Synthesis and Characterization of New Pyrano[2,3-c]pyrazole Derivatives as 3-Hydroxyflavone Analogues
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
S-MIP-23-51
Lietuvos Mokslo Taryba
PubMed
37764375
PubMed Central
PMC10537540
DOI
10.3390/molecules28186599
PII: molecules28186599
Knihovny.cz E-zdroje
- Klíčová slova
- 3-hydroxyflavone, Algar–Flynn–Oyamada reaction, ESIPT, NMR investigation, pyrano[2,3-c]pyrazoles, pyrazoles,
- Publikační typ
- časopisecké články MeSH
In this paper, an efficient synthetic route from pyrazole-chalcones to novel 6-aryl-5-hydroxy-2-phenylpyrano[2,3-c]pyrazol-4(2H)-ones as 3-hydroxyflavone analogues is described. The methylation of 5-hydroxy-2,6-phenylpyrano[2,3-c]pyrazol-4(2H)-one with methyl iodide in the presence of a base yielded a compound containing a 5-methoxy group, while the analogous reaction of 5-hydroxy-2-phenyl-6-(pyridin-4-yl)pyrano[2,3-c]pyrazol-4(2H)-one led to the zwitterionic 6-(N-methylpyridinium)pyrano[2,3-c]pyrazol derivative. The treatment of 5-hydroxy-2,6-phenylpyrano[2,3-c]pyrazol-4(2H)-one with triflic anhydride afforded a 5-trifloylsubstituted compound, which was further used in carbon-carbon bond forming Pd-catalyzed coupling reactions to yield 5-(hetero)aryl- and 5-carbo-functionalized pyrano[2,3-c]pyrazoles. The excited-state intramolecular proton transfer (ESIPT) reaction of 5-hydroxypyrano[2,3-c]pyrazoles from the 5-hydroxy moiety to the carbonyl group in polar protic, polar aprotic, and nonpolar solvents was observed, resulting in well-resolved two-band fluorescence. The structures of the novel heterocyclic compounds were confirmed by 1H-, 13C-, 15N-, and 19F-NMR spectroscopy, HRMS, and single-crystal X-ray diffraction data.
Zobrazit více v PubMed
Li M.-M., Huang H., Pu Y., Tian W., Deng Y., Lu J. A close look into the biological and synthetic aspects of fused pyrazole derivatives. Eur. J. Med. Chem. 2022;243:114739. doi: 10.1016/j.ejmech.2022.114739. PubMed DOI
Hassan A.Y., Mohamed M.A., Abdel-Aziem A., Hussain A.O. Synthesis and Anticancer Activity of Some Fused Heterocyclic Compounds Containing Pyrazole Ring. Polycycl. Aromat. Compd. 2020;40:1280–1290. doi: 10.1080/10406638.2020.1764984. DOI
Bondock S., Fadaly W., Metwally M.A. Synthesis and antimicrobial activity of some new thiazole, thiophene and pyrazole derivatives containing benzothiazole moiety. Eur. J. Med. Chem. 2010;45:3692–3701. doi: 10.1016/j.ejmech.2010.05.018. PubMed DOI
Han C., Guo Y.-C., Wang D.-D., Dai X.-Y., Wu F.-J., Liu H.-F., Dai G.-F., Tao J.-C. Novel pyrazole fused heterocyclic ligands: Synthesis, characterization, DNA binding/cleavage activity and anti-BVDV activity. Chin. Chem. Lett. 2015;26:534–538. doi: 10.1016/j.cclet.2015.01.006. DOI
Pinto D.J.P., Orwat M.J., Koch S., Rossi K.A., Alexander R.S., Smallwood A., Wong P.C., Rendina A.R., Luettgen J.M., Knabb R.M., et al. Discovery of 1-(4-Methoxyphenyl)-7-oxo-6-(4-(2-oxopiperidin-1-yl)phenyl)-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-c]pyridine-3-carboxamide (Apixaban, BMS-562247), a Highly Potent, Selective, Efficacious, and Orally Bioavailable Inhibitor of Blood Coagulation Factor Xa. J. Med. Chem. 2007;50:5339–5356. PubMed
