• This record comes from PubMed

Exploring structural and molecular diversity of Ericaceae hair root mycobionts: a comparison between Northern Bohemia and Argentine Patagonia

. 2023 Nov ; 33 (5-6) : 425-447. [epub] 20231004

Language English Country Germany Media print-electronic

Document type Journal Article

Grant support
GAČR 18-05886S Grantová Agentura České Republiky
RVO 67985939 Akademie Věd České Republiky
AMB12AR014 and 7AMB14AR003 Ministry of Education, Youth and Sports of the Czech Republic
04/B143 and 04/B170 Universidad Nacional del Comahue
ARC/11/05 and ARC/13/03 Ministerio de Ciencia, Tecnología e Innovación Productiva de la República Argentina

Links

PubMed 37792114
DOI 10.1007/s00572-023-01125-5
PII: 10.1007/s00572-023-01125-5
Knihovny.cz E-resources

Core Ericaceae produce delicate hair roots with inflated rhizodermal cells that host plethora of fungal symbionts. These poorly known mycobionts include various endophytes, parasites, saprobes, and the ericoid mycorrhizal (ErM) fungi (ErMF) that form the ErM symbiosis crucial for the fitness of their hosts. Using microscopy and high-throughput sequencing, we investigated their structural and molecular diversity in 14 different host × site combinations in Northern Bohemia (Central Europe) and Argentine Patagonia (South America). While we found typical ericoid mycorrhiza in all combinations, we did not detect ectomycorrhiza and arbuscular mycorrhiza. Superficial mantles of various thickness formed by non-clamped hyphae were observed in all combinations except Calluna vulgaris from N. Bohemia. Some samples contained frequent intercellular hyphae while others possessed previously unreported intracellular haustoria-like structures linked with intracellular hyphal coils. The 711 detected fungal OTU were dominated by Ascomycota (563) and Basidiomycota (119), followed by four other phyla. Ascomycetes comprised Helotiales (255), Pleosporales (53), Chaetothyriales (42), and other 19 orders, while basidiomycetes Sebacinales (42), Agaricales (28), Auriculariales (7), and other 14 orders. While many dominant OTU from both hemispheres lacked close relatives in reference databases, many were very similar to identical to unnamed sequences from around the world. On the other hand, several significant ericaceous mycobionts were absent in our dataset, incl. Cairneyella, Gamarada, Kurtia, Lachnum, and Leohumicola. Most of the detected OTU could not be reliably linked to a particular trophic mode, and only two could be reliably assigned to the archetypal ErMF Hyaloscypha hepaticicola. Probable ErMF comprised Hyaloscypha variabilis and Oidiodendron maius, both detected only in N. Bohemia. Possible ErMF comprised sebacinoid fungi and several unnamed members of Hyaloscypha s. str. While H. hepaticicola was dominant only in C. vulgaris, this model ErM host lacked O. maius and sebacinoid mycobionts. Hyaloscypha hepaticicola was absent in two and very rare in six combinations from Patagonia. Nine OTU represented dark septate endophytes from the Phialocephala fortinii s. lat.-Acephala applanata species complex, including the most abundant OTU (the only detected in all combinations). Statistical analyses revealed marked differences between N. Bohemia and Patagonia, but also within Patagonia, due to the unique community detected in a Valdivian temperate rainforest. Our results show that the ericaceous hair roots may host diverse mycobionts with mostly unknown functions and indicate that many novel ErMF lineages await discovery. Transhemispheric differences (thousands of km) in their communities may be evenly matched by local differences (scales of km, m, and less).

See more in PubMed

Abarenkov K, Henrik Nilsson R, Larsson K et al (2010) The UNITE database for molecular identification of fungi – recent updates and future perspectives. New Phytol 186:281–285. https://doi.org/10.1111/j.1469-8137.2009.03160.x PubMed DOI

Allen TR, Millar T, Berch SM, Berbee ML (2003) Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots. New Phytol 160:255–272. https://doi.org/10.1046/j.1469-8137.2003.00885.x PubMed DOI

Allen W, Allaway W, Cox G, Valder P (1989) Ultrastructure of mycorrhizas of Dracophyllum secundum R. Br. (Ericales: Epacridaceae). Funct Plant Biol 16:147. https://doi.org/10.1071/PP9890147 DOI

Ashford AE, Allaway WG, Reed ML (1996) A possible role for the thick-walled epidermal cells in the mycorrhizal hair roots of Lysinema ciliatum R Br. and other epacridaceae. Ann Bot 77:375–382. https://doi.org/10.1006/anbo.1996.0045 DOI

