• This record comes from PubMed

Compost, plants and endophytes versus metal contamination: choice of a restoration strategy steers the microbiome in polymetallic mine waste

. 2023 Oct 07 ; 18 (1) : 74. [epub] 20231007

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic

Document type Journal Article

Grant support
22-00132S Grantová Agentura České Republiky
22-00132S Grantová Agentura České Republiky
22-00132S Grantová Agentura České Republiky
GXE02 U.S. Geological Survey
GXE02 U.S. Geological Survey
GXE02 U.S. Geological Survey

Links

PubMed 37805609
PubMed Central PMC10559404
DOI 10.1186/s40793-023-00528-3
PII: 10.1186/s40793-023-00528-3
Knihovny.cz E-resources

Finding solutions for the remediation and restoration of abandoned mining areas is of great environmental importance as they pose a risk to ecosystem health. In this study, our aim was to determine how remediation strategies with (i) compost amendment, (ii) planting a metal-tolerant grass Bouteloua curtipendula, and (iii) its inoculation with beneficial endophytes influenced the microbiome of metal-contaminated tailings originating from the abandoned Blue Nose Mine, SE Arizona, near Patagonia (USA). We conducted an indoor microcosm experiment followed by a metataxonomic analysis of the mine tailings, compost, and root samples. Our results showed that each remediation strategy promoted a distinct pattern of microbial community structure in the mine tailings, which correlated with changes in their chemical properties. The combination of compost amendment and endophyte inoculation led to the highest prokaryotic diversity and total nitrogen and organic carbon, but also induced shifts in microbial community structure that significantly correlated with an enhanced potential for mobilization of Cu and Sb. Our findings show that soil health metrics (total nitrogen, organic carbon and pH) improved, and microbial community changed, due to organic matter input and endophyte inoculation, which enhanced metal leaching from the mine waste and potentially increased environmental risks posed by Cu and Sb. We further emphasize that because the initial choice of remediation strategy can significantly impact trace element mobility via modulation of both soil chemistry and microbial communities, site specific, bench-scale preliminary tests, as reported here, can help determine the potential risk of a chosen strategy.

See more in PubMed

Ernst WH. Phytoextraction of mine wastes–options and impossibilities. Geochemistry. 2005;65:29–42.

Wang L, Ji B, Hu Y, Liu R, Sun W. A review on in situ phytoremediation of mine tailings. Chemosphere. 2017;184:594–600. PubMed

Diaby N, Dold B, Pfeifer HR, Holliger C, Johnson DB, Hallberg KB. Microbial communities in a porphyry copper tailings impoundment and their impact on the geochemical dynamics of the mine waste. Environ Microbiol. 2007;9:298–307. PubMed

Gagnon V, Rodrigue-Morin M, Tremblay J, Wasserscheid J, Champagne J, Bellenger J-P, Greer CW, Roy S. Life in mine tailings: microbial population structure across the bulk soil, rhizosphere, and roots of boreal species colonizing mine tailings in northwestern Québec. Ann Microbiol. 2020;70:41.

Liu J, Hua ZS, Chen LX, Kuang JL, Li SJ, Shu WS, Huang LN. Correlating microbial diversity patterns with geochemistry in an extreme and heterogeneous environment of mine tailings. Appl Environ Microbiol. 2014;80:3677–3686. PubMed PMC

Mendez MO, Neilson JW, Maier RM. Characterization of a bacterial community in an abandoned semiarid lead-zinc mine tailing site. Appl Environ Microbiol. 2008;74:3899–3907. PubMed PMC

Baker BJ, Banfield JF. Microbial communities in acid mine drainage. FEMS Microbiol Ecol. 2003;44:139–152. PubMed

Kuang J, Huang L, He Z, Chen L, Hua Z, Jia P, Li S, Liu J, Li J, Zhou J, Shu W. Predicting taxonomic and functional structure of microbial communities in acid mine drainage. ISME J. 2016;10:1527–1539. PubMed PMC

Aguinaga OE, McMahon A, White KN, Dean AP, Pittman JK. Microbial community shifts in response to acid mine drainage pollution within a natural wetland ecosystem. Front Microbiol. 2018;9:1445–1445. PubMed PMC

Sun W, Ji B, Khoso SA, Tang H, Liu R, Wang L, Hu Y. An extensive review on restoration technologies for mining tailings. Environ Sci Pollut Res Int. 2018;25:33911–33925. PubMed

Li Y, Jia Z, Sun Q, Cheng J, Yang Y, Zhan J, Wang D. Plant-mediated changes in soil N-cycling genes during revegetation of copper mine tailings. Front Environ Sci. 2017;5:79.

