The Role of Micronutrients in Neurological Disorders
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
37836413
PubMed Central
PMC10574090
DOI
10.3390/nu15194129
PII: nu15194129
Knihovny.cz E-zdroje
- Klíčová slova
- Huntington’s disease, Parkinson’s disease, autoimmune disorders, epilepsy, micronutrients, multiple sclerosis, neurodegenerative disorders, neuropathy, stroke,
- MeSH
- lidé MeSH
- mikroživiny MeSH
- nemoci nervového systému * MeSH
- stopové prvky * MeSH
- vitamin A MeSH
- vitaminy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- mikroživiny MeSH
- stopové prvky * MeSH
- vitamin A MeSH
- vitaminy MeSH
Trace elements and vitamins, collectively known as micronutrients, are essential for basic metabolic reactions in the human body. Their deficiency or, on the contrary, an increased amount can lead to serious disorders. Research in recent years has shown that long-term abnormal levels of micronutrients may be involved in the etiopathogenesis of some neurological diseases. Acute and chronic alterations in micronutrient levels may cause other serious complications in neurological diseases. Our aim was to summarize the knowledge about micronutrients in relation to selected neurological diseases and comment on their importance and the possibilities of therapeutic intervention in clinical practice.
Zobrazit více v PubMed
Berger M.M., Shenkin A., Schweinlin A., Amrein K., Augsburger M., Biesalski H.K., Bischoff S.C., Casaer M.P., Gundogan K., Lepp H.L., et al. ESPEN micronutrient guideline. Clin. Nutr. 2022;41:1357–1424. doi: 10.1016/j.clnu.2022.02.015. PubMed DOI
Stevens G.A., Beal T., Mbuya M.N.N., Luo H., Neufeld L.M., Global Micronutrient Deficiencies Research Group Micronutrient deficiencies among preschool-aged children and women of reproductive age worldwide: A pooled analysis of individual-level data from population-representative surveys. Lancet Glob. Health. 2022;10:e1590–e1599. doi: 10.1016/S2214-109X(22)00367-9. PubMed DOI PMC
Plantone D., Pardini M., Caneva S., De Stefano N. Is There a Role of Vitamin D in Alzheimer’s disease? CNS Neurol. Disord. Drug Targets. 2023 doi: 10.2174/1871527322666230526164421. ahead of print. PubMed DOI
Holton K.F. Micronutrients May Be a Unique Weapon Against the Neurotoxic Triad of Excitotoxicity, Oxidative Stress and Neuroinflammation: A Perspective. Front. Neurosci. 2021;15:726457. doi: 10.3389/fnins.2021.726457. PubMed DOI PMC
Gillette-Guyonnet S., Secher M., Vellas B. Nutrition and neurodegeneration: Epidemiological evidence and challenges for future research. Br. J. Clin. Pharmacol. 2013;75:738–755. doi: 10.1111/bcp.12058. PubMed DOI PMC
Huskisson E., Maggini S., Ruf M. The influence of micronutrients on cognitive function and performance. J. Int. Med. Res. 2007;35:1–19. doi: 10.1177/147323000703500101. PubMed DOI
Collie J.T.B., Greaves R.F., Jones O.A.H., Eastwood G., Bellomo R. Vitamin C measurement in critical illness: Challenges, methodologies and quality improvements. Clin. Chem. Lab. Med. 2020;58:460–470. doi: 10.1515/cclm-2019-0912. PubMed DOI