Baba T, Hirose D (2020) Morphological characteristics of rhizodermal colonization by Leohumicola species in an ericaceous host. Plant Root 14:1–10. https://doi.org/10.3117/plantroot.14.1 DOI

Baba T, Hirose D (2021) Slow-growing fungi belonging to the unnamed lineage in Chaetothyriomycetidae form hyphal coils in vital ericaceous rhizodermal cells in vitro. Fungal Biol 125:1026–1035. https://doi.org/10.1016/j.funbio.2021.07.003 PubMed DOI

Bengtsson-Palme J, Ryberg M, Hartmann M et al (2013) Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol 4:n/a. https://doi.org/10.1111/2041-210X.12073

Benson DA, Cavanaugh M, Clark K et al (2013) GenBank. Nucleic Acids Res 41:D36–D42. https://doi.org/10.1093/nar/gks1195 PubMed DOI

Bonfante-Fasolo P (1980) Occurrence of a basidiomycete in living cells of mycorrhizal hair roots of Calluna vulgaris. Trans Br Mycol Soc 75:320–325. https://doi.org/10.1016/S0007-1536(80)80097-0 DOI

Bougoure DS, Cairney JWG (2005) Fungi associated with hair roots of Rhododendron lochiae (Ericaceae) in an Australian tropical cloud forest revealed by culturing and culture-independent molecular methods. Environ Microbiol 7:1743–1754. https://doi.org/10.1111/j.1462-2920.2005.00919.x PubMed DOI

Bougoure DS, Parkin PI, Cairney JWG et al (2007) Diversity of fungi in hair roots of Ericaceae varies along a vegetation gradient. Mol Ecol 16:4624–4636. https://doi.org/10.1111/j.1365-294X.2007.03540.x PubMed DOI

Brook PJ (1952) Mycorrhiza of Pernettya macrostigma. New Phytol 51:388–397 DOI

Bruzone MC, Fehrer J, Fontenla SB, Vohník M (2017) First record of Rhizoscyphus ericae in Southern Hemisphere’s Ericaceae. Mycorrhiza 27:147–163. https://doi.org/10.1007/s00572-016-0738-8 PubMed DOI

Bruzone MC, Fontenla SB, Vohník M (2015) Is the prominent ericoid mycorrhizal fungus Rhizoscyphus ericae absent in the Southern Hemisphere’s Ericaceae? A case study on the diversity of root mycobionts in Gaultheria spp. from northwest Patagonia. Argentina. Mycorrhiza 25:25–40. https://doi.org/10.1007/s00572-014-0586-3 PubMed DOI

Cabrera ÁL, Willink A (1980) Biogeografía de América Latina, Serie de B. Secretaría General de la Organización de los Estados Americanos, Programa Regional de Desarrollo Científico y Tecnológico, Washington, D.C

Cairney JWG, Meharg AA (2003) Ericoid mycorrhiza: a partnership that exploits harsh edaphic conditions. Eur J Soil Sci 54:735–740. https://doi.org/10.1046/j.1351-0754.2003.0555.x DOI

Couture M, Fortin JA, Dalpé Y (1983) Oidiodendron griseum Robak: an endophyte of ericoid mycorrhiza in Vaccinium spp. New Phytol 95:375–380. https://doi.org/10.1111/j.1469-8137.1983.tb03505.x DOI

Darker GD (1967) A revision of the genera of the Hypodermataceae. Can J Bot 45:1399–1444. https://doi.org/10.1139/b67-145 DOI

Douglas GC, Heslin MC, Reid C (1989) Isolation of Oidiodendron maius from Rhododendron and ultrastructural characterization of synthesized mycorrhizas. Can J Bot 67:2206–2212. https://doi.org/10.1139/b89-280 DOI

Duddridge J, Read DJ (1982) An ultrastructural analysis of the development of mycorrhizas in Rhododendron ponticum. Can J Bot 60:2345–2356. https://doi.org/10.1139/b82-287 DOI

Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. https://doi.org/10.1038/nmeth.2604 PubMed DOI

Englander L, Hull RJ (1980) Reciprocal transfer of nutrients between ericaceous plants and a Clavaria sp. New Phytol 84:661–667. https://doi.org/10.1111/j.1469-8137.1980.tb04779.x DOI