Xu Y., Zhang Z., Jiang X., Chen X., Wang Z., Alsulami H., Qin H.-L., Tang W. Discovery of δ-sultone-fused pyrazoles for treating Alzheimer’s disease: Design, synthesis, biological evaluation and SAR studies. Eur. J. Med. Chem. 2019;181:111598. doi: 10.1016/j.ejmech.2019.111598. PubMed DOI
Syed Y.Y. Futibatinib: First Approval. Drugs. 2022;82:1737–1743. doi: 10.1007/s40265-022-01806-z. PubMed DOI
Kumar A., Lohan P., Aneja D.K., Gupta G.K., Kaushik D., Prakash O. Design, synthesis, computational and biological evaluation of some new hydrazino derivatives of DHA and pyranopyrazoles. Eur. J. Med. Chem. 2012;50:81–89. doi: 10.1016/j.ejmech.2012.01.042. PubMed DOI
Parikh P.H., Timaniya J.B., Patel M.J., Patel K.P. Microwave-assisted synthesis of pyrano[2,3-c]-pyrazole derivatives and their anti-microbial, anti-malarial, anti-tubercular, and anti-cancer activities. J. Mol. Struct. 2022;1249:131605. doi: 10.1016/j.molstruc.2021.131605. DOI
Parshad M., Verma V., Kumar D. Iodine-mediated efficient synthesis of pyrano[2,3-c]pyrazoles and their antimicrobial activity. Monatsh. Chem. 2014;145:1857–1865. doi: 10.1007/s00706-014-1250-5. DOI
Wang J., Liu D., Zheng Z., Shan S., Han X., Srinivasula S.M., Croce C.M., Alnemri E.S., Huang Z. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc. Natl. Acad. Sci. USA. 2000;97:7124–7129. doi: 10.1073/pnas.97.13.7124. PubMed DOI PMC
Sun X., Zhang L., Gao M., Que X., Zhou C., Zhu D., Cai Y. Nanoformulation of a Novel Pyrano[2,3-c]Pyrazole Heterocyclic Compound AMDPC Exhibits Anti-Cancer Activity via Blocking the Cell Cycle through a P53-Independent Pathway. Molecules. 2019;24:624. doi: 10.3390/molecules24030624. PubMed DOI PMC
Nguyen H.T., Truong M.-N.H., Le T.V., Vo N.T., Nguyen H.D., Tran P.H. A New Pathway for the Preparation of Pyrano[2,3-c]pyrazoles and molecular Docking as Inhibitors of p38 MAP Kinase. ACS Omega. 2022;7:17432–17443. doi: 10.1021/acsomega.2c01814. PubMed DOI PMC
Bieliauskas A., Krikštolaitytė S., Holzer W., Šačkus A. Ring-closing metathesis as a key step to construct 2,6-dihydropyrano[2,3-c]pyrazole ring system. Arkivoc. 2018;2018:296–307. doi: 10.24820/ark.5550190.p010.407. DOI
Milišiūnaitė V., Kadlecová A., Žukauskaitė A., Doležal K., Strnad M., Voller J., Arbačiauskienė E., Holzer W., Šačkus A. Synthesis and Anthelmintic Activity of Benzopyrano[2,3-c]Pyrazol-4(2H)-One Derivatives. Mol. Divers. 2020;24:1025–1042. doi: 10.1007/s11030-019-10010-3. PubMed DOI
Al-Khayri J.M., Sahana G.R., Nagella P., Joseph B.V., Alessa F.M., Al-Mssallem M.Q. Flavonoids as Potential Anti-Inflammatory. Molecules. 2022;27:2901. doi: 10.3390/molecules27092901. PubMed DOI PMC
Panche A., Diwan A., Chandra S. Flavonoids: An overview. J. Nutr. Sci. 2016;5:E47. doi: 10.1017/jns.2016.41. PubMed DOI PMC