Hampel H., Hardy J., Blennow K., Chen C., Perry G., Kim S.H., Villemagne V.L., Aisen P., Vendruscolo M., Iwatsubo T., et al. The Amyloid-beta Pathway in Alzheimer’s Disease. Mol. Psychiatry. 2021;26:5481–5503. doi: 10.1038/s41380-021-01249-0. PubMed DOI PMC
Gruendler R., Hippe B., Sendula Jengic V., Peterlin B., Haslberger A.G. Nutraceutical Approaches of Autophagy and Neuroinflammation in Alzheimer’s Disease: A Systematic Review. Molecules. 2020;25:6018. doi: 10.3390/molecules25246018. PubMed DOI PMC
Birks J.S., Harvey R.J. Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst. Rev. 2018;6:CD001190. doi: 10.1002/14651858.CD001190.pub3. PubMed DOI
Finkelstein Y., Milatovic D., Aschner M. Modulation of cholinergic systems by manganese. Neurotoxicology. 2007;28:1003–1014. doi: 10.1016/j.neuro.2007.08.006. PubMed DOI
Fei H.X., Qian C.F., Wu X.M., Wei Y.H., Huang J.Y., Wei L.H. Role of micronutrients in Alzheimer’s disease: Review of available evidence. World J. Clin. Cases. 2022;10:7631–7641. doi: 10.12998/wjcc.v10.i22.7631. PubMed DOI PMC
Cilliers K. Trace element alterations in Alzheimer’s disease: A review. Clin. Anat. 2021;34:766–773. doi: 10.1002/ca.23727. PubMed DOI
Luzzi S., Cherubini V., Falsetti L., Viticchi G., Silvestrini M., Toraldo A. Homocysteine, Cognitive Functions, and Degenerative Dementias: State of the Art. Biomedicines. 2022;10:2741. doi: 10.3390/biomedicines10112741. PubMed DOI PMC
Li B., Xia M., Zorec R., Parpura V., Verkhratsky A. Astrocytes in heavy metal neurotoxicity and neurodegeneration. Brain Res. 2021;1752:147234. doi: 10.1016/j.brainres.2020.147234. PubMed DOI PMC
Rai S.N., Singh P., Steinbusch H.W.M., Vamanu E., Ashraf G., Singh M.P. The Role of Vitamins in Neurodegenerative Disease: An Update. Biomedicines. 2021;9:1284. doi: 10.3390/biomedicines9101284. PubMed DOI PMC
Aisen P.S., Schneider L.S., Sano M., Diaz-Arrastia R., van Dyck C.H., Weiner M.F., Bottiglieri T., Jin S., Stokes K.T., Thomas R.G., et al. High-dose B vitamin supplementation and cognitive decline in Alzheimer disease: A randomized controlled trial. JAMA. 2008;300:1774–1783. doi: 10.1001/jama.300.15.1774. PubMed DOI PMC
Lu’o’ng K., Nguyen L.T. Role of thiamine in Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen. 2011;26:588–598. doi: 10.1177/1533317511432736. PubMed DOI PMC
Murdaca G., Banchero S., Tonacci A., Nencioni A., Monacelli F., Gangemi S. Vitamin D and Folate as Predictors of MMSE in Alzheimer’s Disease: A Machine Learning Analysis. Diagnostics. 2021;11:940. doi: 10.3390/diagnostics11060940. PubMed DOI PMC
Kang J., Park M., Lee E., Jung J., Kim T. The Role of Vitamin D in Alzheimer’s Disease: A Transcriptional Regulator of Amyloidopathy and Gliopathy. Biomedicines. 2022;10:1824. doi: 10.3390/biomedicines10081824. PubMed DOI PMC
Sasanian N., Bernson D., Horvath I., Wittung-Stafshede P., Esbjorner E.K. Redox-Dependent Copper Ion Modulation of Amyloid-beta (1–42) Aggregation In Vitro. Biomolecules. 2020;10:924. doi: 10.3390/biom10060924. PubMed DOI PMC