Zhang-Jum S, Yu-Peng W, Qing-Ye S, Wei W. Effect of vegetation succession on organic carbon, carbon of humus acids and dissolved organic carbon in soils of copper mine tailings sites. Pedosphere. 2014;24:271–279.

Gil-Loaiza J, White SA, Root RA, Solís-Dominguez FA, Hammond CM, Chorover J, Maier RM. Phytostabilization of mine tailings using compost-assisted direct planting: translating greenhouse results to the field. Sci Total Environ. 2016;565:451–461. PubMed PMC

Mendez MO, Glenn EP, Maier RM. Phytostabilization potential of quailbush for mine tailings. J Environ Qual. 2007;36:245–253. PubMed

Midhat L, Ouazzani N, Hejjaj A, Bayo J, Mandi L. Phytostabilization of polymetallic contaminated soil using Medicago sativa L. in combination with powdered marble: Sustainable rehabilitation. Int J Phytoremed. 2018;20:764–772. PubMed

Tapia Y, Bustos P, Salazar O, Casanova M, Castillo B, Acuña E, Masaguer A. Phytostabilization of Cu in mine tailings using native plant Carpobrotus aequilaterus and the addition of potassium humates. J Geochem Explor. 2017;183:102–113.

Wu Q, Wang S, Thangavel P, Li Q, Zheng H, Bai J, Qiu R. Phytostabilization potential of Jatropha curcas L. in polymetallic acid mine tailings. Int J Phytoremediation. 2011;13:788–804. PubMed

Chodak M, Niklińska M. Effect of texture and tree species on microbial properties of mine soils. Appl Soil Ecol. 2010;46:268–275.

Li Y, Jia Z, Sun Q, Zhan J, Yang Y, Wang D. Ecological restoration alters microbial communities in mine tailings profiles. Sci Rep. 2016;6:25193–25193. PubMed PMC

Valentín-Vargas A, Root RA, Neilson JW, Chorover J, Maier RM. Environmental factors influencing the structural dynamics of soil microbial communities during assisted phytostabilization of acid-generating mine tailings: a mesocosm experiment. Sci Total Environ. 2014;500:314–324. PubMed PMC

Yu-Qing C, Guan-Ju R, Shu-Qing A, Qing-Ye S, Chang-Hong L, Shuang J-L. Changes of bacterial community structure in copper mine tailings after colonization of reed (Phragmites communis) Pedosphere. 2008;18:731–740.

Anawar HM, Canha N, Santa-Regina I, Freitas M. Adaptation, tolerance, and evolution of plant species in a pyrite mine in response to contamination level and properties of mine tailings: sustainable rehabilitation. J Soils Sedim. 2013;13:730–741.

Smirnova E, Bussiere B, Tremblay F, Bergeron Y. Vegetation succession and impacts of biointrusion on covers used to limit acid mine drainage. J Environ Qual. 2011;40:133–143. PubMed

Barbafieri M, Dadea C, Tassi E, Bretzel F, Fanfani L. Uptake of heavy metals by native species growing in a mining area in Sardinia, Italy: discovering native flora for phytoremediation. Int J Phytoremed. 2011;13:985–997. PubMed

Conesa HM, Faz A, Arnaldos R. Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Union mining district (SE Spain) Sci Total Environ. 2006;366:1–11. PubMed

Santos AE, Cruz-Ortega R, Meza-Figueroa D, Romero FM, Sanchez-Escalante JJ, Maier RM, Neilson JW, Alcaraz LD, Molina Freaner FE. Plants from the abandoned Nacozari mine tailings: evaluation of their phytostabilization potential. PeerJ. 2017;5:e3280–e3280. PubMed PMC

Yun-Guo L, Zhang H-Z, Guang-Ming Z, Huang B-R, Xin L. Heavy metal accumulation in plants on Mn mine tailings. Pedosphere. 2006;16:131–136.

