Comprehensive Biodegradation Analysis of Chemically Modified Poly(3-hydroxybutyrate) Materials with Different Crystal Structures
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37819211
PubMed Central
PMC10646986
DOI
10.1021/acs.biomac.3c00623
Knihovny.cz E-zdroje
- MeSH
- hydroxybutyráty * chemie MeSH
- kyselina 3-hydroxymáselná MeSH
- polyestery * chemie MeSH
- půda MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hydroxybutyráty * MeSH
- kyselina 3-hydroxymáselná MeSH
- poly-beta-hydroxybutyrate MeSH Prohlížeč
- polyestery * MeSH
- polyhydroxybutyrate MeSH Prohlížeč
- půda MeSH
This work presents a comprehensive analysis of the biodegradation of polyhydroxybutyrate (PHB) and chemically modified PHB with different chemical and crystal structures in a soil environment. A polymer modification reaction was performed during preparation of the chemically modified PHB films, utilizing 2,5-dimethyl-2,5-di(tert-butylperoxy)-hexane as a free-radical initiator and maleic anhydride. Films of neat PHB and chemically modified PHB were prepared by extrusion and thermocompression. The biological agent employed was natural mixed microflora in the form of garden soil. The course and extent of biodegradation of the films was investigated by applying various techniques, as follows: a respirometry test to determine the production of carbon dioxide through microbial degradation; scanning electron microscopy (SEM); optical microscopy; fluorescence microscopy; differential scanning calorimetry (DSC); and X-ray diffraction (XRD). Next-generation sequencing was carried out to study the microbial community involved in biodegradation of the films. Findings from the respirometry test indicated that biodegradation of the extruded and chemically modified PHB followed a multistage (2-3) course, which varied according to the spatial distribution of amorphous and crystalline regions and their spherulitic morphology. SEM and polarized optical microscopy (POM) confirmed that the rate of biodegradation depended on the availability of the amorphous phase in the interspherulitic region and the width of the interlamellar region in the first stage, while dependence on the size of spherulites and thickness of spherulitic lamellae was evident in the second stage. X-ray diffraction revealed that orthorhombic α-form crystals with helical chain conformation degraded concurrently with β-form crystals with planar zigzag conformation. The nucleation of PHB crystals after 90 days of biodegradation was identified by DSC and POM, a phenomenon which impeded biodegradation. Fluorescence microscopy evidenced that the crystal structure of PHB affected the physiological behavior of soil microorganisms in contact with the surfaces of the films.
Zobrazit více v PubMed
Emadian S. M.; Onay T. T.; Demirel B. Biodegradation of bioplastics in natural environments. Waste Manage. 2017, 59, 526–536. 10.1016/j.wasman.2016.10.006. PubMed DOI
Nishida H.; Tokiwa Y. Effects of higher-order structure of poly (3-hydroxybutyrate) on its biodegradation. II. Effects of crystal structure on microbial degradation. J. Environ. Polym. Degrad. 1993, 1 (1), 65–80. 10.1007/BF01457654. DOI
Kliem S.; Kreutzbruck M.; Bonten C. Review on the biological degradation of polymers in various environments. Materials 2020, 13 (20), 4586.10.3390/ma13204586. PubMed DOI PMC
Manfra L.; Marengo V.; Libralato G.; Costantini M.; De Falco F.; Cocca M. Biodegradable polymers: A real opportunity to solve marine plastic pollution?. J. Hazard. Mater. 2021, 416, 12576310.1016/j.jhazmat.2021.125763. PubMed DOI
Bahl S.; Dolma J.; Jyot Singh J.; Sehgal S. Biodegradation of plastics: A state of the art review. Mater. Today: Proc. 2021, 39, 31–34. 10.1016/j.matpr.2020.06.096. DOI