Socha K., Klimiuk K., Naliwajko S.K., Soroczyńska J., Puścion-Jakubik A., Markiewicz-Żukowska R., Kochanowicz J. Dietary Habits, Selenium, Copper, Zinc and Total Antioxidant Status in Serum in Relation to Cognitive Functions of Patients with Alzheimer’s Disease. Nutrients. 2021;13:287. doi: 10.3390/nu13020287. PubMed DOI PMC
Moynier F., Borgne M.L., Lahoud E., Mahan B., Mouton-Liger F., Hugon J., Paquet C. Copper and zinc isotopic excursions in the human brain affected by Alzheimer’s disease. Alzheimer’s Dement. 2020;12:e12112. doi: 10.1002/dad2.12112. PubMed DOI PMC
Vicente-Zurdo D., Romero-Sanchez I., Rosales-Conrado N., Leon-Gonzalez M.E., Madrid Y. Ability of selenium species to inhibit metal-induced Abeta aggregation involved in the development of Alzheimer’s disease. Anal. Bioanal. Chem. 2020;412:6485–6497. doi: 10.1007/s00216-020-02644-2. PubMed DOI
Cardoso B.R., Braat S., Graham R.M. Selenium Status Is Associated with Insulin Resistance Markers in Adults: Findings from the 2013 to 2018 National Health and Nutrition Examination Survey (NHANES) Front. Nutr. 2021;8:696024. doi: 10.3389/fnut.2021.696024. PubMed DOI PMC
Bulk M., Abdelmoula W.M., Geut H., Wiarda W., Ronen I., Dijkstra J., van der Weerd L. Quantitative MRI and laser ablation-inductively coupled plasma-mass spectrometry imaging of iron in the frontal cortex of healthy controls and Alzheimer’s disease patients. Neuroimage. 2020;215:116808. doi: 10.1016/j.neuroimage.2020.116808. PubMed DOI
Madsen S.J., DiGiacomo P.S., Zeng Y., Goubran M., Chen Y., Rutt B.K., Born D., Vogel H., Sinclair R., Zeineh M.M. Correlative Microscopy to Localize and Characterize Iron Deposition in Alzheimer’s Disease. J. Alzheimer’s Dis. Rep. 2020;4:525–536. doi: 10.3233/ADR-200234. PubMed DOI PMC
Meade R.M., Fairlie D.P., Mason J.M. Alpha-synuclein structure and Parkinson’s disease—Lessons and emerging principles. Mol. Neurodegener. 2019;14:29. doi: 10.1186/s13024-019-0329-1. PubMed DOI PMC
Gomez-Benito M., Granado N., Garcia-Sanz P., Michel A., Dumoulin M., Moratalla R. Modeling Parkinson’s Disease with the Alpha-Synuclein Protein. Front. Pharmacol. 2020;11:356. doi: 10.3389/fphar.2020.00356. PubMed DOI PMC
Murphy J., McKernan D.P. The Effect of Aggregated Alpha Synuclein on Synaptic and Axonal Proteins in Parkinson’s Disease-A Systematic Review. Biomolecules. 2022;12:1199. doi: 10.3390/biom12091199. PubMed DOI PMC
Al-Nasser M.N., Mellor I.R., Carter W.G. Is L-Glutamate Toxic to Neurons and Thereby Contributes to Neuronal Loss and Neurodegeneration? A Systematic Review. Brain Sci. 2022;12:577. doi: 10.3390/brainsci12050577. PubMed DOI PMC
Lopez Lozano J.J., Moreno Cano R. Preparation of a levodopa/carbidopa solution in ascorbic acid (citridopa) and chromatographic and electrochemical assessment of its stability over 24 hours. Neurologia. 1995;10:155–158. PubMed
Miyaue N., Kubo M., Nagai M. Ascorbic acid can alleviate the degradation of levodopa and carbidopa induced by magnesium oxide. Brain Behav. 2022;12:e2672. doi: 10.1002/brb3.2672. PubMed DOI PMC
Nagayama H., Hamamoto M., Ueda M., Nito C., Yamaguchi H., Katayama Y. The effect of ascorbic acid on the pharmacokinetics of levodopa in elderly patients with Parkinson disease. Clin. Neuropharmacol. 2004;27:270–273. doi: 10.1097/01.wnf.0000150865.21759.bc. PubMed DOI
