygenase-2 inhibitors. Bioorg. Med. Chem. Lett. 2003;13:413–417. doi: 10.1002/chin.200322130. PubMed DOI

Prasanna S., Manivannan E., Chaturvedi S.C. Quantitative structure–activity relationship analysis of a series of 2,3-diaryl benzopyran analogues as novel selective cyclooxygenase-2 inhibitors. Bioorg. Med. Chem. Lett. 2004;14:4005–4011. doi: 10.1016/j.bmcl.2004.05.059. PubMed DOI

O’Brien D.F., Gates J.W., Jr. Some Reactions of 3-Hydroxy-1-phenylpyrazole. J. Org. Chem. 1966;31:1538–1542. doi: 10.1021/jo01343a054. DOI

Milišiūnaitė V., Arbačiauskienė E., Řezníčková E., Jorda R., Malínková V., Žukauskaitė A., Holzer W., Šačkus A., Kryštof V. Synthesis and anti-mitotic activity of 2,4- or 2,6-disubstituted- and 2,4,6-trisubstituted-2H-pyrazolo[4,3-c]pyridines. Eur. J. Med. Chem. 2018;150:908–919. doi: 10.1016/j.ejmech.2018.03.037. PubMed DOI

Urbonavičius A., Fortunato G., Ambrazaitytė E., Plytninkienė E., Bieliauskas A., Milišiūnaitė V., Luisi R., Arbačiauskienė E., Krikštolaitytė S., Šačkus A. Synthesis and Characterization of Novel Heterocyclic Chalcones from 1-Phenyl-1H-pyrazol-3-ol. Molecules. 2022;27:3752. doi: 10.3390/molecules27123752. PubMed DOI PMC

Shen X., Zhou Q., Xiong W., Pu W., Zhang W., Zhang G., Wang C. Synthesis of 5-subsituted flavonols via the Algar-Flynn-Oyamada (AFO) reaction: The mechanistic implication. Tetrahedron. 2017;73:4822–4829. doi: 10.1016/j.tet.2017.06.064. DOI

Bhattacharyya S., Hatua K. Computational insight of the mechanism of Algar–Flynn–Oyamada (AFO) reaction. RSC Adv. 2014;4:18702–18709. doi: 10.1039/c3ra46623j. DOI

Ferreira D., Brandt E.V., Volsteedt F.D.R., Roux D.G. Parameters regulating the α- and β-cyclization of chalcones. J. Chem. Soc. Perkin Trans. 1975;1:1437–1446. doi: 10.1039/P19750001437. DOI

Pati S.K., Marks T.J., Ratner M.A. Conformationally Tuned Large Two-Photon Absorption Cross Sections in Simple Molecular Chromophores. J. Am. Chem. Soc. 2001;123:7287–7291. doi: 10.1021/ja0033281. PubMed DOI

Jutand A., Mosleh A. Rate and Mechanism of Oxidative Addition of Aryl Triflates to Zerovalent Palladium Complexes. Evidence for the Formation of Cationic (.sigma.-Aryl)palladium Complexes. Organometallics. 1995;14:1810–1817. doi: 10.1021/om00004a038. DOI

Kumar A., Rao M.L.N. Pot-economic synthesis of diarylpyrazoles and pyrimidines involving Pd-catalyzed cross-coupling of 3-trifloxychromone and triarylbismuth. J. Chem. Sci. 2018;130:165. doi: 10.1007/s12039-018-1565-6. DOI

Dahlén K., Wallén E.A.A., Grøtli M., Luthman K. Synthesis of 2,3,6,8-Tetrasubstituted Chromone Scaffolds. J. Org. Chem. 2006;71:6863–6871. doi: 10.1021/jo061008f. PubMed DOI

Akrawi D.A., Patonay T., Kónya K., Langer P. Chemoselective Suzuki–Miyaura Cross-Coupling Reactions of 6-Bromo-3-(trifluoromethylsulfonyloxy)flavone. Synlett. 2013;24:860–864. doi: 10.1002/chin.201333160. DOI

Nuzillard J.-M. Use of carbon-13 NMR to identify known natural products by querying a nuclear magnetic resonance database—An assessment. Magn Reson Chem. 2023:1–7. doi: 10.1002/mrc.5386. PubMed DOI

Dolbier W.R. Guide to Fluorine NMR for Organic Chemists. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2016.