Kumagai Y.; Kanesawa Y.; Doi Y. Enzymatic degradation of microbial poly (3-hydroxybutyrate) films. Makromol. Chem. 1992, 193 (1), 53–57. 10.1002/macp.1992.021930105. DOI
Tomasi G.; Scandola M.; Briese B. H.; Jendrossek D. Enzymatic degradation of bacterial poly (3-hydroxybutyrate) by a depolymerase from Pseudomonas lemoignei. Macromolecules 1996, 29 (2), 507–513. 10.1021/ma951067n. DOI
Abe H.; Doi Y.; Aoki H.; Akehata T. Solid-state structures and enzymatic degradabilities for melt-crystallized films of copolymers of (R)-3-hydroxybutyric acid with different hydroxyalkanoic acids. Macromolecules 1998, 31 (6), 1791–1797. 10.1021/ma971559v. DOI
Gan Z.; Kuwabara K.; Abe H.; Iwata T.; Doi Y. The role of polymorphic crystal structure and morphology in enzymatic degradation of melt-crystallized poly (butylene adipate) films. Polym. Degrad. Stab. 2005, 87 (1), 191–199. 10.1016/j.polymdegradstab.2004.08.007. DOI
Iwata T.; Aoyagi Y.; Tanaka T.; Fujita M.; Takeuchi A.; Suzuki Y.; Uesugi K. Microbeam X-ray diffraction and enzymatic degradation of poly [(R)-3-hydroxybutyrate] fibers with two kinds of molecular conformations. Macromolecules 2006, 39 (17), 5789–5795. 10.1021/ma060908v. DOI
Iwata T.; Doi Y.; Tanaka T.; Akehata T.; Shiromo M.; Teramachi S. Enzymatic degradation and adsorption on poly [(R)-3-hydroxybutyrate] single crystals with two types of extracellular PHB depolymerases from Comamonas acidovorans YM1609 and Alcaligenes faecalis T1. Macromolecules 1997, 30 (18), 5290–5296. 10.1021/ma970491g. DOI
Przybysz-Romatowska M.; Haponiuk J.; Formela K. Reactive extrusion of biodegradable aliphatic polyesters in the presence of free-radical-initiators: A review. Polym. Degrad. Stab. 2020, 182, 10938310.1016/j.polymdegradstab.2020.109383. DOI
Chen C.; Peng S.; Fei B.; Zhuang Y.; Dong L.; Feng Z.; Chen S.; Xia H. Synthesis and characterization of maleated poly (3-hydroxybutyrate). J. Appl. Polym. Sci. 2003, 88 (3), 659–668. 10.1002/app.11771. DOI
Wei L.; McDonald A. G. Peroxide induced cross-linking by reactive melt processing of two biopolyesters: Poly(3-hydroxybutyrate) and poly(l-lactic acid) to improve their melting processability. J. Appl. Polym. Sci. 2015, 132 (13), 41724.10.1002/app.41724. DOI
Dong W.; Ma P.; Wang S.; Chen M.; Cai X.; Zhang Y. Effect of partial crosslinking on morphology and properties of the poly (β-hydroxybutyrate)/poly (d, l-lactic acid) blends. Polym. Degrad. Stab. 2013, 98 (9), 1549–1555. 10.1016/j.polymdegradstab.2013.06.033. DOI
Šerá J.; Serbruyns L.; De Wilde B.; Koutný M. Accelerated biodegradation testing of slowly degradable polyesters in soil. Polym. Degrad. Stab. 2020, 171, 10903110.1016/j.polymdegradstab.2019.109031. DOI
Plastics – Determination of the ultimate aerobic biodegradability of plastic materials in soil by measuring the oxygen demand in a respirometer or the amount of carbon dioxide evolved. ISO 17556, International Organization for Standardization, 2012.
Julinova M.; Slavik R.; Kalendova A.; Smida P.; Kratina J. Biodeterioration of plasticized PVC/montmorillonite nanocomposites in aerobic soil environment. Iran. Polym. J. 2014, 23 (7), 547–557. 10.1007/s13726-014-0249-4. DOI
Plastic – Determination of tensile properties. ISO 527-1,3, International Organization for Standardization, 2020.
Quispe M. M.; Lopez O. V.; Boina D. A.; Stumbé J. F.; Villar M. A. Glycerol-based additives of poly (3-hydroxybutyrate) films. Polym. Test. 2021, 93, 10700510.1016/j.polymertesting.2020.107005. DOI
Wei L.; McDonald A. G.; Stark N. M. Grafting of bacterial polyhydroxybutyrate (PHB) onto cellulose via in situ reactive extrusion with dicumyl peroxide. Biomacromolecules 2015, 16 (3), 1040–1049. 10.1021/acs.biomac.5b00049. PubMed DOI
Illumina. 16S Metagenomic sequencing library preparation: Preparing 16S ribosomal RNA gene amplicons for the illumina MiSeq system; Illumina, 2013.
