Prognostic Impact of Serial Imaging in Severe Acute Respiratory Distress Syndrome on the Extracorporeal Membrane Oxygenation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37835011
PubMed Central
PMC10573453
DOI
10.3390/jcm12196367
PII: jcm12196367
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19 pneumonia, acute respiratory distress syndrome, barotrauma, chest X-ray, chest computer tomography, chest ultrasonography, extracorporeal membrane oxygenation, pneumothorax,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The impact of serial imaging on the outcome of ICU patients has not been studied specifically in patients with high illness severity. METHODS: The authors sought a relationship between the numbers of antero-posterior supine chest X-rays (CXR), computed tomography (CT) examinations, and outcome in a cohort of 292 patients with severe COVID-19 ARDS collected over 24 months in a high-volume ECMO center with established ultrasound and echocardiographic diagnostics. Of the patients, 172 (59%) were obese or morbidly obese, and 119 (41%) were treated with ECMO. RESULTS: The median number of CXRs was eight per 14 days of the length of stay in the ICU. The CXR rate was not related to ICU survival (p = 0.37). Patients required CT scanning in 26.5% of cases, with no relationship to the outcome except for the better ICU survival of the ECMO patients without a need for a CT scan (p = 0.01). The odds ratio for survival associated with ordering a CT scan in an ECMO patient was 0.48, p = 0.01. The calculated savings for not routinely requesting a whole-body CT scan in every patient were 98.685 EUR/24 months. CONCLUSIONS: Serial imaging does not impact the survival rates of patients with severe ARDS. Extracorporeal membrane oxygenation patients who did not need CT scanning had significantly better ICU outcomes.
Zobrazit více v PubMed
Bouhemad B., Brisson H., Le-Guen M., Arbelot C., Lu Q., Rouby J.J. Bedside ultrasound assessment of positive end-expiratory pressure-induced lung recruitment. Am. J. Respir. Crit. Care Med. 2011;183:341–347. doi: 10.1164/rccm.201003-0369OC. PubMed DOI
Bouhemad B., Zhang M., Lu Q., Rouby J.J. Clinical review: Bedside lung ultrasound in critical care practice. Crit. Care. 2007;11:205. doi: 10.1186/cc5668. PubMed DOI PMC
Altersberger M., Schneider M., Schiller M., Binder-Rodriguez C., Genger M., Khafaga M., Binder T., Prosch H. Point of care echocardiography and lung ultrasound in critically ill patients with COVID-19. Wien. Klin. Wochenschr. 2021;133:1298–1309. doi: 10.1007/s00508-021-01968-y. PubMed DOI PMC
Hussain A., Via G., Melniker L., Goffi A., Tavazzi G., Neri L., Villen T., Hoppmann R., Mojoli F., Noble V., et al. Multi-organ point-of-care ultrasound for COVID-19 (PoCUS4COVID): International expert consensus. Crit. Care. 2020;24:702. doi: 10.1186/s13054-020-03369-5. PubMed DOI PMC
Chiumello D., Mongodi S., Algieri I., Vergani G.L., Orlando A., Via G., Crimella F., Cressoni M., Mojoli F. Assessment of Lung Aeration and Recruitment by CT Scan and Ultrasound in Acute Respiratory Distress Syndrome Patients. Crit. Care Med. 2018;46:1761–1768. doi: 10.1097/CCM.0000000000003340. PubMed DOI
Constantin J.M., Jabaudon M., Lefrant J.Y., Jaber S., Quenot J.P., Langeron O., Ferrandière M., Grelon F., Seguin P., Ichai C., et al. Personalised mechanical ventilation tailored to lung morphology versus low positive end-expiratory pressure for patients with acute respiratory distress syndrome in France (the LIVE study): A multicentre, single-blind, randomised controlled trial. Lancet Respir. Med. 2019;7:870–880. doi: 10.1016/S2213-2600(19)30138-9. PubMed DOI