Sudha K., Rao A.V., Rao S., Rao A. Free radical toxicity and antioxidants in Parkinson’s disease. Neurol. India. 2003;51:60–62. PubMed
Ide K., Yamada H., Umegaki K., Mizuno K., Kawakami N., Hagiwara Y., Matsumoto M., Yoshida H., Kim K., Shiosaki E., et al. Lymphocyte vitamin C levels as potential biomarker for progression of Parkinson’s disease. Nutrition. 2015;31:406–408. doi: 10.1016/j.nut.2014.08.001. PubMed DOI
Murakami K., Miyake Y., Sasaki S., Tanaka K., Fukushima W., Kiyohara C., Tsuboi Y., Yamada T., Oeda T., Miki T., et al. Dietary intake of folate, vitamin B6, vitamin B12 and riboflavin and risk of Parkinson’s disease: A case-control study in Japan. Br. J. Nutr. 2010;104:757–764. doi: 10.1017/S0007114510001005. PubMed DOI
dos Santos E.F., Busanello E.N., Miglioranza A., Zanatta A., Barchak A.G., Vargas C.R., Saute J., Rosa C., Carrion M.J., Camargo D., et al. Evidence that folic acid deficiency is a major determinant of hyperhomocysteinemia in Parkinson’s disease. Metab. Brain Dis. 2009;24:257–269. doi: 10.1007/s11011-009-9139-4. PubMed DOI
Zhang S.M., Hernan M.A., Chen H., Spiegelman D., Willett W.C., Ascherio A. Intakes of vitamins E and C, carotenoids, vitamin supplements, and PD risk. Neurology. 2002;59:1161–1169. doi: 10.1212/01.WNL.0000028688.75881.12. PubMed DOI
Pignolo A., Mastrilli S., Davì C., Arnao V., Aridon P., Dos Santos Mendes F.A., Gagliardo C., D’Amelio M. Vitamin D and Parkinson’s Disease. Nutrients. 2022;14:1220. doi: 10.3390/nu14061220. PubMed DOI PMC
Knekt P., Kilkkinen A., Rissanen H., Marniemi J., Saaksjarvi K., Heliovaara M. Serum vitamin D and the risk of Parkinson disease. Arch. Neurol. 2010;67:808–811. doi: 10.1001/archneurol.2010.120. PubMed DOI PMC
Evatt M.L., DeLong M.R., Kumari M., Auinger P., McDermott M.P., Tangpricha V., Parkinson Study Group DATATOP Investigators High prevalence of hypovitaminosis D status in patients with early Parkinson disease. Arch. Neurol. 2011;68:314–319. doi: 10.1001/archneurol.2011.30. PubMed DOI
Ricciarelli R., Argellati F., Pronzato M.A., Domenicotti C. Vitamin E and neurodegenerative diseases. Mol. Asp. Med. 2007;28:591–606. doi: 10.1016/j.mam.2007.01.004. PubMed DOI
Rozycka A., Jagodzinski P.P., Kozubski W., Lianeri M., Dorszewska J. Homocysteine Level and Mechanisms of Injury in Parkinson’s Disease as Related to MTHFR, MTR, and MTHFD1 Genes Polymorphisms and L-Dopa Treatment. Curr. Genom. 2013;14:534–542. doi: 10.2174/1389202914666131210210559. PubMed DOI PMC
Saberi S., Stauffer J.E., Schulte D.J., Ravits J. Neuropathology of Amyotrophic Lateral Sclerosis and Its Variants. Neurol. Clin. 2015;33:855–876. doi: 10.1016/j.ncl.2015.07.012. PubMed DOI PMC
Peters O.M., Ghasemi M., Brown R.H., Jr. Emerging mechanisms of molecular pathology in ALS. J. Clin. Investig. 2015;125:2548. doi: 10.1172/JCI82693. PubMed DOI PMC
Jankovska N., Matej R. Molecular Pathology of ALS: What We Currently Know and What Important Information Is Still Missing. Diagnostics. 2021;11:1365. doi: 10.3390/diagnostics11081365. PubMed DOI PMC