Elektorowicz M, Keropian Z. Lithium, vanadium and chromium uptake ability of brassica juncea from lithium mine tailings. Int J Phytoremediation. 2015;17:521–528. PubMed

Ma Y, Oliveira RS, Nai F, Rajkumar M, Luo Y, Rocha I, Freitas H. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J Environ Manag. 2015;156:62–69. PubMed

Wood JL, Tang C, Franks AE. Microbial associated plant growth and heavy metal accumulation to improve phytoextraction of contaminated soils. Soil Biol Biochem. 2016;103:131–137.

Ciarkowska K, Hanus-Fajerska E, Gambus F, Muszynska E, Czech T. Phytostabilization of Zn-Pb ore flotation tailings with Dianthus carthusianorum and Biscutella laevigata after amending with mineral fertilizers or sewage sludge. J Environ Manag. 2017;189:75–83. PubMed

Fellet G, Marchiol L, Delle Vedove G, Peressotti A. Application of biochar on mine tailings: effects and perspectives for land reclamation. Chemosphere. 2011;83:1262–1267. PubMed

Li X, Zhang X, Wang X, Cui Z. Phytoremediation of multi-metal contaminated mine tailings with Solanum nigrum L. and biochar/attapulgite amendments. Ecotoxicol Environ Saf. 2019;180:517–525. PubMed

Mendez MO, Maier RM. Phytostabilization of mine tailings in arid and semiarid environments–an emerging remediation technology. Environ Health Perspect. 2008;116:278–283. PubMed PMC

Schippers A, Jozsa P-G, Sand W, Kovacs ZM, Jelea M. Microbiological pyrite oxidation in a mine tailings heap and its relevance to the death of vegetation. Geomicrobiol J. 2000;17:151–162.

Schroeder K, Rufaut C, Smith C, Mains D, Craw D. Rapid plant-cover establishment on gold mine tailings in southern New Zealand: glasshouse screening trials. Int J Phytoremediation. 2005;7:307–322. PubMed

Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev. 2015;79:293–320. PubMed PMC

Papik J, Folkmanova M, Polivkova-Majorova M, Suman J, Uhlik O. The invisible life inside plants: deciphering the riddles of endophytic bacterial diversity. Biotechnol Adv. 2020;44:107614. PubMed

Jan R, Khan MA, Asaf S, Lubna, Lee I-J, Kim KM. Metal resistant endophytic bacteria reduces cadmium, nickel toxicity, and enhances expression of metal stress related genes with improved growth of Oryza Sativa, via regulating its antioxidant machinery and endogenous hormones. Plants (Basel) 2019;8:363. PubMed PMC

Ma Y, Rajkumar M, Zhang C, Freitas H. Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manag. 2016;174:14–25. PubMed

Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem. 2013;60:182–194. PubMed PMC

Hottenstein JD, Neilson JW, Gil-Loaiza J, Root RA, White SA, Chorover J, Maier RM. Soil microbiome dynamics during pyritic mine tailing phytostabilization: understanding microbial bioindicators of soil acidification. Front Microbiol. 2019;10:1211. PubMed PMC

Iverson SL, Maier RM. Effects of compost on colonization of roots of plants grown in metalliferous mine tailings, as examined by fluorescence in situ hybridization. Appl Environ Microbiol. 2009;75:842–847. PubMed PMC

Grandlic CJ, Mendez MO, Chorover J, Machado B, Maier RM. Plant growth-promoting bacteria for phytostabilization of mine tailings. Environ Sci Technol. 2008;42:2079–2084. PubMed

Arizona Department of Environmental Quality (2009) Title 18, Chapter 7

Arizona Department of Environmental Quality (2019) Title 18, Chapter 11

Creamer CA, Leewis M-C, Governali FC, Freeman JL, Gray F, Wright EG, Foster AL. Microbial endophytes and compost improve plant growth in two contrasting types of hard rock mining waste. Int J Phytoremed. 2022;25:1–8. PubMed

Leewis MC. Survey of metals in soils and associated endemic plants across the historic Harshaw Mining District, Southern Arizona: U.S. Geological Survey data release. 2022. 10.5066/P9F9HQLE.