Zieleskiewicz L., Markarian T., Lopez A., Taguet C., Mohammedi N., Boucekine M., Baumstarck K., Besch G., Mathon G., Duclos G., et al. Comparative study of lung ultrasound and chest computed tomography scan in the assessment of severity of confirmed COVID-19 pneumonia. Intensive Care Med. 2020;46:1707–1713. doi: 10.1007/s00134-020-06186-0. PubMed DOI PMC
Foley D.S., Pranikoff T., Younger J.G., Swaniker F., Hemmila M.R., Remenapp R.A., Copenhaver W., Landis D., Hirschl R.B., Bartlett R.H. A review of 100 patients transported on extracorporeal life support. Asaio J. 2002;48:612–619. doi: 10.1097/00002480-200211000-00007. PubMed DOI
Beckmann U., Gillies D.M., Berenholtz S.M., Wu A.W., Pronovost P. Incidents relating to the intra-hospital transfer of critically ill patients. An analysis of the reports submitted to the Australian Incident Monitoring Study in Intensive Care. Intensive Care Med. 2004;30:1579–1585. doi: 10.1007/s00134-004-2177-9. PubMed DOI
Choukalas C.G., Vu T.G. The Problem of Daily Imaging in the Intensive Care Unit: When You Care So Much It Hurts. JAMA Intern. Med. 2020;180:1369–1370. doi: 10.1001/jamainternmed.2020.2667. PubMed DOI
Balik M., Plasil P., Waldauf P., Pazout J., Fric M., Otahal M., Pachl J. Ultrasound estimation of volume of pleural fluid in mechanically ventilated patients. Intensive Care Med. 2006;32:318. doi: 10.1007/s00134-005-0024-2. PubMed DOI
Balik M., Mokotedi M.C., Maly M., Otahal M., Stach Z., Svobodova E., Flaksa M., Rulisek J., Brozek T., Porizka M. Pulmonary consolidation alters the ultrasound estimate of pleural fluid volume when considering chest drainage in patients on ECMO. Crit. Care. 2022;26:144. doi: 10.1186/s13054-022-04018-9. PubMed DOI PMC
Haddam M., Zieleskiewicz L., Perbet S., Baldovini A., Guervilly C., Arbelot C., Noel A., Vigne C., Hammad E., Antonini F., et al. Lung ultrasonography for assessment of oxygenation response to prone position ventilation in ARDS. Intensive Care Med. 2016;42:1546–1556. doi: 10.1007/s00134-016-4411-7. PubMed DOI
Maly M., Mokotedi M.C., Svobodova E., Flaksa M., Otahal M., Stach Z., Rulisek J., Brozek T., Porizka M., Balik M. Interpleural location of chest drain on ultrasound excludes pneumothorax and associates with a low degree of chest drain foreshortening on the antero-posterior chest X-ray. Ultrasound J. 2022;14:45. doi: 10.1186/s13089-022-00296-0. PubMed DOI PMC
Mokotedi M.C., Lambert L., Simakova L., Lips M., Zakharchenko M., Rulisek J., Balik M. X-ray indices of chest drain malposition after insertion for drainage of pneumothorax in mechanically ventilated critically ill patients. J. Thorac. Dis. 2018;10:5695–5701. doi: 10.21037/jtd.2018.09.64. PubMed DOI PMC
Celik H., Agrawal B., Barker A., D’Errico L., Vuylsteke A., Suresh S., Weir-McCall J.R. Routine whole-body CT identifies clinically significant findings in patients supported with veno-venous extracorporeal membrane oxygenation. Clin. Radiol. 2023;78:18–23. doi: 10.1016/j.crad.2022.08.143. PubMed DOI
Kredel M., Bierbaum D., Lotz C., Küstermann J., Roewer N., Muellenbach R.M. Therapy of acute respiratory distress syndrome: Survey of German ARDS centers and scientific evidence. Anaesthesist. 2015;64:277–285. doi: 10.1007/s00101-015-0010-1. PubMed DOI
Richmond K.M., Warburton K.G., Finney S.J., Shah S., Reddi B.A.J. Routine CT scanning of patients retrieved to a tertiary centre on veno-venous extracorporeal membrane oxygenation: A retrospective risk benefit analysis. Perfusion. 2018;33:438–444. doi: 10.1177/0267659118763266. PubMed DOI
Osofsky R., Owen B., Elks W., Das Gupta J., Clark R., Kraai E., Rana M.A., Marinaro J., Guliani S. Protocolized Whole-Body Computed Tomography Imaging After Extracorporeal Membrane Oxygenation (ECMO) Cannulation for Cardiac Arrest. Asaio J. 2021;67:1196–1203. doi: 10.1097/MAT.0000000000001516. PubMed DOI