Trojsi F., Siciliano M., Passaniti C., Bisecco A., Russo A., Lavorgna L., Esposito S., Ricciardi D., Monsurrò M.R., Tedeschi G., et al. Vitamin D supplementation has no effects on progression of motor dysfunction in amyotrophic lateral sclerosis (ALS) Eur. J. Clin. Nutr. 2020;74:167–175. doi: 10.1038/s41430-019-0448-3. PubMed DOI
Bull P.C., Thomas G.R., Rommens J.M., Forbes J.R., Cox D.W. The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat. Genet. 1993;5:327–337. doi: 10.1038/ng1293-327. PubMed DOI
Dusek P., Litwin T., Czlonkowska A. Neurologic impairment in Wilson disease. Ann. Transl. Med. 2019;7((Suppl. S2)):S64. doi: 10.21037/atm.2019.02.43. PubMed DOI PMC
Camarata M.A., Ala A., Schilsky M.L. Zinc Maintenance Therapy for Wilson Disease: A Comparison Between Zinc Acetate and Alternative Zinc Preparations. Hepatol. Commun. 2019;3:1151–1158. doi: 10.1002/hep4.1384. PubMed DOI PMC
Rub U., Seidel K., Heinsen H., Vonsattel J.P., den Dunnen W.F., Korf H.W. Huntington’s disease (HD): The neuropathology of a multisystem neurodegenerative disorder of the human brain. Brain Pathol. 2016;26:726–740. doi: 10.1111/bpa.12426. PubMed DOI PMC
Jimenez-Sanchez M., Licitra F., Underwood B.R., Rubinsztein D.C. Huntington’s Disease: Mechanisms of Pathogenesis and Therapeutic Strategies. Cold Spring Harb. Perspect. Med. 2017;7:a024240. doi: 10.1101/cshperspect.a024240. PubMed DOI PMC
Christodoulou C.C., Demetriou C.A., Zamba-Papanicolaou E. Dietary Intake, Mediterranean Diet Adherence and Caloric Intake in Huntington’s Disease: A Review. Nutrients. 2020;12:2946. doi: 10.3390/nu12102946. PubMed DOI PMC
Stascheit F., Chuquisana O., Keller C.W., Ambrose P.A., Hoffmann S., Gross C.C., Lehnerer S., Wiendl H., Willcox N., Meisel A., et al. Complement activation profiles in anti-acetylcholine receptor positive myasthenia gravis. Eur. J. Neurol. 2023;30:1409–1416. doi: 10.1111/ene.15730. PubMed DOI
Bonaccorso G. Myasthenia Gravis and Vitamin D Serum Levels: A Systematic Review and Meta-analysis. CNS Neurol. Disord. Drug Targets. 2023;22:752–760. doi: 10.2174/1871527321666220707111344. PubMed DOI
Sekiguchi K., Ishizuchi K., Takizawa T., Motegi H., Oyama M., Nakahara J., Suzuki S. Anemia in female patients with myasthenia gravis. PLoS ONE. 2022;17:e0273720. doi: 10.1371/journal.pone.0273720. PubMed DOI PMC
Gomes A., Adoni T. Differential diagnosis of demyelinating diseases: What’s new? Arq. Neuropsiquiatr. 2022;80((Suppl. S1)):137–142. doi: 10.1590/0004-282x-anp-2022-s109. PubMed DOI PMC
Bitsch A., Schuchardt J., Bunkowski S., Kuhlmann T., Bruck W. Acute axonal injury in multiple sclerosis. Pt 6Correl. Demyelination Inflamm. Brain. 2000;123:1174–1183. PubMed
Allanach J.R., Farrell J.W., 3rd, Mesidor M., Karimi-Abdolrezaee S. Current status of neuroprotective and neuroregenerative strategies in multiple sclerosis: A systematic review. Mult. Scler. 2022;28:29–48. doi: 10.1177/13524585211008760. PubMed DOI PMC
Pierrot-Deseilligny C. Clinical implications of a possible role of vitamin D in multiple sclerosis. J. Neurol. 2009;256:1468–1479. doi: 10.1007/s00415-009-5139-x. PubMed DOI PMC