Callahan B. J.; McMurdie P. J.; Rosen M. J.; Han A. W.; Johnson A. J. A.; Holmes S. P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016, 13 (7), 581–583. 10.1038/nmeth.3869. PubMed DOI PMC
McMurdie P. J.; Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013, 8 (4), e6121710.1371/journal.pone.0061217. PubMed DOI PMC
Gu Z.; Eils R.; Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016, 32 (18), 2847–2849. 10.1093/bioinformatics/btw313. PubMed DOI
Quast C.; Pruesse E.; Yilmaz P.; Gerken J.; Schweer T.; Yarza P.; Peplies J.; Glöckner F. O. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012, 41 (D1), D590–D596. 10.1093/nar/gks1219. PubMed DOI PMC
Ma P.; Cai X.; Lou X.; Dong W.; Chen M.; Lemstra P. J. Styrene-assisted melt free-radical grafting of maleic anhydride onto poly (β-hydroxybutyrate). Polym. Degrad. Stab. 2014, 100, 93–100. 10.1016/j.polymdegradstab.2013.12.005. DOI
Xu J.; Guo B. H.; Yang R.; Wu Q.; Chen G. Q.; Zhang Z. M. In situ FTIR study on melting and crystallization of polyhydroxyalkanoates. Polymer 2002, 43 (25), 6893–6899. 10.1016/S0032-3861(02)00615-8. DOI
Hong S. G.; Lin Y. C.; Lin C. H. Improvement of the thermal stability of polyhydroxybutyrates by grafting with maleic anhydride by different methods: differential scanning calorimetry, thermogravimetric analysis and gel permeation chromatography. J. Appl. Polym. Sci. 2008, 110 (5), 2718–2726. 10.1002/app.28782. DOI
Lugito G.; Woo E. M.; Chuang W. T. Interior lamellar assembly and optical birefringence in poly (trimethylene terephthalate) spherulites: Mechanisms from past to present. Crystals 2017, 7 (2), 56.10.3390/cryst7020056. DOI
Chuang W. T.; Hong P. D.; Chuah H. H. Effects of crystallization behavior on morphological change in poly (trimethylene terephthalate) spherulites. Polymer 2004, 45 (7), 2413–2425. 10.1016/j.polymer.2004.01.048. DOI
Chen H. B.; Chen L.; Zhang Y.; Zhang J. J.; Wang Y. Z. Morphology and interference color in spherulite of poly (trimethylene terephthalate) copolyester with bulky linking pendent group. Phys. Chem. Chem. Phys. 2011, 13 (23), 11067–11075. 10.1039/c0cp02176h. PubMed DOI
Yun J. H.; Kuboyama K.; Chiba T.; Ougizawa T. Crystallization temperature dependence of interference color and morphology in poly (trimethylene terephthalate) spherulite. Polymer 2006, 47 (13), 4831–4838. 10.1016/j.polymer.2006.04.031. DOI
Yun J. H.; Kuboyama K.; Ougizawa T. High birefringence of poly (trimethylene terephthalate) spherulite. Polymer 2006, 47 (5), 1715–1721. 10.1016/j.polymer.2005.12.067. DOI
Woo E. M.; Lugito G. Origins of periodic bands in polymer spherulites. Eur. Polym. J. 2015, 71, 27–60. 10.1016/j.eurpolymj.2015.07.045. DOI
Hosier I. L.; Bassett D. C. A study of the morphologies and growth kinetics of three monodisperse n-alkanes: C122H246. C162H326 and C246H494. Polymer 2000, 41 (25), 8801–8812. 10.1016/S0032-3861(00)00223-8. DOI
Najafi N.; Heuzey M. C.; Carreau P. J. Crystallization behavior and morphology of polylactide and PLA/clay nanocomposites in the presence of chain extenders. Polym. Eng. Sci. 2013, 53 (5), 1053–1064. 10.1002/pen.23355. DOI
Iglesias-Montes M. L.; Soccio M.; Luzi F.; Puglia D.; Gazzano M.; Lotti N.; Manfredi L. B.; Cyras V. P. Evaluation of the factors affecting the disintegration under a composting process of poly (lactic acid)/poly (3-hydroxybutyrate)(PLA/PHB) blends. Polymers 2021, 13 (18), 3171.10.3390/polym13183171. PubMed DOI PMC
Tarazona N. A.; Machatschek R.; Lendlein A. Unraveling the interplay between abiotic hydrolytic degradation and crystallization of bacterial polyesters comprising short and medium side-chain-length polyhydroxyalkanoates. Biomacromolecules 2020, 21 (2), 761–771. 10.1021/acs.biomac.9b01458. PubMed DOI