Ullah A., Munir S., Badshah S.L., Khan N., Ghani L., Poulson B.G., Mews A.-H., Jaremko M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules. 2020;25:5243. doi: 10.3390/molecules25225243. PubMed DOI PMC
Jan R., Khan M., Asaf S., Lubna, Asif S., Kim K.-M. Bioactivity and Therapeutic Potential of Kaempferol and Quercetin: New Insights for Plant and Human Health. Plants. 2022;11:2623. doi: 10.3390/plants11192623. PubMed DOI PMC
Nejabati H.R., Roshangar L. Kaempferol: A potential agent in the prevention of colorectal cancer. Physiol. Rep. 2022;10:e15488. doi: 10.14814/phy2.15488. PubMed DOI PMC
Borsari C., Jiménez-Antón M.D., Eick J., Bifeld E., Torrado J.J., Olías-Molero A.I., Corral M.J., Santarem N., Baptista C., Severi L., et al. Discovery of a benzothiophene-flavonol halting miltefosine and antimonial drug resistance in Leishmania parasites through the application of medicinal chemistry, screening and genomics. Eur. J. Med. Chem. 2019;183:111676. doi: 10.1016/j.ejmech.2019.111676. PubMed DOI
Kishore N.R., Ashok D., Sarasija M., Murthy N.Y.S. One-pot synthesis of spirochromanone-based 3-hydroxy-4H-chromen-4-ones by a modified Algar–Flynn–Oyamada reaction and evaluation of their antimicrobial activity. Chem. Heterocycl. Compd. 2017;53:1187–1191. doi: 10.1007/s10593-018-2200-7. DOI
Ashok D., Kifah M.A., Lakshmi B.V., Sarasija M., Adam S. Microwave-assisted one-pot synthesis of some new flavonols by modified Algar–Flynn–Oyamada reaction and their antimicrobial activity. Chem. Heterocycl. Compd. 2016;52:172–176. doi: 10.1007/s10593-016-1852-4. DOI
Lee J., Park T., Jeong S., Kim K.-H., Hong C. 3-Hydroxychromones as cyclin-dependent kinase inhibitors: Synthesis and biological evaluation. Bioorg. Med. Chem. Lett. 2007;17:1284–1287. doi: 10.1016/j.bmcl.2006.12.011. PubMed DOI
Joshi H.C., Antonov L. Excited-State Intramolecular Proton Transfer: A Short Introductory Review. Molecules. 2021;26:1475. doi: 10.3390/molecules26051475. PubMed DOI PMC
Ameer-Beg S., Ormson S.M., Brown R.G., Matousek P., Towrie M., Nibbering E.T.J., Foggi P., Neuwahl F.V.R. Ultrafast Measurements of Excited State Intramolecular Proton Transfer (ESIPT) in Room Temperature Solutions of 3-Hydroxyflavone and Derivatives. J. Phys. Chem. A. 2001;105:3709–3718. doi: 10.1021/jp0031101. DOI
Sarkar M., Ray J.G., Sengupta P.K. Effect of reverse micelles on the intramolecular excited state proton transfer (ESPT) and dual luminescence behaviour of 3-hydroxyflavone. Spectrochim. Acta A Mol. Biomol. 1996;52:275–278. doi: 10.1016/0584-8539(95)01622-8. DOI
Zhao X., Li X., Liang S., Dong X., Zhang Z. 3-Hydroxyflavone derivatives: Promising scaffolds for fluorescent imaging in cells. RSC Adv. 2021;11:28851. doi: 10.1039/D1RA04767A. PubMed DOI PMC
Butun B., Topcu G., Ozturk T. Recent Advances on 3-Hydroxyflavone Derivatives: Structures and Properties. Mini Rev. Med. Chem. 2018;18:98–103. doi: 10.2174/1389557517666170425102827. PubMed DOI