Munger K.L., Levin L.I., Hollis B.W., Howard N.S., Ascherio A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA. 2006;296:2832–2838. doi: 10.1001/jama.296.23.2832. PubMed DOI
James E., Dobson R., Kuhle J., Baker D., Giovannoni G., Ramagopalan S.V. The effect of vitamin D-related interventions on multiple sclerosis relapses: A meta-analysis. Mult. Scler. 2013;19:1571–1579. doi: 10.1177/1352458513489756. PubMed DOI
Smolders J., Torkildsen O., Camu W., Holmoy T. An Update on Vitamin D and Disease Activity in Multiple Sclerosis. CNS Drugs. 2019;33:1187–1199. doi: 10.1007/s40263-019-00674-8. PubMed DOI PMC
Salemi G., Gueli M.C., Vitale F., Battaglieri F., Guglielmini E., Ragonese P., Trentacosti A., Massenti M.F., Savettieri G. Blood lipids, homocysteine, stress factors, and vitamins in clinically stable multiple sclerosis patients. Lipids Health Dis. 2010;9:19. doi: 10.1186/1476-511X-9-19. PubMed DOI PMC
Staley K. Molecular mechanisms of epilepsy. Nat. Neurosci. 2015;18:367–372. doi: 10.1038/nn.3947. PubMed DOI PMC
Kim J.E., Cho K.O. Functional Nutrients for Epilepsy. Nutrients. 2019;11:1309. doi: 10.3390/nu11061309. PubMed DOI PMC
Mehvari J., Motlagh F.G., Najafi M., Ghazvini M.R., Naeini A.A., Zare M. Effects of Vitamin E on seizure frequency, electroencephalogram findings, and oxidative stress status of refractory epileptic patients. Adv. Biomed. Res. 2016;5:36. PubMed PMC
Woodruff T.M., Thundyil J., Tang S.C., Sobey C.G., Taylor S.M., Arumugam T.V. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol. Neurodegener. 2011;6:11. doi: 10.1186/1750-1326-6-11. PubMed DOI PMC
Sarkar S., Chakraborty D., Bhowmik A., Ghosh M.K. Cerebral ischemic stroke: Cellular fate and therapeutic opportunities. Front. Biosci. 2019;24:435–450. PubMed
Tang X., Liu H., Xiao Y., Wu L., Shu P. Vitamin C Intake and Ischemic Stroke. Front. Nutr. 2022;9:935991. doi: 10.3389/fnut.2022.935991. PubMed DOI PMC
Guo N., Zhu Y., Tian D., Zhao Y., Zhang C., Mu C., Han C., Zhu R., Liu X. Role of diet in stroke incidence: An umbrella review of meta-analyses of prospective observational studies. BMC Med. 2022;20:194. doi: 10.1186/s12916-022-02381-6. PubMed DOI PMC
Wang D., Li X., Jiang Y., Jiang Y., Ma W., Yu P., Mao L. Ischemic Postconditioning Recovers Cortex Ascorbic Acid during Ischemia/Reperfusion Monitored with an Online Electrochemical System. ACS Chem. Neurosci. 2019;10:2576–2583. doi: 10.1021/acschemneuro.9b00056. PubMed DOI
Uesugi S., Ishihara J., Iso H., Sawada N., Takachi R., Inoue M., Tsugane S. Dietary intake of antioxidant vitamins and risk of stroke: The Japan Public Health Center-based Prospective Study. Eur. J. Clin. Nutr. 2017;71:1179–1185. doi: 10.1038/ejcn.2017.71. PubMed DOI
Pinzon R.T., Wijaya V.O., Veronica V. The role of homocysteine levels as a risk factor of ischemic stroke events: A systematic review and meta-analysis. Front. Neurol. 2023;14:1144584. doi: 10.3389/fneur.2023.1144584. PubMed DOI PMC