Arbačiauskienė E., Martynaitis V., Krikštolaitytė S., Holzer W., Šačkus A. Synthesis of 3-substituted 1-phenyl-1H-pyrazole-4-carbaldehydes and the corresponding ethanones by Pd-catalysed cross-coupling reactions. ARKIVOC. 2011;11:1–21. doi: 10.3998/ark.5550190.0012.b01. DOI

Solum M.S., Altmann K.L., Strohmeier M., Berges D.A., Zhang Y., Facelli J.C., Pugmire R.J., Grant D.M. 15N Chemical Shift Principal Values in Nitrogen Heterocycles. J. Am. Chem. Soc. 1997;119:9804–9809. doi: 10.1021/ja964135+. DOI

Williamson R.T., Buevich A.V., Martin G.E., Parella T. LR-HSQMBC: A Sensitive NMR Technique To Probe Very Long-Range Heteronuclear Coupling Pathways. J. Org. Chem. 2014;79:3887–3894. doi: 10.1021/jo500333u. PubMed DOI

Barczyński P., Szafran M., Ratajczak-Sitarz M., Nowaczyk Ł., Dega-Szafran Z., Katrusiak A. Structure of 2,3-dicarboxy-1-methylpyridinium chloride studied by X-ray diffraction, DFT calculation, NMR, FTIR and Raman spectra. J. Mol. Struct. 2012;1018:21–27. doi: 10.1016/j.molstruc.2011.11.009. DOI

Iwatsuki S., Kanamitsu Y., Ohara H., Kawahata M., Danjo H., Ishihara K. Crystal Structure of a Methanesulfonate Salt of 4-(N-Methyl)pyridinium Boronic Acid. X-ray Struct. Anal. Online. 2012;28:63–64. doi: 10.2116/xraystruct.28.63. DOI

Macdonald A.L., James Trotter J. Crystal and molecular structure of o-benzoquinone. J. Chem. Soc. Perkin Trans. 1973;2:476–480. doi: 10.1039/p29730000476. DOI

Allinger N.L., Chen K.-H., Lii J.-H., Durkin K.A. Alcohols, ethers, carbohydrates, and related compounds. I. The MM4 force field for simple compounds. J. Comput. Chem. 2003;24:1447–1472. PubMed

Li P., Su W., Lei X., Xiao Q., Huang S. Synthesis, characterization and anticancer activity of a series of curcuminoids and their half-sandwich ruthenium(II) complexes. Appl. Organomet. Chem. 2017;31:e3685. doi: 10.1002/aoc.3685. DOI

Milišiūnaitė V., Arbačiauskienė E., Bieliauskas A., Vilkauskaitė G., Šačkus A., Holzer W. Synthesis of pyrazolo[4′,3′:3,4]pyrido[1,2-a]benzimidazoles and related new ring systems by tandem cyclisation of vic-alkynylpyrazole-4-carbaldehydes with (het)aryl-1,2-diamines and investigation of their optical properties. Tetrahedron. 2015;71:3385–3395. doi: 10.1016/j.tet.2015.03.092. DOI

Arbačiauskienė E., Krikštolaitytė S., Mitrulevičienė A., Bieliauskas A., Martynaitis V., Bechmann M., Roller A., Šačkus A., Holzer W. On the Tautomerism of N-Substituted Pyrazolones: 1,2-Dihydro-3H-pyrazol-3-ones versus 1H-Pyrazol-3-ols. Molecules. 2018;23:129. doi: 10.3390/molecules23010129. PubMed DOI PMC

Titi A., Messali M., Alqurashy B.A., Touzani R., Shiga T., Oshio H., Fettouhi M., Rajabi M., Almalki F.A., Hadda T.B. Synthesis, characterization, X-ray crystal study and bioctivities of pyrazole derivatives: Identification of antitumor, antifungal and antibacterial pharmacophore sites. J. Mol. Struct. 2020;1205:127625. doi: 10.1016/j.molstruc.2019.127625. DOI

Sharma S., Brahmachari G., Kant R., Gupta V.K. One-pot green synthesis of biologically relevant novel spiro[indolin-2-one-3,4′-pyrano[2,3-c]pyrazoles] and studies on their spectral and X-ray crystallographic behaviors. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2016;72:335–343. doi: 10.1107/S2052520616005060. PubMed DOI

