Identification of the Production of Small Holes and Threads Using Progressive Technologies in Austenite Stainless Steel 1.4301
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37834676
PubMed Central
PMC10574282
DOI
10.3390/ma16196538
PII: ma16196538
Knihovny.cz E-zdroje
- Klíčová slova
- cutting, hole, laser, quality, shape accuracy, thread,
- Publikační typ
- časopisecké články MeSH
This article focuses on the technologies used by a manufacturing company to produce threads in chrome-nickel steel 1.4301 at specific sheet thicknesses. To enhance production quality, two specific technologies were chosen for hole formation, considering the requirements of the company. Both conventional drilling and nonconventional laser cutting methods were evaluated as potential techniques for hole production. Conventional thread-cutting technology and progressive forming technology were employed to create metric internal threads. The aim of integrating these diverse technologies is to identify the optimal solution for a specific sheet thickness in order to prevent the occurrence of defective threads that could not fulfil the intended purpose. The evaluation of the threads and holes relies on the examination of surface characteristics, such as the quality of the surface, as well as the lack of any signs of damage, cracks, or burrs. Furthermore, residual stresses in the surface layer were monitored because these stresses have the potential to cause cracking. Additionally, extensive monitoring was performed to guarantee that the form and size of the manufactured threads were correct to ensure smooth assembly and optimal functionality.
Faculty of Mechanical Engineering Lublin University of Technology 20 618 Lublin Poland
Faculty of Mechanical Engineering University of Zilina Univerzitná 8215 1 01026 Žilina Slovakia
Zobrazit více v PubMed
Val A.G.D., Veiga F., Penalva M., Arizmendi M. Oversizing Thread Diagnosis in Tapping Operation. Metals. 2021;11:537. doi: 10.3390/met11040537. DOI
Croccoloa D., de Agostinisa M., Finia S., Olmia G., Robustoa F., Vincenzib N. Steel screws on aluminium nuts: Different engagement ratio tapped threads compared to threaded inserts with a proper tolerance choice. Tribol. Int. 2019;138:297–306. doi: 10.1016/j.triboint.2019.06.001. DOI
Fromentin G., Poulachon G., Moisan A., Julien B., Giessler J. Precision and surface integrity of threads obtained by form tapping. CIRP Ann. Manuf. Technol. 2006;541:519–522. doi: 10.1016/S0007-8506(07)60159-0. DOI
Chakhari J., Daidié A., Chaib Z., Guillot J. Numerical model for two-bolted joints subjected to compressive loading. Finite Elem. Anal. Des. 2008;44:162–173. doi: 10.1016/j.finel.2007.11.010. DOI
Brandão G.L., Carmo Silva P.M., Freitas S.A., Pereira R.B.D., Lauro C.H., Brandão L.C. State of the art on internal thread manufacturing. Int. J. Adv. Manuf. Technol. 2020;110:3445–3465. doi: 10.1007/s00170-020-06107-x. DOI
Frydrýšek K., Šír M., Pleva L., Szeliga J., Stránský J., Čepica D., Kratochvíl J., Koutecký J., Madeja R., Dedková K.P., et al. Stochastic Strength Analyses of Screws for Femoral Neck Fractures. Appl. Sci. 2022;12:1015. doi: 10.3390/app12031015. DOI
Heiler R., Tischkau P. Hochleistungsgewindefertigung in Titanlegierungen. Forschungsprojekt Hochschulbasierte Weiterbildung für Betriebe an der HTW; Berlin, Germany: 2015.
Liu Y., Fan L., Wang W., Gao Y., He J. Failure Analysis of Damaged High-Strength Bolts under Seismic Action Based on Finite Element Method. Buildings. 2023;13:776. doi: 10.3390/buildings13030776. DOI
Monka P., Monkova K., Modrak V., Hric S., Pastucha P. Study of a tap failure at the internal threadsmachining. Eng. Fail. Anal. 2019;100:25–36. doi: 10.1016/j.engfailanal.2019.02.035. DOI
Suárez A., Arizmendi M. Thread Quality Control in High-Speed Tapping Cycles. Manuf. Mater. Process. 2020;4:9. doi: 10.3390/jmmp4010009. DOI
Heiler R. Cold thread Forming—The chipless alternative for high resistant internal threads. MATEC Web Conf. 2018;251:02046. doi: 10.1051/matecconf/201825102046. DOI
Anna C.A., Guillaume F., Gérard P. Analytical and Experimental Investigations on Thread Milling Forces in Titanium Alloy. Int. J. Mach. Tools Manuf. 2013;67:28–34.
Masmoudi N., Soussi H., Krichen A. Determination of an adequate geometry of the flanged hole to perform formed threads. Int. J. Adv. Manuf. Technol. 2017;92:547–560. doi: 10.1007/s00170-017-0145-0. DOI
de Oliveira J.A., Filho S.L.M.R., Brandao L.C. Investigation of the influence of coating and the tapered entry in the internal forming tapping process. Int. J. Adv. Manuf. Technol. 2019;101:1051–1063. doi: 10.1007/s00170-018-3011-9. DOI
Maciel D.T., Filho S.L.M.R., Lauro C.H., Brandão L.C. Characteristics of machined and formed external threads in titanium alloy. Int. J. Adv. Manuf. Technol. 2015;79:779–792. doi: 10.1007/s00170-015-6858-z. DOI
Fromentin G., Araujo A.C., Poulachon G., Paire Y. Modélisation géometrique du filetage à la fraise. Mécanique Ind. 2011;12:469–477. doi: 10.1051/meca/2011144. DOI
Dogra A.P.S., de Vor E.R., Kapoor S.G. Analysis of feed errors in tapping by contact stress model. J. Manuf. Sci. Eng. 2002;124:248–257. doi: 10.1115/1.1454107. DOI
De Freitas S.A., Vieira J.T., Filho S.L.M.R., Cardoso L. Experimental investigation of tapping in CFRP with analysis of torque-tension resistance. Int. J. Adv. Manuf. Technol. 2019;104:757–766. doi: 10.1007/s00170-019-03955-0. DOI
Lekkala R., Bajpai V., Singh R.K., Joshi S.S. Characterization and modeling of burr formation in micro-end milling. Precis. Eng. 2011;35:625–637. doi: 10.1016/j.precisioneng.2011.04.007. DOI
Lauderbaugh K. Analysis of the effects of process parameters on exit burrs in drilling using a combined simulation and experimental approach. J. Mater. Process Technol. 2009;209:1909–1919. doi: 10.1016/j.jmatprotec.2008.04.062. DOI
Moganapriya C., Rajasekar R., Santhosh R., Saran S., Santhosh S., Gobinath V.K., Sathish Kumar P. Sustainable Hard Machining of AISI 304 Stainless Steel Through TiAlN, AlTiN, and TiAlSiN Coating and Multi-Criteria Decision Making Using Grey Fuzzy Coupled Taguchi Method. J. Mater. Eng. Perform. 2022;16:7302–7314. doi: 10.1007/s11665-022-06751-2. DOI
Drbúl M., Šajgalík M., Šemcer J., Czánová T., Petrkovská L. Strojárska Metrológia a Kvalita Povrchov Vytvorených Technológiami Obrábania. EDIS; Žilina, Slovakia: 2014.
Kalincová D., Ťavodová M., Kapustová M., Novák M. TEAM 2011: Proceedings of the 3rd International Scientific and Expert Conference with Simultaneously Organised 17th International Scientific Conference CO-MAT-TECH 2011. University of Applied Sciences of Slavonski Brod; Slavonski Brod, Croatia: 2011. Evaluation of residual stress in coinage tools; pp. 208–211.