Rennie R. A single medium for the isolation of acetylene-reducing (dinitrogen-fixing) bacteria from soils. Can J Microbiol. 1981;27:8–14. PubMed

Creamer CA, Leewis M-C, Kracmarova-Farren M, Papik J, Kacur S, Freeman J, Uhlik O, Foster AL. A combined compost and endophyte addition improves phytostabilization by a native perennial grass in metal contaminated mine tailings. Preprint at Research Square. 2023 doi: 10.21203/rs.3.rs-2838519/v1. DOI

Barra PJ, Inostroza NG, Acuña JJ, Mora ML, Crowley DE, Jorquera MA. Formulation of bacterial consortia from avocado (Persea americana Mill.) and their effect on growth, biomass and superoxide dismutase activity of wheat seedlings under salt stress. Appl Soil Ecol. 2016;102:80–91.

Creamer CA, Leewis M-C, Kracmarova-Farren M, Papik J, Kacur S, Freeman J, Uhlik O, Foster AL. Phytostabilization in Polymetallic Tailings using Compost and Endophyte Additions: U.S. Geological Survey data release; 2023. 10.5066/P9M2JW70.

Harris D, Horwáth WR, Van Kessel C. Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Sci Soc Am J. 2001;65:1853–1856.

Fierer N, Jackson JA, Vilgalys R, Jackson RB. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol. 2005;71:4117–4120. PubMed PMC

White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 1990; 18:315-322.

Smrhova T, Jani K, Pajer P, Kapinusova G, Vylita T, Suman J, Strejcek M, Uhlik O. Prokaryotes of renowned Karlovy Vary (Carlsbad) thermal springs: phylogenetic and cultivation analysis. Environ Microbiome. 2022;17:1–17. PubMed PMC

Taylor DL, Walters WA, Lennon NJ, Bochicchio J, Krohn A, Caporaso JG, Pennanen T. Accurate estimation of fungal diversity and abundance through improved lineage-specific primers optimized for illumina amplicon sequencing. Appl Environ Microbiol. 2016;82:7217–7226. PubMed PMC

Lopez-Echartea E, Strejcek M, Mateju V, Vosahlova S, Kyclt R, Demnerova K, Uhlik O. Bioremediation of chlorophenol-contaminated sawmill soil using pilot-scale bioreactors under consecutive anaerobic-aerobic conditions. Chemosphere. 2019;227:670–680. PubMed

Fraraccio S, Strejcek M, Dolinova I, Macek T, Uhlik O. Secondary compound hypothesis revisited: Selected plant secondary metabolites promote bacterial degradation of cis-1,2-dichloroethylene (cDCE) Sci Rep. 2017;7:8406. PubMed PMC

Lundberg DS, Yourstone S, Mieczkowski P, Jones CD, Dangl JL. Practical innovations for high-throughput amplicon sequencing. Nat Methods. 2013;10:999–1002. PubMed

Lopez-Echartea E, Strejcek M, Mukherjee S, Uhlik O, Yrjälä K. Bacterial succession in oil-contaminated soil under phytoremediation with poplars. Chemosphere. 2020;243:125242. PubMed

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–583. PubMed PMC

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2021. https://www.R-project.org/.

Callahan B. 2018. Silva taxonomic training data formatted for DADA2 (Silva version 132). Zenodo.

Nilsson RH, Larsson K-H, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K, Glöckner FO, Tedersoo L. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019;47:D259–D264. PubMed PMC

McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217. PubMed PMC

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara R, Simpson G, Solymos P. vegan: Community Ecology Package. R package version. 2019;2(5–6):2019.

