Role of lamp type in conventional batch and micro-photoreactor for photocatalytic hydrogen production

. 2023 ; 11 () : 1271410. [epub] 20230920

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37799783

The use of an irradiation source with a homogeneous distribution of irradiation in the volume of the reaction mixture belongs to the essential aspects of heterogeneous photocatalysis. First, the efficacy of six lamps with various radiation intensity and distribution characteristics is contrasted. The topic of discussion is the photocatalytic hydrogen production from a methanol-water solution in the presence of a NiO-TiO2 photocatalyst. The second section is focused on the potential of a micro-photoreactor system-the batch reactor with a micro-reactor with a circulating reaction mixture, in which the photocatalytic reaction takes place using TiO2 immobilized on borosilicate glass. Continuous photocatalytic hydrogen generation from a methanol-water solution is possible in a micro-photoreactor. This system produced 333.7 ± 21.1 µmol H2 (252.8 ± 16.0 mmol.m-2, the hydrogen formation per thin film area) in a reproducible manner during 168 h.

Zobrazit více v PubMed

Adamu A., Russo-Abegão F., Boodhoo K. (2020). Process intensification technologies for CO 2 capture and conversion–a review. BMC Chem. Eng. 2 (1), 2–18. 10.1186/s42480-019-0026-4 DOI

Ahmad H., Kamarudin S., Minggu L., Kassim M. (2015). Hydrogen from photo-catalytic water splitting process: A review. Renew. Sustain. Energy Rev. 43, 599–610. 10.1016/j.rser.2014.10.101 DOI

Ahmed S., Rasul M., Brown R., Hashib M. (2011). Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: A short review. J. Environ. Manag. 92 (3), 311–330. 10.1016/j.jenvman.2010.08.028 PubMed DOI

Almquist C. B., Kocher J., Saxton K., Simonson L., Danciutiu A., Nguyen P. J., et al. (2022). A novel application of photocatalysis: A UV-led photocatalytic device for controlling diurnal evaporative fuel vapor emissions from automobiles. Catalysts 13 (1), 85. 10.3390/catal13010085 DOI

Amakiri K. T., Angelis-Dimakis A., Ramirez Canon A. (2021). Recent advances, influencing factors, and future research prospects using photocatalytic process for produced water treatment. Water Sci. Technol. 85, 769–788. 10.2166/wst.2021.641 PubMed DOI

Azam M. U., Tahir M., Umer M., Jaffar M. M., Nawawi M. (2019). Engineering approach to enhance photocatalytic water splitting for dynamic H2 production using La2O3/TiO2 nanocatalyst in a monolith photoreactor. Appl. Surf. Sci. 484, 1089–1101. 10.1016/j.apsusc.2019.04.030 DOI

Baniasadi E., Dincer I., Naterer G. (2013). Measured effects of light intensity and catalyst concentration on photocatalytic hydrogen and oxygen production with zinc sulfide suspensions. Int. J. hydrogen energy 38 (22), 9158–9168. 10.1016/j.ijhydene.2013.05.017 DOI

Bell S., Will G., Bell J. (2013). Light intensity effects on photocatalytic water splitting with a titania catalyst. Int. J. hydrogen energy 38 (17), 6938–6947. 10.1016/j.ijhydene.2013.02.147 DOI

Belver C., Bedia J., Gómez-Avilés A., Peñas-Garzón M., Rodriguez J. J. (2019). “Semiconductor photocatalysis for water purification,” in Nanoscale materials in water purification (Amsterdam, Netherlands: Elsevier; ), 581–651.

Bloh J. Z. (2019). A holistic approach to model the kinetics of photocatalytic reactions. Front. Chem. 7, 128. 10.3389/fchem.2019.00128 PubMed DOI PMC

Chen X., Xiong J., Shi J., Xia S., Gui S., Shangguan W. (2019). Roles of various Ni species on TiO 2 in enhancing photocatalytic H 2 evolution. Front. Energy 13 (4), 684–690. 10.1007/s11708-018-0585-8 DOI

Cheng Z., Yu R., Wang F., Liang H., Lin B., Wang H., et al. (2018). Experimental study on the effects of light intensity on energy conversion efficiency of photo-thermo chemical synergetic catalytic water splitting. Therm. Sci. 22 (2), 709–718. 10.2298/TSCI170626056Z DOI