Russo M., Orel V., Takko P., Šranková M., Muchová L., Vítek L., Klán P. Structure–Photoreactivity Relationship of 3-Hydroxyflavone-Based CO-Releasing Molecules. J. Org. Chem. 2022;87:4750–4763. doi: 10.1021/acs.joc.2c00032. PubMed DOI
Jiang G., Jin Y., Li M., Wang H., Xiong M., Zeng W., Yuan H., Liu C., Ren Z., Liu C. Faster and More Specific: Excited-State Intramolecular Proton Transfer-Based Dyes for High-Fidelity Dynamic Imaging of Lipid Droplets within Cells and Tissues. Anal. Chem. 2020;92:10342–10349. doi: 10.1021/acs.analchem.0c00390. PubMed DOI
Kamariza M., Keyser S.G.L., Utz A., Knapp B.D., Ealand C., Ahn G., Cambier C.J., Chen T., Kana B., Huang K.C., et al. Toward Point-of-Care Detection of Mycobacterium tuberculosis: A Brighter Solvatochromic Probe Detects Mycobacteria within Minutes. JACS Au. 2021;1:1368–1379. doi: 10.1021/jacsau.1c00173. PubMed DOI PMC
Bernini R., Crisante F., Ginnasi M.C. A Convenient and Safe O-Methylation of Flavonoids with Dimethyl Carbonate (DMC) Molecules. 2011;16:1418–1425. doi: 10.3390/molecules16021418. PubMed DOI PMC
Koirala N., Thuan N.H., Ghimire G.P., Thang D.V., Sohng J.K. Methylation of flavonoids: Chemical structures, bioactivities, progress and perspectives for biotechnological production. Enzym. Microb. 2016;86:103–116. doi: 10.1016/j.enzmictec.2016.02.003. PubMed DOI
Liu Y., Fernie A.R., Tohge T. Diversification of Chemical Structures of Methoxylated Flavonoids and Genes Encoding Flavonoid-O-Methyltransferases. Plants. 2022;11:564. doi: 10.3390/plants11040564. PubMed DOI PMC
Ohtani H., Ikegawa T., Honda Y., Kohyama N., Morimoto S., Shoyama Y., Juichi M., Naito M., Tsuruo T., Sawada T. Effects of various methoxyflavones on vincristine uptake and multidrug resistance to vincristine in P-gp-overexpressing K562/ADM cells. Pharm. Res. 2007;24:1936–1943. doi: 10.1007/s11095-007-9320-6. PubMed DOI
Juvale K., Stefan K., Wiese M. Synthesis and biological evaluation of flavones and benzoflavones as inhibitors of BCRP/ABCG. Eur. J. Med. Chem. 2013;67:115–126. doi: 10.1016/j.ejmech.2013.06.035. PubMed DOI
Khan D., Parveen I., Shaily S.S. Design, Synthesis and Characterization of Aurone Based α,β-unsaturated Carbonyl-Amino Ligands and their Application in Microwave Assisted Suzuki, Heck and Buchwald Reactions. Asian J. Org. Chem. 2022;11:e202100638. doi: 10.1002/ajoc.202100638. DOI
Khan D., Parveen I. Chroman-4-one-Based Amino Bidentate Ligand: An Efficient Ligand for Suzuki-Miyaura and Mizoroki-Heck Coupling Reactions in Aqueous Medium. Eur. J. Org. Chem. 2021;35:4946–4957. doi: 10.1002/ejoc.202100866. DOI
Joo Y.H., Kim J.K., Kang S.-H., Noh M.-S., Ha J.Y., Choi J.C., Lim K.M., Lee C.H., Chung S. 2,3-Diarylbenzopyran derivatives as a novel class of selective cyclooxygenase-2 inhibitors. Bioorg. Med. Chem. Lett. 2003;13:413–417. doi: 10.1002/chin.200322130. PubMed DOI