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21. PubMed PMC

Wickham H. ggplot2. WIREs Comput Stat. 2011;3:180–185.

Callahan BJ, Sankaran K, Fukuyama JA, McMurdie PJ, Holmes SP. Bioconductor workflow for microbiome data analysis: from raw reads to community analyses. F1000Research. 2016;5:1492. PubMed PMC

Legendre P, Gallagher ED. Ecologically meaningful transformations for ordination of species data. Oecologia. 2001;129:271–280. PubMed

Anderson MJ. Permutational multivariate analysis of variance (PERMANOVA). Wiley statsref: statistics reference online 2014; 1–15.

Creamer CA, Leewis M-C, Wright E, Foster AL. Grass Growth in Mining Wastes with Compost and Endophyte Additions: U.S. Geological Survey data release; 2022. 10.5066/P99OYEXQ.

Ai Y-J, Li F-P, Gu H-H, Chi X-J, Yuan X-T, Han D-Y. Combined effects of green manure returning and addition of sewage sludge compost on plant growth and microorganism communities in gold tailings. Environ Sci Pollut Res. 2020;27:31686–31698. PubMed

Asemaninejad A, Langley S, Mackinnon T, Spiers G, Beckett P, Mykytczuk N, Basiliko N. Blended municipal compost and biosolids materials for mine reclamation: Long-term field studies to explore metal mobility, soil fertility and microbial communities. Sci Total Environ. 2020;760:143393. PubMed

Farrell M, Griffith GW, Hobbs PJ, Perkins WT, Jones DL. Microbial diversity and activity are increased by compost amendment of metal-contaminated soil. FEMS Microbiol Ecol. 2010;71:94–105. PubMed

Heiskanen J, Hagner M, Ruhanen H, Mäkitalo K. Addition of recyclable biochar, compost and fibre clay to the growth medium layer for the cover system of mine tailings: a bioassay in a greenhouse. Environ Earth Sci. 2020;79:422.

Maron PA, Sarr A, Kaisermann A, Lévêque J, Mathieu O, Guigue J, Karimi B, Bernard L, Dequiedt S, Terrat S, Chabbi A, Ranjard L. High microbial diversity promotes soil ecosystem functioning. Appl Environ Microbiol. 2018;84:e02738-17. PubMed PMC

Chen Y-Q, Ren G-J, An S-Q, Sun Q-Y, Liu C-H, Shuang J-L. Changes of Bacterial Community Structure in Copper Mine Tailings After Colonization of Reed (Phragmites communis)*1 *1Project supported by the National Natural Science Foundation of China (Nos. 39830310 and 30070134) and the National Key Basic Research Support Foundation (NKBRSF) of China (No. 2002CB111504) Pedosphere. 2008;18:731–740.

Li X, Huang L, Bond PL, Lu Y, Vink S. Bacterial diversity in response to direct revegetation in the Pb–Zn–Cu tailings under subtropical and semi-arid conditions. Ecol Eng. 2014;68:233–240.

Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH. Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol. 2013;11:789–799. PubMed

Ma Y, Rajkumar M, Luo Y, Freitas H. Inoculation of endophytic bacteria on host and non-host plants–effects on plant growth and Ni uptake. J Hazard Mater. 2011;195:230–237. PubMed

Syranidou E, Christofilopoulos S, Gkavrou G, Thijs S, Weyens N, Vangronsveld J, Kalogerakis N. Exploitation of endophytic bacteria to enhance the phytoremediation potential of the wetland helophyte juncus acutus. Front Microbiol 2016;7. PubMed PMC

Syranidou E, Thijs S, Avramidou M, Weyens N, Venieri D, Pintelon I, Vangronsveld J, Kalogerakis N. Responses of the endophytic bacterial communities of Juncus acutus to pollution with metals, emerging organic pollutants and to bioaugmentation With Indigenous Strains. Front Plant Sci. 2018;9:1526. PubMed PMC