Fehrer J, Réblová M, Bambasová V, Vohník M (2019) The root-symbiotic Rhizoscyphus ericae aggregate and Hyaloscypha (Leotiomycetes) are congeneric: phylogenetic and experimental evidence. Stud Mycol 92:195–225. https://doi.org/10.1016/j.simyco.2018.10.004 PubMed DOI

Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x PubMed DOI

Gemma JN, Koske RE (1990) Mycorrhizae in recent volcanic substrates in Hawaii. Am J Bot 77:1193–1200. https://doi.org/10.2307/2444630 DOI

Gimingham CH (1960) Calluna Salisb. J Ecol 48:455–483. https://doi.org/10.2307/2257528 DOI

Grelet GA, Johnson D, Paterson E et al (2009) Reciprocal carbon and nitrogen transfer between an ericaceous dwarf shrub and fungi isolated from Piceirhiza bicolorata ectomycorrhizas. New Phytol 182:359–366. https://doi.org/10.1111/j.1469-8137.2009.02813.x PubMed DOI

Grelet GA, Johnson D, Vrålstad T et al (2010) New insights into the mycorrhizal Rhizoscyphus ericae aggregate: spatial structure and co-colonization of ectomycorrhizal and ericoid roots. New Phytol 188:210–222. https://doi.org/10.1111/j.1469-8137.2010.03353.x PubMed DOI

Grelet GA, Ba R, Goeke DF et al (2017) A plant growth-promoting symbiosis between Mycena galopus and Vaccinium corymbosum seedlings. Mycorrhiza 27:831–839. https://doi.org/10.1007/s00572-017-0797-5 PubMed DOI

Griffin A, Kernaghan G (2022) Ericoid mycorrhizal colonization and associated fungal communities along a wetland gradient in the Acadian forest of Eastern Canada. Fungal Ecol 56:101138. https://doi.org/10.1016/j.funeco.2021.101138 DOI

Grunewaldt-Stöcker G, von den Berg C, Knopp J, von Alten H (2013) Interactions of ericoid mycorrhizal fungi and root pathogens in Rhododendron: in vitro tests with plantlets in sterile liquid culture. Plant Root 7:33–48. https://doi.org/10.3117/plantroot.7.33 DOI

Grünig CR, Queloz V, Sieber TN, Holdenrieder O (2008) Dark septate endophytes (DSE) of the Phialocephala fortinii s.l. - Acephala applanata species complex in tree roots: classification, population biology, and ecology. Botany 86:1355–1369. https://doi.org/10.1139/B08-108 DOI

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

Hambleton S, Currah RS (1997) Fungal endophytes from the roots of alpine and boreal Ericaceae. Can J Bot 75:1570–1581. https://doi.org/10.1139/b97-869 DOI

Hambleton S, Nickerson NL, Seifert KA (2005) Leohumicola, a new genus of heat-resistant hyphomycetes. Stud Mycol 53:29–52. https://doi.org/10.3114/sim.53.1.29 DOI

Hambleton S, Sigler L (2005) Meliniomyces, a new anamorph genus for root-associated fungi with phylogenetic affinities to Rhizoscyphus ericae (= Hymenoscyphus ericae), Leotiomycetes. Stud Mycol 53:1–27. https://doi.org/10.3114/sim.53.1.1 DOI

Horton TR (2017) Spore dispersal in ectomycorrhizal fungi at fine and regional scales. In: Tedersoo L (ed) Biogeography of Mycorrhizal Symbiosis. Springer, pp 61–78 DOI

Hutton BJ, Dixon KW, Sivasithamparam K (1994) Ericoid endophytes of Western Australian heaths (Epacridaceae). New Phytol 127:557–566. https://doi.org/10.1111/j.1469-8137.1994.tb03974.x DOI

Katoh K, Asimenos G, Toh H (2009) Multiple alignment of DNA sequences with MAFFT. In: Methods in molecular biology (Clifton, N.J.). pp 39–64

Kohout P (2017) Biogeography of ericoid mycorrhiza. In: Tedersoo L (ed) Biogeography of Mycorrhizal Symbiosis. Springer, pp 179–193 DOI

Kohout P, Sýkorová Z, Bahram M et al (2011) Ericaceous dwarf shrubs affect ectomycorrhizal fungal community of the invasive Pinus strobus and native Pinus sylvestris in a pot experiment. Mycorrhiza 21:403–412. https://doi.org/10.1007/s00572-010-0350-2 PubMed DOI

Kohout P, Tedersoo L (2017) Effect of soil moisture on root-associated fungal communities of Erica dominans in Drakensberg mountains in South Africa. Mycorrhiza 27:397–406. https://doi.org/10.1007/s00572-017-0760-5 PubMed DOI