Prasanna S., Manivannan E., Chaturvedi S.C. Quantitative structure–activity relationship analysis of a series of 2,3-diaryl benzopyran analogues as novel selective cyclooxygenase-2 inhibitors. Bioorg. Med. Chem. Lett. 2004;14:4005–4011. doi: 10.1016/j.bmcl.2004.05.059. PubMed DOI
O’Brien D.F., Gates J.W., Jr. Some Reactions of 3-Hydroxy-1-phenylpyrazole. J. Org. Chem. 1966;31:1538–1542. doi: 10.1021/jo01343a054. DOI
Milišiūnaitė V., Arbačiauskienė E., Řezníčková E., Jorda R., Malínková V., Žukauskaitė A., Holzer W., Šačkus A., Kryštof V. Synthesis and anti-mitotic activity of 2,4- or 2,6-disubstituted- and 2,4,6-trisubstituted-2H-pyrazolo[4,3-c]pyridines. Eur. J. Med. Chem. 2018;150:908–919. doi: 10.1016/j.ejmech.2018.03.037. PubMed DOI
Urbonavičius A., Fortunato G., Ambrazaitytė E., Plytninkienė E., Bieliauskas A., Milišiūnaitė V., Luisi R., Arbačiauskienė E., Krikštolaitytė S., Šačkus A. Synthesis and Characterization of Novel Heterocyclic Chalcones from 1-Phenyl-1H-pyrazol-3-ol. Molecules. 2022;27:3752. doi: 10.3390/molecules27123752. PubMed DOI PMC
Shen X., Zhou Q., Xiong W., Pu W., Zhang W., Zhang G., Wang C. Synthesis of 5-subsituted flavonols via the Algar-Flynn-Oyamada (AFO) reaction: The mechanistic implication. Tetrahedron. 2017;73:4822–4829. doi: 10.1016/j.tet.2017.06.064. DOI
Bhattacharyya S., Hatua K. Computational insight of the mechanism of Algar–Flynn–Oyamada (AFO) reaction. RSC Adv. 2014;4:18702–18709. doi: 10.1039/c3ra46623j. DOI
Ferreira D., Brandt E.V., Volsteedt F.D.R., Roux D.G. Parameters regulating the α- and β-cyclization of chalcones. J. Chem. Soc. Perkin Trans. 1975;1:1437–1446. doi: 10.1039/P19750001437. DOI
Pati S.K., Marks T.J., Ratner M.A. Conformationally Tuned Large Two-Photon Absorption Cross Sections in Simple Molecular Chromophores. J. Am. Chem. Soc. 2001;123:7287–7291. doi: 10.1021/ja0033281. PubMed DOI
Jutand A., Mosleh A. Rate and Mechanism of Oxidative Addition of Aryl Triflates to Zerovalent Palladium Complexes. Evidence for the Formation of Cationic (.sigma.-Aryl)palladium Complexes. Organometallics. 1995;14:1810–1817. doi: 10.1021/om00004a038. DOI
Kumar A., Rao M.L.N. Pot-economic synthesis of diarylpyrazoles and pyrimidines involving Pd-catalyzed cross-coupling of 3-trifloxychromone and triarylbismuth. J. Chem. Sci. 2018;130:165. doi: 10.1007/s12039-018-1565-6. DOI
Dahlén K., Wallén E.A.A., Grøtli M., Luthman K. Synthesis of 2,3,6,8-Tetrasubstituted Chromone Scaffolds. J. Org. Chem. 2006;71:6863–6871. doi: 10.1021/jo061008f. PubMed DOI
Akrawi D.A., Patonay T., Kónya K., Langer P. Chemoselective Suzuki–Miyaura Cross-Coupling Reactions of 6-Bromo-3-(trifluoromethylsulfonyloxy)flavone. Synlett. 2013;24:860–864. doi: 10.1002/chin.201333160. DOI
Nuzillard J.-M. Use of carbon-13 NMR to identify known natural products by querying a nuclear magnetic resonance database—An assessment. Magn Reson Chem. 2023:1–7. doi: 10.1002/mrc.5386. PubMed DOI
Dolbier W.R. Guide to Fluorine NMR for Organic Chemists. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2016.