Deba S. A. H., Wols B. A., Yntema D. R., Lammertink R. G. (2023). Photocatalytic ceramic membrane: Effect of the illumination intensity and distribution. J. Photochem. Photobiol. A Chem. 437, 114469. 10.1016/j.jphotochem.2022.114469 DOI

Deng F., Zou J.-P., Zhao L.-N., Zhou G., Luo X.-B., Luo S.-L. (2019). “Nanomaterial-based photocatalytic hydrogen production,” in Nanomaterials for the removal of pollutants and resource reutilization (Amsterdam, Netherlands: Elsevier; ), 59–82.

Dharma H. N. C., Jaafar J., Widiastuti N., Matsuyama H., Rajabsadeh S., Othman M. H. D., et al. (2022). A review of titanium dioxide (TiO2)-based photocatalyst for oilfield-produced water treatment. Membranes 12 (3), 345. 10.3390/membranes12030345 PubMed DOI PMC

Do H. H., Nguyen D. L. T., Nguyen X. C., Le T.-H., Nguyen T. P., Trinh Q. T., et al. (2020). Recent progress in TiO2-based photocatalysts for hydrogen evolution reaction: A review. Arabian J. Chem. 13 (2), 3653–3671. 10.1016/j.arabjc.2019.12.012 DOI

Enesca A. (2021). The influence of photocatalytic reactors design and operating parameters on the wastewater organic pollutants removal—a mini-review. Catalysts 11 (5), 556. 10.3390/catal11050556 DOI

Fajrina N., Tahir M. (2019). A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. Int. J. Hydrogen Energy 44 (2), 540–577. 10.1016/j.ijhydene.2018.10.200 DOI

Fujishima A., Heberling R. L., Ratner J. J. (1972). EBV antibody in sera of non-human primates. Nature 238, 353–354. 10.1038/238353a0 PubMed DOI

Guba F., Tastan Ü., Gugeler K., Buntrock M., Rommel T., Ziegenbalg D. (2019). Rapid prototyping for photochemical reaction engineering. Chem. Ing. Tech. 91 (1-2), cite.201800035–29. 10.1002/cite.201800035 DOI

Hisatomi T., Takanabe K., Domen K. (2015). Photocatalytic water-splitting reaction from catalytic and kinetic perspectives. Catal. Lett. 145 (1), 95–108. 10.1007/s10562-014-1397-z DOI

Kočí K., Troppová I., Edelmannová M., Starostka J., Matějová L., Lang J., et al. (2018). Photocatalytic decomposition of methanol over La/TiO 2 materials. Environ. Sci. Pollut. Res. 25 (35), 34818–34825. 10.1007/s11356-017-0460-x PubMed DOI

Kumar A., Pandey G. (2017). A review on the factors affecting the photocatalytic degradation of hazardous materials. Mat. Sci. Eng. Int. J. 1 (3), 1–10. 10.15406/mseij.2017.01.00018 DOI

Li B., Wu S., Gao X. (2020). Theoretical calculation of a TiO2-based photocatalyst in the field of water splitting: A review. Nanotechnol. Rev. 9 (1), 1080–1103. 10.1515/ntrev-2020-0085 DOI

Lin H., Valsaraj K. T. (2006). An optical fiber monolith reactor for photocatalytic wastewater treatment. AIChE J. 52 (6), 2271–2280. 10.1002/aic.10823 DOI

Maeda K. (2011). Photocatalytic water splitting using semiconductor particles: History and recent developments. J. Photochem. Photobiol. C Photochem. Rev. 12 (4), 237–268. 10.1016/j.jphotochemrev.2011.07.001 DOI

Manassero A., Alfano O. M., Satuf M. L. (2023). Radiation modeling and performance evaluation of a UV-LED photocatalytic reactor for water treatment. J. Photochem. Photobiol. A Chem. 436, 114367. 10.1016/j.jphotochem.2022.114367 DOI

Maroto-Valer M. M., Ola O. (2015). Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol. C Photochem. Rev. 24, 16–42. 10.1016/j.jphotochemrev.2015.06.001 DOI