Bonartsev A. P.; Boskhomodgiev A. P.; Iordanskii A. L.; Bonartseva G. A.; Rebrov A. V.; Makhina T. K.; Myshkina V. L.; Yakovlev S. A.; Filatova E. A.; Ivanov E. A.; Bagrov D. V.; Zaikov G. E. Hydrolytic degradation of poly(3-hydroxybutyrate), polylactide and their derivatives: Kinetics, crystallinity, and surface morphology. Mol. Cryst. Liq. Cryst. 2012, 556 (1), 288–300. 10.1080/15421406.2012.635982. DOI
Pei R.; Tarek-Bahgat N.; Van Loosdrecht M. C. M.; Kleerebezem R.; Werker A. G. Influence of environmental conditions on accumulated polyhydroxybutyrate in municipal activated sludge. Water Res. 2023, 232, 11965310.1016/j.watres.2023.119653. PubMed DOI
Prapruddivongs C.; Apichartsitporn M.; Wongpreedee T. Effect of silica resources on the biodegradation behavior of poly (lactic acid) and chemical crosslinked poly (lactic acid) composites. Polym. Test. 2018, 71, 87–94. 10.1016/j.polymertesting.2018.08.026. DOI
Abou-Zeid D. M.; Müller R. J.; Deckwer W. D. Biodegradation of aliphatic homopolyesters and aliphatic– aromatic copolyesters by anaerobic microorganisms. Biomacromolecules 2004, 5 (5), 1687–1697. 10.1021/bm0499334. PubMed DOI
García-Depraect O.; Lebrero R.; Rodriguez-Vega S.; Bordel S.; Santos-Beneit F.; Martínez-Mendoza L. J.; Aragão Borner R.; Börner T.; Muñoz R. Biodegradation of bioplastics under aerobic and anaerobic aqueous conditions: Kinetics, carbon fate and particle size effect. Bioresour. Technol. 2022, 344, 12626510.1016/j.biortech.2021.126265. PubMed DOI
Gangurde N. S.; Patil Y. P.; Jain R.; Sayyed R. Z. Poly-β-hydroxybutyrate biodegradation by mixed culture population vis-à-vis single culture population under varying environmental conditions: a new approach. Indian J. Exp. Biol. 2017, 55, 311–320.
Woolnough C. A.; Yee L. H.; Charlton T.; Foster L. J. R. Environmental degradation and biofouling of ‘green’plastics including short and medium chain length polyhydroxyalkanoates. Polym. Int. 2010, 59 (5), 658–667. 10.1002/pi.2746. DOI
Mergaert J.; Anderson C.; Wouters A.; Swings J.; Kersters K. Biodegradation of polyhydroxyalkanoates. FEMS Microbiol. Lett. 1992, 103, 317–321. 10.1111/j.1574-6968.1992.tb05853.x. PubMed DOI
Boyandin A. N.; Prudnikova S. V.; Filipenko M. L.; Khrapov E. A.; Vasil’ev A. D.; Volova T. G. Biodegradation of polyhydroxyalkanoates by soil microbial communities of different structures and detection of PHA degrading microorganisms. Appl. Biochem. Microbiol. 2012, 48, 28–36. 10.1134/S0003683812010024. PubMed DOI
Avella M.; Rota G. L.; Martuscelli E.; Raimo M.; Sadocco P.; Elegir G.; Riva R. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and wheat straw fibre composites: thermal, mechanical properties and biodegradation behaviour. J. Mater. Sci. 2000, 35, 829–836. 10.1023/A:1004773603516. DOI
Mousavioun P.; George G. A.; Doherty W. O. Environmental degradation of lignin/poly (hydroxybutyrate) blends. Polym. Degrad. Stab. 2012, 97 (7), 1114–1122. 10.1016/j.polymdegradstab.2012.04.004. DOI
Cho J. Y.; Park S. L.; Lee H. J.; Kim S. H.; Suh M. J.; Ham S.; Bhatia S. K.; Gurav R.; Park S. H.; Park K.; Yoo D.; Yang Y. H. Polyhydroxyalkanoates (PHAs) degradation by the newly isolated marine Bacillus sp. JY14. Chemosphere 2021, 283, 13117210.1016/j.chemosphere.2021.131172. PubMed DOI
Park S. L.; Cho J. Y.; Kim S. H.; Lee H.; Kim S. H.; Suh M. J.; Ham S.; Bhatia S. K.; Gurav R.; Park S.; Park K.; Kim Y.; Yang Y. Novel polyhydroxybutyrate-degrading activity of the Microbulbifer Genus as confirmed by Microbulbifer sp. SOL03 from the marine environment. J. Microbiol. Biotechnol. 2022, 32, 27–36. 10.4014/jmb.2109.09005. PubMed DOI PMC