Ullegaddi R., Powers H.J., Gariballa S.E. Antioxidant supplementation with or without B-group vitamins after acute ischemic stroke: A randomized controlled trial. JPEN J. Parenter. Enter. Nutr. 2006;30:108–114. doi: 10.1177/0148607106030002108. PubMed DOI
Ullegaddi R., Powers H.J., Gariballa S.E. B-group vitamin supplementation mitigates oxidative damage after acute ischaemic stroke. Clin. Sci. 2004;107:477–484. doi: 10.1042/CS20040134. PubMed DOI
Yokoyama T., Date C., Kokubo Y., Yoshiike N., Matsumura Y., Tanaka H. Serum vitamin C concentration was inversely associated with subsequent 20-year incidence of stroke in a Japanese rural community. The Shibata study. Stroke. 2000;31:2287–2294. doi: 10.1161/01.STR.31.10.2287. PubMed DOI
Tsamis K.I., Boutsoras C., Kaltsonoudis E., Pelechas E., Nikas I.P., Simos Y.V., Voulgari P.V., Sarmas I. Clinical features and diagnostic tools in idiopathic inflammatory myopathies. Crit. Rev. Clin. Lab. Sci. 2022;59:219–240. doi: 10.1080/10408363.2021.2000584. PubMed DOI
Gawey B., Tannu M., Rim J., Sperling L., Henry T.L. Statin-induced necrotizing autoimmune myopathy: A systematic review. Reumatologia. 2022;60:63–69. PubMed PMC
Simon L., Jolley S.E., Molina P.E. Alcoholic Myopathy: Pathophysiologic Mechanisms and Clinical Implications. Alcohol. Res. 2017;38:207–217. PubMed PMC
Lauretta M.P., Melotti R.M., Sangermano C., George A.M., Badenes R., Bilotta F. Homocysteine Plasmatic Concentration in Brain-Injured Neurocritical Care Patients: Systematic Review of Clinical Evidence. J. Clin. Med. 2022;11:394. doi: 10.3390/jcm11020394. PubMed DOI PMC
Hou S., Huh B., Kim H.K., Kim K.H., Abdi S. Treatment of Chemotherapy-Induced Peripheral Neuropathy: Systematic Review and Recommendations. Pain. Physician. 2018;21:571–592. PubMed
Yuen R.C., Tsao S.Y. Embracing cancer immunotherapy with vital micronutrients. World J. Clin. Oncol. 2021;12:712–724. doi: 10.5306/wjco.v12.i9.712. PubMed DOI PMC
Rendell M.S. Current and emerging gluconeogenesis inhibitors for the treatment of Type 2 diabetes. Expert. Opin. Pharmacother. 2021;22:2167–2179. doi: 10.1080/14656566.2021.1958779. PubMed DOI
Julian T., Glascow N., Syeed R., Zis P. Alcohol-related peripheral neuropathy: A systematic review and meta-analysis. J. Neurol. 2019;266:2907–2919. doi: 10.1007/s00415-018-9123-1. PubMed DOI PMC
Wijnia J.W. A Clinician’s View of Wernicke-Korsakoff Syndrome. J. Clin. Med. 2022;11:6755. doi: 10.3390/jcm11226755. PubMed DOI PMC
Pinzon R.T., Wijaya V.O., Veronica V. The Benefits of Add-on Therapy of Vitamin D 5000 IU to the Vitamin D Levels and Symptoms in Diabetic Neuropathy Patients: A Randomized Clinical Trial. J. Pain Res. 2021;14:3865–3875. doi: 10.2147/JPR.S341862. PubMed DOI PMC
Karonova T., Stepanova A., Bystrova A., Jude E.B. High-Dose Vitamin D Supplementation Improves Microcirculation and Reduces Inflammation in Diabetic Neuropathy Patients. Nutrients. 2020;12:2518. doi: 10.3390/nu12092518. PubMed DOI PMC
Gossard T.R., Trotti L.M., Videnovic A., St Louis E.K. Restless Legs Syndrome: Contemporary Diagnosis and Treatment. Neurotherapeutics. 2021;18:140–155. doi: 10.1007/s13311-021-01019-4. PubMed DOI PMC