Martín-Sómer M., Pablos C., Adán C., van Grieken R., Marugán J. (2023). A review on led technology in water photodisinfection. Sci. Total Environ. 885, 163963. 10.1016/j.scitotenv.2023.163963 PubMed DOI

Mei J., Gao X., Zou J., Pang F. (2023). Research on photocatalytic wastewater treatment reactors: Design, optimization, and evaluation criteria. Catalysts 13 (6), 974. 10.3390/catal13060974 DOI

Miquelot A., Debieu O., Rouessac V., Villeneuve C., Prud'Homme N., Cure J., et al. (2019). TiO2 nanotree films for the production of green H2 by solar water splitting: From microstructural and optical characteristics to the photocatalytic properties. Appl. Surf. Sci. 494, 1127–1137. 10.1016/j.apsusc.2019.07.191 DOI

Ng K. H., Lai S. Y., Cheng C. K., Cheng Y. W., Chong C. C. (2021). Photocatalytic water splitting for solving energy crisis: Myth, Fact or Busted? Chem. Eng. J. 417, 128847. 10.1016/j.cej.2021.128847 DOI

Oelgemoeller M. (2012). Highlights of photochemical reactions in microflow reactors. Chem. Eng. Technol. 35 (7), 1144–1152. 10.1002/ceat.201200009 DOI

Ollis D. F., Pelizzetti E., Serpone N. (1991). Photocatalyzed destruction of water contaminants. Environ. Sci. Technol. 25 (9), 1522–1529. 10.1021/es00021a001 DOI

Pansamut G., Charinpanitkul T., Suriyawong A. (2013). Removal of humic acid by photocatalytic process: Effect of light intensity. Eng. J. 17 (3), 25–32. 10.4186/ej.2013.17.3.25 DOI

Pareek V. (2005). Light intensity distribution in a dual-lamp photoreactor. Int. J. Chem. React. Eng. 3 (1). 10.2202/1542-6580.1302 DOI

Purpura P. P., Fennelly L. J., Honey G., Broder J. F. (2014). “Security lighting for schools,” in The handbook for school safety and security (Amsterdam, Netherlands: Elsevier; ), 159–170.

Rafique M., Mubashar R., Irshad M., Gillani S., Tahir M. B., Khalid N., et al. (2020). A comprehensive study on methods and materials for Photocatalytic water splitting and hydrogen production as a renewable energy resource. J. Inorg. Organomet. Polym. Mater. 30, 3837–3861. 10.1007/s10904-020-01611-9 DOI

Rashmi Pradhan S., Colmenares-Quintero R. F., Colmenares Quintero J. C. (2019). Designing microflowreactors for photocatalysis using sonochemistry: A systematic review article. Molecules 24 (18), 3315. 10.3390/molecules24183315 PubMed DOI PMC

Rasoulifard M. H., Marandi R., Majidzadeh H., Bagheri I. (2011). Ultraviolet light-emitting diodes and peroxydisulfate for degradation of basic red 46 from contaminated water. Environ. Eng. Sci. 28 (3), 229–235. 10.1089/ees.2010.0202 DOI

Reilly K., Taghipour F., Wilkinson D. P. (2012). Photocatalytic hydrogen production in a UV-irradiated fluidized bed reactor. Energy Procedia 29, 513–521. 10.1016/j.egypro.2012.09.060 DOI

Reilly K., Wilkinson D. P., Taghipour F. (2018). Photocatalytic water splitting in a fluidized bed system: Computational modeling and experimental studies. Appl. Energy 222, 513–521. 10.1016/j.egypro.2012.09.060 DOI

Sakata Y., Hayashi T., Yasunaga R., Yanaga N., Imamura H. (2015). Remarkably high apparent quantum yield of the overall photocatalytic H 2 O splitting achieved by utilizing Zn ion added Ga 2 O 3 prepared using dilute CaCl 2 solution. Chem. Commun. 51 (65), 12935–12938. 10.1039/C5CC03483C PubMed DOI

Sambiagio C., Noël T. (2020). Flow photochemistry: Shine some light on those tubes. Trends Chem. 2 (2), 92–106. 10.1016/j.trechm.2019.09.003 DOI