Yang K.J., Wang C.H., Huang Y.C., Tseng L.J., Chen Y.S., Yu H.Y. Clinical experience of whole-body computed tomography as the initial evaluation tool after extracorporeal cardiopulmonary resuscitation in patients of out-of-hospital cardiac arrest. Scand. J. Trauma. Resusc. Emerg. Med. 2020;28:54. doi: 10.1186/s13049-020-00746-5. PubMed DOI PMC
Zotzmann V., Rilinger J., Lang C.N., Duerschmied D., Benk C., Bode C., Wengenmayer T., Staudacher D.L. Early full-body computed tomography in patients after extracorporeal cardiopulmonary resuscitation (eCPR) Resuscitation. 2020;146:149–154. doi: 10.1016/j.resuscitation.2019.11.024. PubMed DOI
Branney S.W., Wolfe R.E., Moore E.E., Albert N.P., Heinig M., Mestek M., Eule J. Quantitative sensitivity of ultrasound in detecting free intraperitoneal fluid. J. Trauma. 1995;39:375–380. doi: 10.1097/00005373-199508000-00032. PubMed DOI
Stengel D., Bauwens K., Rademacher G., Mutze S., Ekkernkamp A. Association between compliance with methodological standards of diagnostic research and reported test accuracy: Meta-analysis of focused assessment of US for trauma. Radiology. 2005;236:102–111. doi: 10.1148/radiol.2361040791. PubMed DOI
Lunz D., Calabrò L., Belliato M., Contri E., Broman L.M., Scandroglio A.M., Patricio D., Malfertheiner M., Creteur J., Philipp A., et al. Extracorporeal membrane oxygenation for refractory cardiac arrest: A retrospective multicenter study. Intensive Care Med. 2020;46:973–982. doi: 10.1007/s00134-020-05926-6. PubMed DOI
Jan Hrdlicka J.S., Bianka B., Lukas L., Jan B., Andrea B. Both decreased and increased grey-to-white matter attenuation ratio in the putamen and caudate on early head computed tomography differentiate patients with favorable and unfavorable outcomes after prolonged cardiac arrest—Secondary analysis of the Prague OHCA study. Quant. Imaging Med. Surg. 2023;13:9. PubMed PMC
Lambert L., Grus T., Balik M., Fichtl J., Kavan J., Belohlavek J. Hemodynamic changes in patients with extracorporeal membrane oxygenation (ECMO) demonstrated by contrast-enhanced CT examinations—Implications for image acquisition technique. Perfusion. 2017;32:220–225. doi: 10.1177/0267659116677308. PubMed DOI
Lannon M., Duda T., Greer A., Hewitt M., Sharma A., Martyniuk A., Owen J., Amin F., Sharma S. Intracranial hemorrhage in patients treated for SARS-CoV-2 with extracorporeal membrane oxygenation: A systematic review and meta-analysis. J. Crit. Care. 2023;77:154319. doi: 10.1016/j.jcrc.2023.154319. PubMed DOI PMC
Balik M., Svobodova E., Porizka M., Maly M., Brestovansky P., Volny L., Brozek T., Bartosova T., Jurisinova I., Mevaldova Z., et al. The impact of obesity on the outcome of severe SARS-CoV-2 ARDS in a high volume ECMO centre: ECMO and corticosteroids support the obesity paradox. J. Crit. Care. 2022;72:154162. doi: 10.1016/j.jcrc.2022.154162. PubMed DOI PMC
Ferguson N.D., Fan E., Camporota L., Antonelli M., Anzueto A., Beale R., Brochard L., Brower R., Esteban A., Gattinoni L., et al. The Berlin definition of ARDS: An expanded rationale, justification, and supplementary material. Intensive Care Med. 2012;38:1573–1582. doi: 10.1007/s00134-012-2682-1. PubMed DOI
Constantin J.M., Monsel A., Blanchard F., Godet T. Personalised mechanical ventilation in acute respiratory distress syndrome: The right idea with the wrong tools?—Authors’ reply. Lancet Respir. Med. 2019;7:e39. doi: 10.1016/S2213-2600(19)30398-4. PubMed DOI
Revel M.P., Parkar A.P., Prosch H., Silva M., Sverzellati N., Gleeson F., Brady A. COVID-19 patients and the radiology department—Advice from the European Society of Radiology (ESR) and the European Society of Thoracic Imaging (ESTI) Eur. Radiol. 2020;30:4903–4909. doi: 10.1007/s00330-020-06865-y. PubMed DOI PMC