Liu Z., Guan R., Pan L. Exploration of restless legs syndrome under the new concept: A review. Medicine. 2022;101:e32324. doi: 10.1097/MD.0000000000032324. PubMed DOI PMC
Trotti L.M., Becker L.A. Iron for the treatment of restless legs syndrome. Cochrane Database Syst. Rev. 2019;1:CD007834. doi: 10.1002/14651858.CD007834.pub3. PubMed DOI PMC
Alizadeh A., Dyck S.M., Karimi-Abdolrezaee S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front. Neurol. 2019;10:282. doi: 10.3389/fneur.2019.00282. PubMed DOI PMC
Akter F., Yu X., Qin X., Yao S., Nikrouz P., Syed Y.A., Kotter M. The Pathophysiology of Degenerative Cervical Myelopathy and the Physiology of Recovery Following Decompression. Front. Neurosci. 2020;14:138. doi: 10.3389/fnins.2020.00138. PubMed DOI PMC
Masterman E., Ahmed Z. Experimental Treatments for Oedema in Spinal Cord Injury: A Systematic Review and Meta-Analysis. Cells. 2021;10:2682. doi: 10.3390/cells10102682. PubMed DOI PMC
Khan H., Sharma K., Kumar A., Kaur A., Singh T.G. Therapeutic implications of cyclooxygenase (COX) inhibitors in ischemic injury. Inflamm. Res. 2022;71:277–292. doi: 10.1007/s00011-022-01546-6. PubMed DOI
Farkas G.J., Pitot M.A., Berg A.S., Gater D.R. Nutritional status in chronic spinal cord injury: A systematic review and meta-analysis. Spinal Cord. 2019;57:3–17. doi: 10.1038/s41393-018-0218-4. PubMed DOI
Gasperi V., Sibilano M., Savini I., Catani M.V. Niacin in the Central Nervous System: An Update of Biological Aspects and Clinical Applications. Int. J. Mol. Sci. 2019;20:974. doi: 10.3390/ijms20040974. PubMed DOI PMC
Hussain G., Wang J., Rasul A., Anwar H., Qasim M., Zafar S., Aziz N., Razzaq A., Hussain R., de Aguilar J.G., et al. Current Status of Therapeutic Approaches against Peripheral Nerve Injuries: A Detailed Story from Injury to Recovery. Int. J. Biol. Sci. 2020;16:116–134. doi: 10.7150/ijbs.35653. PubMed DOI PMC
Lopes B., Sousa P., Alvites R., Branquinho M., Sousa A.C., Mendonça C., Atayde L.M., Luís A.L., Varejão AS P., Maurício A.C. Peripheral Nerve Injury Treatments and Advances: One Health Perspective. Int. J. Mol. Sci. 2022;23:918. doi: 10.3390/ijms23020918. PubMed DOI PMC
Yousefi F., Lavi Arab F., Nikkhah K., Amiri H., Mahmoudi M. Novel approaches using mesenchymal stem cells for curing peripheral nerve injuries. Life Sci. 2019;221:99–108. doi: 10.1016/j.lfs.2019.01.052. PubMed DOI
Yi S., Zhang Y., Gu X., Huang L., Zhang K., Qian T., Gu X. Application of stem cells in peripheral nerve regeneration. Burn. Trauma. 2020;8:tkaa002. PubMed PMC
Pellegatta M., Taveggia C. The Complex Work of Proteases and Secretases in Wallerian Degeneration: Beyond Neuregulin-1. Front. Cell Neurosci. 2019;13:93. doi: 10.3389/fncel.2019.00093. PubMed DOI PMC
Paez-Hurtado A.M., Calderon-Ospina C.A., Nava-Mesa M.O. Mechanisms of action of vitamin B1 (thiamine), B6 (pyridoxine), and B12 (cobalamin) in pain: A narrative review. Nutr. Neurosci. 2023;26:235–253. doi: 10.1080/1028415X.2022.2034242. PubMed DOI
Baltrusch S. The Role of Neurotropic B Vitamins in Nerve Regeneration. Biomed Res. Int. 2021;2021:9968228. doi: 10.1155/2021/9968228. PubMed DOI PMC