Sarkar A., Chaule S., Mandal S., Saha S., Ganguly S., Banerjee D., et al. (2023). Enhanced photocatalytic Hydrogen generation by splitting water using Sodium Alginate decorated rGO-CdS hybrid photo-catalyst. Mater. Today Proc. 10.1016/j.matpr.2023.02.095 DOI

Schneider E. V. D. V. C. (2015). J. Bahnemann D. Pillai SC visible-light activation of TiO 2 photocatalysts: Advances in theory and experiments. J. Photochem. Photobiol. C 25, 1–29. 10.1016/j.jphotochemrev.2015.08.003 DOI

Sergejevs A., Clarke C., Allsopp D., Marugan J., Jaroenworaluck A., Singhapong W., et al. (2017). A calibrated UV-LED based light source for water purification and characterisation of photocatalysis. Photochem. Photobiological Sci. 16 (11), 1690–1699. 10.1039/c7pp00269f PubMed DOI

Shukla K., Agarwalla S., Duraiswamy S., Gupta R. K. (2021). Recent advances in heterogeneous micro-photoreactors for wastewater treatment application. Chem. Eng. Sci. 235, 116511. 10.1016/j.ces.2021.116511 DOI

Tahir M., Amin N. S. (2013). Recycling of carbon dioxide to renewable fuels by photocatalysis: Prospects and challenges. Renew. Sustain. Energy Rev. 25, 560–579. 10.1016/j.rser.2013.05.027 DOI

Toe C. Y., Pan J., Scott J., Amal R. (2022). Identifying key design criteria for large-scale photocatalytic hydrogen generation from engineering and economic perspectives. ACS ES&T Eng. 2 (6), 1130–1143. 10.1021/acsestengg.2c00030 DOI

Tokode O., Prabhu R., Lawton L. A., Robertson P. K. (2014). “UV LED sources for heterogeneous photocatalysis,” in Environmental Photochemistry Part III (Berlin, Germany: Springer; ), 159–179.

Vaiano V., Sacco O., Pisano D., Sannino D., Ciambelli P. (2015). From the design to the development of a continuous fixed bed photoreactor for photocatalytic degradation of organic pollutants in wastewater. Chem. Eng. Sci. 137, 152–160. 10.1016/j.ces.2015.06.023 DOI

Villa K., Galán-Mascarós J. R., López N., Palomares E. (2021). Photocatalytic water splitting: Advantages and challenges. Sustain. Energy and Fuels 5 (18), 4560–4569. 10.1039/D1SE00808K DOI

Visan A., van Ommen J. R., Kreutzer M. T., Lammertink R. G. (2019). Photocatalytic reactor design: Guidelines for kinetic investigation. Industrial Eng. Chem. Res. 58 (14), 5349–5357. 10.1021/acs.iecr.9b00381 DOI

Wang Z., Qiao W., Yuan M., Li N., Chen J. (2020). Light-intensity-dependent semiconductor–cocatalyst interfacial electron transfer: A dilemma of sunlight-driven photocatalysis. J. Phys. Chem. Lett. 11 (6), 2369–2373. 10.1021/acs.jpclett.0c00315 PubMed DOI

Xing Z., Zong X., Pan J., Wang L. (2013). On the engineering part of solar hydrogen production from water splitting: Photoreactor design. Chem. Eng. Sci. 104, 125–146. 10.1016/j.ces.2013.08.039 DOI

Yang L., Liu Z. (2007). Study on light intensity in the process of photocatalytic degradation of indoor gaseous formaldehyde for saving energy. Energy Convers. Manag. 48 (3), 882–889. 10.1016/j.enconman.2006.08.023 DOI

Yu X., Zhang J., Zhao Z., Guo W., Qiu J., Mou X., et al. (2015). NiO–TiO2 p–n heterostructured nanocables bridged by zero-bandgap rGO for highly efficient photocatalytic water splitting. Nano Energy 16, 207–217. 10.1016/j.nanoen.2015.06.028 DOI

Zhan X., Yan C., Zhang Y., Rinke G., Rabsch G., Klumpp M., et al. (2020). Investigation of the reaction kinetics of photocatalytic pollutant degradation under defined conditions with inkjet-printed TiO 2 films–from batch to a novel continuous-flow microreactor. React. Chem. Eng. 5 (9), 1658–1670. 10.1039/d0re00238k DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...