Chung AP, Coimbra C, Farias P, Francisco R, Branco R, Simão FV, Gomes E, Pereira A, Vila MC, Fiúza A. tailings microbial community profile and prediction of its functionality in basins of tungsten mine. Sci Rep. 2019;9:1–13. PubMed PMC

Sun W, Xiao E, Häggblom M, Krumins V, Dong Y, Sun X, Li F, Wang Q, Li B, Yan B. Bacterial survival strategies in an alkaline tailing site and the physiological mechanisms of dominant phylotypes as revealed by metagenomic analyses. Environ Sci Technol. 2018;52:13370–13380. PubMed

Manzoni S, Schimel JP, Porporato A. Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology. 2012;93:930–938. PubMed

Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010;4:1340–1351. PubMed

Filippidou S, Wunderlin T, Junier T, Jeanneret N, Dorador C, Molina V, Johnson DR, Junier P. A combination of extreme environmental conditions favor the prevalence of endospore-forming firmicutes. Front Microbiol. 2016;7:1707. PubMed PMC

Khan NH, Bondici VF, Medihala PG, Lawrence JR, Wolfaardt GM, Warner J, Korber DR. Bacterial diversity and composition of an alkaline uranium mine tailings-water interface. J Microbiol. 2013;51:558–569. PubMed

Ji H, Zhang Y, Bararunyeretse P, Li H. Characterization of microbial communities of soils from gold mine tailings and identification of mercury-resistant strain. Ecotoxicol Environ Saf. 2018;165:182–193. PubMed

See CR, Keller AB, Hobbie SE, Kennedy PG, Weber PK, Pett-Ridge J. Hyphae move matter and microbes to mineral microsites: Integrating the hyphosphere into conceptual models of soil organic matter stabilization. Glob Chang Biol. 2022;28:2527–2540. PubMed

Kuhl T, Chowdhury SP, Uhl J, Rothballer M. Genome-based characterization of plant-associated Rhodococcus qingshengii RL1 reveals stress tolerance and plant–microbe interaction traits. Front Microbiol. 2021;12:708605. PubMed PMC

Naqqash T, Imran A, Hameed S, Shahid M, Majeed A, Iqbal J, Hanif MK, Ejaz S, Malik KA. First report of diazotrophic Brevundimonas spp. as growth enhancer and root colonizer of potato. Sci Rep. 2020;10:12893. PubMed PMC

Nehra V, Saharan BS, Choudhary M. Evaluation of Brevibacillus brevis as a potential plant growth promoting rhizobacteria for cotton (Gossypium hirsutum) crop. Springerplus. 2016;5:1–10. PubMed PMC

Sellstedt A, Richau KH. Aspects of nitrogen-fixing Actinobacteria, in particular free-living and symbiotic Frankia. FEMS Microbiol Lett. 2013;342:179–186. PubMed

Shabanamol S, Divya K, George TK, Rishad K, Sreekumar T, Jisha M. Characterization and in planta nitrogen fixation of plant growth promoting endophytic diazotrophic Lysinibacillus sphaericus isolated from rice (Oryza sativa) Physiol Mol Plant Pathol. 2018;102:46–54.

Pande V, Pandey SC, Sati D, Bhatt P, Samant M. Microbial interventions in bioremediation of heavy metal contaminants in agroecosystem. Front Microbiol. 2022;13:824084–824084. PubMed PMC

Karami N, Clemente R, Moreno-Jiménez E, Lepp NW, Beesley L. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J Hazard Mater. 2011;191:41–48. PubMed

Oustriere N, Marchand L, Galland W, Gabbon L, Lottier N, Motelica M, Mench M. Influence of biochars, compost and iron grit, alone and in combination, on copper solubility and phytotoxicity in a Cu-contaminated soil from a wood preservation site. Sci Total Environ. 2016;566:816–825. PubMed

Hoffland E, Kuyper TW, Comans RN, Creamer RE. Eco-functionality of organic matter in soils. Plant Soil. 2020;455:1–22.

Wagg C, Hautier Y, Pellkofer S, Banerjee S, Schmid B, van der Heijden MG. Diversity and asynchrony in soil microbial communities stabilizes ecosystem functioning. Elife 2021;10. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...