Kolařík M, Vohník M (2018) When the ribosomal DNA does not tell the truth: the case of the taxonomic position of Kurtia argillacea, an ericoid mycorrhizal fungus residing among Hymenochaetales. Fungal Biol 122:1–18. https://doi.org/10.1016/j.funbio.2017.09.006 PubMed DOI

Koske RE, Gemma JN, Englander L (1990) Vesicular-arbuscular mycorrhizae in Hawaiian Ericales. Am J Bot 77:64–68. https://doi.org/10.2307/2444793 DOI

Kron KA, Judd WS, Stevens PF et al (2002) Phylogenetic classification of Ericaceae: molecular and morphological evidence. Bot Rev 68:335–423. https://doi.org/10.1663/0006-8101(2002)068[0335:pcoema]2.0.co;2 DOI

Leake JR, Read DJ (1991) 20 Experiments with ericoid mycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Methods in Microbiology 23. Academic Press, London, pp 435–459

Leake JR, Shaw C, Read DJ (1990) The role of ericoid mycorrhizas in the ecology of ericaceous plants. Agric Ecosyst Environ 29:237–250. https://doi.org/10.1016/0167-8809(90)90282-I DOI

Leopold DR (2016) Ericoid fungal diversity: challenges and opportunities for mycorrhizal research. Fungal Ecol 24:114–123. https://doi.org/10.1016/j.funeco.2016.07.004 DOI

Leopold DR, Fukami T (2021) Greater local diversity under older species pools may arise from enhanced competitive equivalence. Ecol Lett 24:310–318. https://doi.org/10.1111/ele.13647 PubMed DOI

Leopold DR, Peay KG, Vitousek PM, Fukami T (2021) Diversity of putative ericoid mycorrhizal fungi increases with soil age and progressive phosphorus limitation across a 4.1-million-year chronosequence. FEMS Microbiol Ecol 97:fiab016. https://doi.org/10.1093/femsec/fiab016

Lukešová T, Kohout P, Větrovský T, Vohník M (2015) The potential of dark septate endophytes to form root symbioses with ectomycorrhizal and ericoid mycorrhizal middle european forest plants. PLoS One 10. https://doi.org/10.1371/journal.pone.0124752

Martino E, Morin E, Grelet G et al (2018) Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytol 217:1213–1229. https://doi.org/10.1111/nph.14974 PubMed DOI

Massicotte HB, Melville LH, Peterson RL (2005) Structural characteristics of root-fungal interactions for five ericaceous species in eastern Canada. Can J Bot 83:1057–1064. https://doi.org/10.1139/b05-046 DOI

Midgley DJ, Greenfield P, Bissett A, Tran-Dinh N (2017) First evidence of Pezoloma ericae in Australia: using the Biomes of Australia Soil Environments (BASE) to explore the Australian phylogeography of known ericoid mycorrhizal and root-associated fungi. Mycorrhiza 27:587–594. https://doi.org/10.1007/s00572-017-0769-9 PubMed DOI

Midgley DJ, Rosewarne CP, Greenfield P et al (2016) Genomic insights into the carbohydrate catabolism of Cairneyella variabilis gen. nov. sp. nov., the first reports from a genome of an ericoid mycorrhizal fungus from the southern hemisphere. Mycorrhiza 26:345–352. https://doi.org/10.1007/s00572-016-0683-6 PubMed DOI

Midgley DJ, Sutcliffe B, Greenfield P, Tran-Dinh N (2018) Gamarada debralockiae gen. nov. sp. nov.—the genome of the most widespread Australian ericoid mycorrhizal fungus. Mycorrhiza 28:379–389. https://doi.org/10.1007/s00572-018-0835-y PubMed DOI

Mueller WC, Tessier BJ, Englander L (1986) Immunocytochemical detection of fungi in the roots of Rhododendron. Can J Bot 64:718–723. https://doi.org/10.1139/b86-091 DOI

Obase K, Douhan GW, Matsuda Y, Smith ME (2014) Culturable fungal assemblages growing within Cenococcum sclerotia in forest soils. FEMS Microbiol Ecol 90:708–717. https://doi.org/10.1111/1574-6941.12428 PubMed DOI

Oksanen J, Blanchet F, Kindt R et al (2018) vegan: Community Ecology Package. R package version 2:5–3

Pearson V, Read DJ (1973a) The biology of mycorrhiza in the Ericaceae: I. The isolation of the endophyte and synthesis of mycorrhizas in aseptic culture. New Phytol 72:371–379. https://doi.org/10.1111/j.1469-8137.1973.tb02044.x DOI