Grassie N.; Murray E. J.; Holmes P. A. The thermal degradation of poly (-(D)-β-hydroxybutyric acid): part 2-changes in molecular weight. Polym. Degrad. Stab. 1984, 6 (2), 95–103. 10.1016/0141-3910(84)90075-2. DOI
Pospisilova A.; Melcova V.; Figalla S.; Mencik P.; Prikryl R. Techniques for increasing the thermal stability of poly [(R)-3-hydroxybutyrate] recovered by digestion methods. Polym. Degrad. Stab. 2021, 193, 10972710.1016/j.polymdegradstab.2021.109727. DOI
Reddy M. M.; Deighton M.; Gupta R. K.; Bhattacharya S. N.; Parthasarathy R. Biodegradation of oxo-biodegradable polyethylene. J. Appl. Polym. Sci. 2009, 111 (3), 1426–1432. 10.1002/app.29073. DOI
Matsumura S.; Kurita H.; Shimokobe H. Anaerobic biodegradability of polyvinyl alcohol. Biotechnol. Lett. 1993, 15, 749–754. 10.1007/BF01080150. DOI
Morse M. C.; Liao Q.; Criddle C. S.; Frank C. W. Anaerobic biodegradation of the microbial copolymer poly (3-hydroxybutyrate-co-3-hydroxyhexanoate): Effects of comonomer content, processing history, and semi-crystalline morphology. Polymer 2011, 52 (2), 547–556. 10.1016/j.polymer.2010.11.024. DOI
Rudnik E.; Briassoulis D. Comparative biodegradation in soil behaviour of two biodegradable polymers based on renewable resources. J. Polym. Environ. 2011, 19 (1), 18–39. 10.1007/s10924-010-0243-7. DOI
Tsuji H.; Suzuyoshi K. Environmental degradation of biodegradable polyesters 1. Poly (ε-caprolactone), poly [(R)-3-hydroxybutyrate], and poly (L-lactide) films in controlled static seawater. Polym. Degrad. Stab. 2002, 75 (2), 347–355. 10.1016/S0141-3910(01)00240-3. DOI
Gallet G.; Lempiäinen R.; Karlsson S. Characterisation by solid phase microextraction–gas chromatography–mass spectrometry of matrix changes of poly (l-lactide) exposed to outdoor soil environment. Polym. Degrad. Stab. 2000, 71 (1), 147–151. 10.1016/S0141-3910(00)00165-8. DOI
Gazzano M.; Tomasi G.; Scandola M. X-ray investigation on melt-crystallized bacterial poly (3-hydroxybutyrate). Macromol. Chem. Phys. 1997, 198 (1), 71–80. 10.1002/macp.1997.021980106. DOI
Zhang J.; Kasuya K.; Hikima T.; Takata M.; Takemura A.; Iwata T. Mechanical properties, structure analysis and enzymatic degradation of uniaxially cold-drawn films of poly [(R)-3-hydroxybutyrate-co-4-hydroxybutyrate]. Polym. Degrad. Stab. 2011, 96 (12), 2130–2138. 10.1016/j.polymdegradstab.2011.09.011. DOI
Roohi; Zaheer M. R.; Kuddus M. PHB (poly-β-hydroxybutyrate) and its enzymatic degradation. Polym. Adv. Technol. 2018, 29 (1), 30–40. 10.1002/pat.4126. DOI
Trainer M. A.; Charles T. C. The role of PHB metabolism in the symbiosis of rhizobia with legumes. Appl. Microbiol. Biotechnol. 2006, 71 (4), 377–386. 10.1007/s00253-006-0354-1. PubMed DOI
Ratcliff W. C.; Kadam S. V.; Denison R. F. Poly-3-hydroxybutyrate (PHB) supports survival and reproduction in starving rhizobia. FEMS Microbiol. Ecol. 2008, 65 (3), 391–399. 10.1111/j.1574-6941.2008.00544.x. PubMed DOI
Catone M. V.; Ruiz J. A.; Castellanos M.; Segura D.; Espin G.; Lopez N. I. High polyhydroxybutyrate production in Pseudomonas extremaustralis is associated with differential expression of horizontally acquired and core genome polyhydroxyalkanoate synthase genes. PloS One. 2014, 9 (6), e9887310.1371/journal.pone.0098873. PubMed DOI PMC
Wu M.; Li G.; Huang H.; Chen S.; Luo Y.; Zhang W.; Li K.; Zhou J.; Ma T. The simultaneous production of sphingan Ss and poly (R-3-hydroxybutyrate) in Sphingomonas sanxanigenens NX02. Int. J. Biol. Macromol. 2016, 82, 361–368. 10.1016/j.ijbiomac.2015.09.071. PubMed DOI