Arbačiauskienė E., Martynaitis V., Krikštolaitytė S., Holzer W., Šačkus A. Synthesis of 3-substituted 1-phenyl-1H-pyrazole-4-carbaldehydes and the corresponding ethanones by Pd-catalysed cross-coupling reactions. ARKIVOC. 2011;11:1–21. doi: 10.3998/ark.5550190.0012.b01. DOI
Solum M.S., Altmann K.L., Strohmeier M., Berges D.A., Zhang Y., Facelli J.C., Pugmire R.J., Grant D.M. 15N Chemical Shift Principal Values in Nitrogen Heterocycles. J. Am. Chem. Soc. 1997;119:9804–9809. doi: 10.1021/ja964135+. DOI
Williamson R.T., Buevich A.V., Martin G.E., Parella T. LR-HSQMBC: A Sensitive NMR Technique To Probe Very Long-Range Heteronuclear Coupling Pathways. J. Org. Chem. 2014;79:3887–3894. doi: 10.1021/jo500333u. PubMed DOI
Barczyński P., Szafran M., Ratajczak-Sitarz M., Nowaczyk Ł., Dega-Szafran Z., Katrusiak A. Structure of 2,3-dicarboxy-1-methylpyridinium chloride studied by X-ray diffraction, DFT calculation, NMR, FTIR and Raman spectra. J. Mol. Struct. 2012;1018:21–27. doi: 10.1016/j.molstruc.2011.11.009. DOI
Iwatsuki S., Kanamitsu Y., Ohara H., Kawahata M., Danjo H., Ishihara K. Crystal Structure of a Methanesulfonate Salt of 4-(N-Methyl)pyridinium Boronic Acid. X-ray Struct. Anal. Online. 2012;28:63–64. doi: 10.2116/xraystruct.28.63. DOI
Macdonald A.L., James Trotter J. Crystal and molecular structure of o-benzoquinone. J. Chem. Soc. Perkin Trans. 1973;2:476–480. doi: 10.1039/p29730000476. DOI
Allinger N.L., Chen K.-H., Lii J.-H., Durkin K.A. Alcohols, ethers, carbohydrates, and related compounds. I. The MM4 force field for simple compounds. J. Comput. Chem. 2003;24:1447–1472. PubMed
Li P., Su W., Lei X., Xiao Q., Huang S. Synthesis, characterization and anticancer activity of a series of curcuminoids and their half-sandwich ruthenium(II) complexes. Appl. Organomet. Chem. 2017;31:e3685. doi: 10.1002/aoc.3685. DOI
Milišiūnaitė V., Arbačiauskienė E., Bieliauskas A., Vilkauskaitė G., Šačkus A., Holzer W. Synthesis of pyrazolo[4′,3′:3,4]pyrido[1,2-a]benzimidazoles and related new ring systems by tandem cyclisation of vic-alkynylpyrazole-4-carbaldehydes with (het)aryl-1,2-diamines and investigation of their optical properties. Tetrahedron. 2015;71:3385–3395. doi: 10.1016/j.tet.2015.03.092. DOI
Arbačiauskienė E., Krikštolaitytė S., Mitrulevičienė A., Bieliauskas A., Martynaitis V., Bechmann M., Roller A., Šačkus A., Holzer W. On the Tautomerism of N-Substituted Pyrazolones: 1,2-Dihydro-3H-pyrazol-3-ones versus 1H-Pyrazol-3-ols. Molecules. 2018;23:129. doi: 10.3390/molecules23010129. PubMed DOI PMC
Titi A., Messali M., Alqurashy B.A., Touzani R., Shiga T., Oshio H., Fettouhi M., Rajabi M., Almalki F.A., Hadda T.B. Synthesis, characterization, X-ray crystal study and bioctivities of pyrazole derivatives: Identification of antitumor, antifungal and antibacterial pharmacophore sites. J. Mol. Struct. 2020;1205:127625. doi: 10.1016/j.molstruc.2019.127625. DOI
Sharma S., Brahmachari G., Kant R., Gupta V.K. One-pot green synthesis of biologically relevant novel spiro[indolin-2-one-3,4′-pyrano[2,3-c]pyrazoles] and studies on their spectral and X-ray crystallographic behaviors. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2016;72:335–343. doi: 10.1107/S2052520616005060. PubMed DOI