Shynkar V.V., Mély Y., Duportail G., Piémont E., Klymchenko A.S., Demchenko A.P. Picosecond Time-Resolved Fluorescence Studies Are Consistent with Reversible Excited-State Intramolecular Proton Transfer in 4′-(Dialkylamino)-3-hydroxyflavones. J. Phys. Chem. A. 2003;107:9522–9529. doi: 10.1021/jp035855n. DOI

Spadafora M., Postupalenko V., Shvadchak V., Klymchenko A., Mély Y., Burger A., Benhida R. Efficient synthesis of ratiometric fluorescent nucleosides featuring 3-hydroxychromone nucleobases. Tetrahedron. 2009;65:7809–7816. doi: 10.1016/j.tet.2009.07.021. DOI

Klymchenko A.S., Ozturk T., Pivovarenko V.G., Demchenko A.P. A 3-hydroxychromone with dramatically improved fluorescence properties. Tetrahedron Lett. 2001;42:7967–7970. doi: 10.1016/S0040-4039(01)01723-3. DOI

Klymchenko A.S., Kenfack C., Duportail G., Mély Y. Effects of polar protic solvents on dual emissions of 3-hydroxychromones. J. Chem. Sci. 2007;119:83–89. doi: 10.1007/s12039-007-0014-8. DOI

Voicescu M., Ionescu S., Gatea F. Effect of pH on the fluorescence characteristics of some flavones probes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014;123:303–308. doi: 10.1016/j.saa.2013.12.040. PubMed DOI

Klymchenko A.S., Pivovarenko V.G., Ozturk T., Demchenko A.P. Modulation of the solvent-dependent dual emission in 3-hydroxychromones by substituents. New J. Chem. 2003;27:1336–1343. doi: 10.1039/b302965d. DOI

Klymchenko A.S., Demchenko A.P. Multiparametric probing of intermolecular interactions with fluorescent dye exhibiting excited state intramolecular proton transfer. Phys. Chem. Chem. Phys. 2003;5:461–468. doi: 10.1039/b210352d. DOI

Zhao X., Liu Y., Zhou L., Li Y., Chen M. Time-dependent density functional theory study on excited state intramolecular proton transfer of 3-hydroxy-2-(pyridin-2-yl)-4H-chromen-4-one. J. Lumin. 2010;130:1431–1436. doi: 10.1016/j.jlumin.2010.03.007. DOI

Chen L., Fu P.-Y., Wang H.-P., Pan M. Excited-State Intramolecular Proton Transfer (ESIPT) for Optical Sensing in Solid State. Adv. Optical Mater. 2021;9:2170097. doi: 10.1002/adom.202170097. DOI

Ormson S.M., Brown R.G., Voller F., Rettig W. Switching between charge- and proton-transfer emission in the excited state of a substituted 3-hydroxyflavone. J. Photochem. Photobiol. A Chem. 1994;81:65–72. doi: 10.1016/1010-6030(94)03778-7. DOI

Lebeau B., Innocenzi P. Hybrid materials for optics and photonics. Chem. Soc. Rev. 2011;40:886–906. doi: 10.1039/c0cs00106f. PubMed DOI

Mohammad-Pour G.S., de Coene Y., Wiratmo M., Maan A., Clays K., Masunov A.E., Crawford K.E. Modular synthesis of zwitterionic, xanthene bridged, low twist angle chromophores with high hyperpolarizability. Mater. Adv. 2022;3:7520–7530. doi: 10.1039/D2MA00721E. DOI

Andreu R., Carrasquer L., Santiago Franco C., Garín J., Orduna J., de Baroja N.M., Alicante R., Villacampa B., Allain M. 4H-Pyran-4-ylidenes: Strong Proaromatic Donors for Organic Nonlinear Optical Chromophores. J. Org. Chem. 2009;74:6647–6657. doi: 10.1021/jo901142f. PubMed DOI

Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. A Complete Structure Solution, Refinement and Analysis Program. J.Appl. Cryst. 2009;42:339–341. doi: 10.1107/S0021889808042726. DOI

Sheldrick G.M. SHELXT-Integrated Space-Group and Crystal-Structure Determination. Acta Cryst. 2015;A71:3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC

Bourhis L.J., Dolomanov O.V., Gildea R.J., Howard J.A.K., Puschmann H. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment – Olex2 dissected. Acta Cryst. 2015;A71:59–75. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...