Pearson V, Read DJ (1973b) The biology of mycorrhiza in the Ericaceae: II. The transport of carbon and phosphorus by the endophyte and the mycorrhiza. New Phytol 72:1325–1331. https://doi.org/10.1111/j.1469-8137.1973.tb02110.x DOI

Pearson V, Read DJ (1975) The physiology of the mycorrhizal endophyte of Calluna vulgaris. Trans Br Mycol Soc 64:1–7. https://doi.org/10.1016/s0007-1536(75)80069-6 DOI

Perotto S, Daghino S, Martino E (2018) Ericoid mycorrhizal fungi and their genomes: another side to the mycorrhizal symbiosis? New Phytol 220:1141–1147. https://doi.org/10.1111/nph.15218 PubMed DOI

Perotto S, Girlanda M, Martino E (2002) Ericoid mycorrhizal fungi: Some new perspectives on old acquaintances. Plant Soil 244:41–53. https://doi.org/10.1023/A:1020289401610 DOI

Peterson TA, Mueller WC, Englander L (1980) Anatomy and ultrastructure of a Rhododendron root–fungus association. Can J Bot 58:2421–2433. https://doi.org/10.1139/b80-281 DOI

R Core Team (2023) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Rayner MC (1915) Obligate symbiosis in Calluna vulgaris. Ann Bot os-29:97–98. https://doi.org/10.1093/oxfordjournals.aob.a089540

Read DJ (1974) Pezizella ericae sp.nov., the perfect state of a typical mycorrhizal endophyte of Ericaceae. Trans Br Mycol Soc 63:381–383. https://doi.org/10.1016/S0007-1536(74)80183-X DOI

Read DJ (1996) The structure and function of the ericoid mycorrhizal root. Ann Bot 77:365–374. https://doi.org/10.1006/anbo.1996.0044 DOI

Read DJ, Kerley S (1999) The status and function of ericoid mycorrhizal systems. In: Varma A (ed) Mycorrhiza, 2nd edn. Springer, pp 499–520 DOI

Read DJ, Leake JR, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 82:1243–1263. https://doi.org/10.1139/B04-123 DOI

Rice AV, Currah RS (2002) New perspectives on the niche and holomorph of the myxotrichoid hyphomycete, Oidiodendron maius. Mycol Res 106:1463–1467. https://doi.org/10.1017/S0953756202006767 DOI

Rice AV, Currah RS (2006) Oidiodendron maius: saprobe in sphagnum peat, mutualist in Ericaceous Roots? Microbial Root Endophytes. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 227–246 DOI

Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. https://doi.org/10.1128/AEM.01541-09 PubMed DOI PMC

Selosse MA, Setaro S, Glatard F et al (2007) Sebacinales are common mycorrhizal associates of Ericaceae. New Phytol 174:864–878. https://doi.org/10.1111/j.1469-8137.2007.02064.x PubMed DOI

Setaro S, Kottke I, Oberwinkler F (2006a) Anatomy and ultrastructure of mycorrhizal associations of neotropical Ericaceae. Mycol Prog 5:243–254. https://doi.org/10.1007/s11557-006-0516-7 DOI

Setaro S, Weiß M, Oberwinkler F, Kottke I (2006b) Sebacinales form ectendomycorrhizas with Cavendishia nobilis, a member of the Andean clade of Ericaceae, in the mountain rain forest of southern Ecuador. New Phytol 169:355–365. https://doi.org/10.1111/j.1469-8137.2005.01583.x PubMed DOI

Setaro SD, Kron K (2011) Neotropical and north American Vaccinioideae (Ericaceae) share their mycorrhizal Sebacinales – an indication for concerted migration? PLoS Curr 1–19. https://doi.org/10.1371/currents.RRN1227

Seviour RJ, Willings RR, Chilvers GA (1973) Basidiocarps associated with ericoid mycorrhizas. New Phytol 72:381–385. https://doi.org/10.1111/j.1469-8137.1973.tb02045.x DOI

Tanney JB, Seifert KA (2020) Mollisiaceae: an overlooked lineage of diverse endophytes. Stud Mycol 95:293–380. https://doi.org/10.1016/j.simyco.2020.02.005 PubMed DOI PMC

Tedersoo L, Pärtel K, Jairus T et al (2009) Ascomycetes associated with ectomycorrhizas: molecular diversity and ecology with particular reference to the Helotiales. Environ Microbiol 11:3166–3178. https://doi.org/10.1111/j.1462-2920.2009.02020.x PubMed DOI