Shynkar V.V., Mély Y., Duportail G., Piémont E., Klymchenko A.S., Demchenko A.P. Picosecond Time-Resolved Fluorescence Studies Are Consistent with Reversible Excited-State Intramolecular Proton Transfer in 4′-(Dialkylamino)-3-hydroxyflavones. J. Phys. Chem. A. 2003;107:9522–9529. doi: 10.1021/jp035855n. DOI
Spadafora M., Postupalenko V., Shvadchak V., Klymchenko A., Mély Y., Burger A., Benhida R. Efficient synthesis of ratiometric fluorescent nucleosides featuring 3-hydroxychromone nucleobases. Tetrahedron. 2009;65:7809–7816. doi: 10.1016/j.tet.2009.07.021. DOI
Klymchenko A.S., Ozturk T., Pivovarenko V.G., Demchenko A.P. A 3-hydroxychromone with dramatically improved fluorescence properties. Tetrahedron Lett. 2001;42:7967–7970. doi: 10.1016/S0040-4039(01)01723-3. DOI
Klymchenko A.S., Kenfack C., Duportail G., Mély Y. Effects of polar protic solvents on dual emissions of 3-hydroxychromones. J. Chem. Sci. 2007;119:83–89. doi: 10.1007/s12039-007-0014-8. DOI
Voicescu M., Ionescu S., Gatea F. Effect of pH on the fluorescence characteristics of some flavones probes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014;123:303–308. doi: 10.1016/j.saa.2013.12.040. PubMed DOI
Klymchenko A.S., Pivovarenko V.G., Ozturk T., Demchenko A.P. Modulation of the solvent-dependent dual emission in 3-hydroxychromones by substituents. New J. Chem. 2003;27:1336–1343. doi: 10.1039/b302965d. DOI
Klymchenko A.S., Demchenko A.P. Multiparametric probing of intermolecular interactions with fluorescent dye exhibiting excited state intramolecular proton transfer. Phys. Chem. Chem. Phys. 2003;5:461–468. doi: 10.1039/b210352d. DOI
Zhao X., Liu Y., Zhou L., Li Y., Chen M. Time-dependent density functional theory study on excited state intramolecular proton transfer of 3-hydroxy-2-(pyridin-2-yl)-4H-chromen-4-one. J. Lumin. 2010;130:1431–1436. doi: 10.1016/j.jlumin.2010.03.007. DOI
Chen L., Fu P.-Y., Wang H.-P., Pan M. Excited-State Intramolecular Proton Transfer (ESIPT) for Optical Sensing in Solid State. Adv. Optical Mater. 2021;9:2170097. doi: 10.1002/adom.202170097. DOI
Ormson S.M., Brown R.G., Voller F., Rettig W. Switching between charge- and proton-transfer emission in the excited state of a substituted 3-hydroxyflavone. J. Photochem. Photobiol. A Chem. 1994;81:65–72. doi: 10.1016/1010-6030(94)03778-7. DOI
Lebeau B., Innocenzi P. Hybrid materials for optics and photonics. Chem. Soc. Rev. 2011;40:886–906. doi: 10.1039/c0cs00106f. PubMed DOI
Mohammad-Pour G.S., de Coene Y., Wiratmo M., Maan A., Clays K., Masunov A.E., Crawford K.E. Modular synthesis of zwitterionic, xanthene bridged, low twist angle chromophores with high hyperpolarizability. Mater. Adv. 2022;3:7520–7530. doi: 10.1039/D2MA00721E. DOI
Andreu R., Carrasquer L., Santiago Franco C., Garín J., Orduna J., de Baroja N.M., Alicante R., Villacampa B., Allain M. 4H-Pyran-4-ylidenes: Strong Proaromatic Donors for Organic Nonlinear Optical Chromophores. J. Org. Chem. 2009;74:6647–6657. doi: 10.1021/jo901142f. PubMed DOI
Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. A Complete Structure Solution, Refinement and Analysis Program. J.Appl. Cryst. 2009;42:339–341. doi: 10.1107/S0021889808042726. DOI
Sheldrick G.M. SHELXT-Integrated Space-Group and Crystal-Structure Determination. Acta Cryst. 2015;A71:3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC
Bourhis L.J., Dolomanov O.V., Gildea R.J., Howard J.A.K., Puschmann H. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment – Olex2 dissected. Acta Cryst. 2015;A71:59–75. PubMed PMC