Teillier S, Amarilla LD, Anton AM (2019) Contribution to the vascular flora of Argentina: family Ericaceae. Darwiniana, nueva Ser 7:68–92. https://doi.org/10.14522/darwiniana.2019.71.845

Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. https://doi.org/10.1093/nar/22.22.4673 PubMed DOI PMC

Thormann MN, Currah RS, Bayley SE (1999) The mycorrhizal status of the dominant vegetation along a peatland gradient in southern boreal Alberta, Canada. Wetlands 19:438–450. https://doi.org/10.1007/BF03161775 DOI

Urcelay C (2002) Co-occurrence of three fungal root symbionts in Gaultheria poeppiggi DC in Central Argentina. Mycorrhiza 12:89–92. https://doi.org/10.1007/s00572-001-0146-5 PubMed DOI

Větrovský T, Baldrian P (2013) Analysis of soil fungal communities by amplicon pyrosequencing: current approaches to data analysis and the introduction of the pipeline SEED. Biol Fertil Soils 49:1027–1037. https://doi.org/10.1007/s00374-013-0801-y DOI

Vohník M (2020) Ericoid mycorrhizal symbiosis: theoretical background and methods for its comprehensive investigation. Mycorrhiza 30:671–695. https://doi.org/10.1007/s00572-020-00989-1 PubMed DOI PMC

Vohník M, Albrechtová J (2011) The co-occurrence and morphological continuum between ericoid mycorrhiza and dark septate endophytes in roots of six European Rhododendron species. Folia Geobot 46:373–386. https://doi.org/10.1007/s12224-011-9098-5 DOI

Vohník M, Albrechtová J, Vosátka M (2005) The inoculation with Oidiodendron maius and Phialocephala fortinii alters phosphorus and nitrogen uptake, foliar C: N ratio and root biomass distribution in Rhododendron cv. Azurro. Symbiosis 40:87–96

Vohník M, Figura T, Réblová M (2022) Hyaloscypha gabretae and Hyaloscypha gryndleri spp. nov. (Hyaloscyphaceae, Helotiales), two new mycobionts colonizing conifer, ericaceous and orchid roots. Mycorrhiza 32:105–122. https://doi.org/10.1007/s00572-021-01064-z PubMed DOI

Vohník M, Lukančič S, Bahor E et al (2003) Inoculation of Rhododendron cv. Belle-Heller with two strains of Phialocephala fortinii in two different substrates. Folia Geobot 38:191–200. https://doi.org/10.1007/BF02803151 DOI

Vohník M, Mrnka L, Lukešová T et al (2013) The cultivable endophytic community of Norway spruce ectomycorrhizas from microhabitats lacking ericaceous hosts is dominated by ericoid mycorrhizal Meliniomyces variabilis. Fungal Ecol 6:281–292. https://doi.org/10.1016/j.funeco.2013.03.006 DOI

Vohník M, Pánek M, Fehrer J, Selosse M-A (2016) Experimental evidence of ericoid mycorrhizal potential within Serendipitaceae (Sebacinales). Mycorrhiza 26:831–846. https://doi.org/10.1007/s00572-016-0717-0 PubMed DOI

Vohník M, Réblová M (2023) Fungi in hair roots of Vaccinium spp. (Ericaceae) growing on decomposing wood: colonization patterns, identity, and in vitro symbiotic potential. Mycorrhiza 1–29. https://doi.org/10.1007/s00572-023-01101-z

Vohník M, Sadowsky JJ, Kohout P et al (2012) Novel root-fungus symbiosis in Ericaceae: sheathed ericoid mycorrhiza formed by a hitherto undescribed basidiomycete with affinities to Trechisporales. PLoS One 7:e39524. https://doi.org/10.1371/journal.pone.0039524 PubMed DOI PMC

Vrålstad T, Fossheim T, Schumacher T (2000) Piceirhiza bicolorata – the ectomycorrhizal expression of the Hymenoscyphus ericae aggregate? New Phytol 145:549–563. https://doi.org/10.1046/j.1469-8137.2000.00605.x PubMed DOI

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols. Elsevier, pp 315–322

Williams AF, Chambers SM, Davies PW et al (2004) Molecular investigation of sterile root-associated fungi from Epacris microphylla R. Br. (Ericaceae) and other epacrids at alpine, subalpine and coastal heathland sites. Australas Mycol 23:94–104

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...